1
|
Huilgol D, Venkataramani P, Nandi S, Bhattacharjee S. Transcription Factors That Govern Development and Disease: An Achilles Heel in Cancer. Genes (Basel) 2019; 10:E794. [PMID: 31614829 PMCID: PMC6826716 DOI: 10.3390/genes10100794] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/05/2019] [Accepted: 10/08/2019] [Indexed: 12/22/2022] Open
Abstract
Development requires the careful orchestration of several biological events in order to create any structure and, eventually, to build an entire organism. On the other hand, the fate transformation of terminally differentiated cells is a consequence of erroneous development, and ultimately leads to cancer. In this review, we elaborate how development and cancer share several biological processes, including molecular controls. Transcription factors (TF) are at the helm of both these processes, among many others, and are evolutionarily conserved, ranging from yeast to humans. Here, we discuss four families of TFs that play a pivotal role and have been studied extensively in both embryonic development and cancer-high mobility group box (HMG), GATA, paired box (PAX) and basic helix-loop-helix (bHLH) in the context of their role in development, cancer, and their conservation across several species. Finally, we review TFs as possible therapeutic targets for cancer and reflect on the importance of natural resistance against cancer in certain organisms, yielding knowledge regarding TF function and cancer biology.
Collapse
Affiliation(s)
- Dhananjay Huilgol
- Bungtown Road, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY 11724, USA.
| | | | - Saikat Nandi
- Bungtown Road, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY 11724, USA.
| | - Sonali Bhattacharjee
- Bungtown Road, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY 11724, USA.
| |
Collapse
|
2
|
Trnski D, Gregorić M, Levanat S, Ozretić P, Rinčić N, Vidaković TM, Kalafatić D, Maurac I, Orešković S, Sabol M, Musani V. Regulation of Survivin Isoform Expression by GLI Proteins in Ovarian Cancer. Cells 2019; 8:cells8020128. [PMID: 30736319 PMCID: PMC6406444 DOI: 10.3390/cells8020128] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/01/2019] [Accepted: 02/04/2019] [Indexed: 02/05/2023] Open
Abstract
Ovarian cancer (OC) is the most lethal female gynecological malignancy, mostly due to diagnosis in late stages when treatment options are limited. Hedgehog-GLI (HH-GLI) signaling is a major developmental pathway involved in organogenesis and stem cell maintenance, and is activated in OC. One of its targets is survivin (BIRC5), an inhibitor of apoptosis protein (IAP) that plays a role in multiple processes, including proliferation and cell survival. We wanted to investigate the role of different GLI proteins in the regulation of survivin isoform expression (WT, 2α, 2B, 3B, and Δex3) in the SKOV-3 OC cell line. We demonstrated that survivin isoforms are downregulated in GLI1 and GLI2 knock-out cell lines, but not in the GLI3 knock-out. Treatment of GLI1 knock-out cells with GANT-61 shows an additional inhibitory effect on several isoforms. Additionally, we examined the expression of survivin isoforms in OC samples and the potential role of BIRC5 polymorphisms in isoform expression. Clinical samples showed the same pattern of survivin isoform expression as in the cell line, and several BIRC5 polymorphisms showed the correlation with isoform expression. Our results showed that survivin isoforms are regulated both by different GLI proteins and BIRC5 polymorphisms in OC.
Collapse
Affiliation(s)
- Diana Trnski
- Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| | - Maja Gregorić
- Zagreb Health School, Medvedgradska 55, 10000 Zagreb, Croatia.
| | - Sonja Levanat
- Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| | - Petar Ozretić
- Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| | - Nikolina Rinčić
- Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| | - Tajana Majić Vidaković
- Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
- PP Orahovica, Pustara 1, 33513 Zdenci, Croatia.
| | - Držislav Kalafatić
- Department of Obstetrics and Gynaecology, University Hospital Centre Zagreb, Petrova 13, 10000 Zagreb, Croatia.
- School of Medicine, University of Zagreb, Petrova 13, 10000 Zagreb, Croatia.
| | - Ivana Maurac
- Department of Obstetrics and Gynaecology, University Hospital Centre Zagreb, Petrova 13, 10000 Zagreb, Croatia.
| | - Slavko Orešković
- Department of Obstetrics and Gynaecology, University Hospital Centre Zagreb, Petrova 13, 10000 Zagreb, Croatia.
- School of Medicine, University of Zagreb, Petrova 13, 10000 Zagreb, Croatia.
| | - Maja Sabol
- Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| | - Vesna Musani
- Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| |
Collapse
|
3
|
Yamamoto M, Matsuzaki T, Takahashi R, Adachi E, Maeda Y, Yamaguchi S, Kitayama H, Echizenya M, Morioka Y, Alexander DB, Yagi T, Itohara S, Nakamura T, Akiyama H, Noda M. The transformation suppressor gene Reck is required for postaxial patterning in mouse forelimbs. Biol Open 2012; 1:458-66. [PMID: 23213437 PMCID: PMC3507216 DOI: 10.1242/bio.2012638] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The membrane-anchored metalloproteinase-regulator RECK has been characterized as a tumor suppressor. Here we report that mice with reduced Reck-expression show limb abnormalities including right-dominant, forelimb-specific defects in postaxial skeletal elements. The forelimb buds of low-Reck mutants have an altered dorsal ectoderm with reduced Wnt7a and Igf2 expression, and hypotrophy in two signaling centers (i.e., ZPA and AER) that are essential for limb outgrowth and patterning. Reck is abundantly expressed in the anterior mesenchyme in normal limb buds; mesenchyme-specific Reck inactivation recapitulates the low-Reck phenotype; and some teratogens downregulate Reck in mesenchymal cells. Our findings illustrate a role for Reck in the mesenchymal-epithelial interactions essential for mammalian development.
Collapse
Affiliation(s)
- Mako Yamamoto
- Department of Molecular Oncology ; Global COE Program
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Wang CKL, Tsugane MH, Scranton V, Kosher RA, Pierro LJ, Upholt WB, Dealy CN. Pleiotropic patterning response to activation of Shh signaling in the limb apical ectodermal ridge. Dev Dyn 2011; 240:1289-302. [PMID: 21465622 DOI: 10.1002/dvdy.22628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2011] [Indexed: 11/07/2022] Open
Abstract
Sonic hedgehog (Shh) signaling in the limb plays a central role in coordination of limb patterning and outgrowth. Shh expression in the limb is limited to the cells of the zone of polarizing activity (ZPA), located in posterior limb bud mesoderm. Shh is not expressed by limb ectoderm or apical ectodermal ridge (AER), but recent studies suggest a role for AER-Shh signaling in limb patterning. Here, we have examined the effects of activation of Shh signaling in the AER. We find that targeted expression of Shh in the AER activates constitutive Shh signaling throughout the AER and subjacent limb mesoderm, and causes a range of limb patterning defects with progressive severity from mild polydactyly, to polysyndactyly with proximal defects, to severe oligodactyly with phocomelia and partial limb ventralization. Our studies emphasize the importance of control of the timing, level and location of Shh pathway signaling for limb anterior-posterior, proximal-distal, and dorsal-ventral patterning.
Collapse
Affiliation(s)
- Chi-Kuang Leo Wang
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, Connecticut, USA
| | | | | | | | | | | | | |
Collapse
|
5
|
Harfe BD. Keeping up with the zone of polarizing activity: New roles for an old signaling center. Dev Dyn 2011; 240:915-9. [DOI: 10.1002/dvdy.22597] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2011] [Indexed: 01/05/2023] Open
|
6
|
Lee GS, Liao X, Shimizu H, Collins MD. Genetic and pathologic aspects of retinoic acid-induced limb malformations in the mouse. ACTA ACUST UNITED AC 2010; 88:863-82. [DOI: 10.1002/bdra.20712] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
7
|
Shh pathway activation is present and required within the vertebrate limb bud apical ectodermal ridge for normal autopod patterning. Proc Natl Acad Sci U S A 2010; 107:5489-94. [PMID: 20212115 DOI: 10.1073/pnas.0912818107] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Expression of Sonic Hedgehog (Shh) in the posterior mesenchyme of the developing limb bud regulates patterning and growth of the developing limb by activation of the Hedgehog (Hh) signaling pathway. Through the analysis of Shh and Hh signaling target genes, it has been shown that activation in the limb bud mesoderm is required for normal limb development to occur. In contrast, it has been stated that Hh signaling in the limb bud ectoderm cannot occur because components of the Hh signaling pathway and Hh target genes have not been found in this tissue. However, recent array-based data identified both the components necessary to activate the Hh signaling pathway and targets of this pathway in the limb bud ectoderm. Using immunohistochemistry and various methods of detection for targets of Hh signaling, we found that SHH protein and targets of Hh signaling are present in the limb bud ectoderm including the apex of the bud. To directly test whether ectodermal Hh signaling was required for normal limb patterning, we removed Smo, an essential component of the Hh signaling pathway, from the apical ectodermal ridge (AER). Loss of functional Hh signaling in the AER resulted in disruption of the normal digit pattern and formation of additional postaxial cartilaginous condensations. These data indicate that contrary to previous accounts, the Hh signaling pathway is present and required in the developing limb AER for normal autopod development.
Collapse
|
8
|
Schreiner CM, Bell SM, Scott WJ. Microarray analysis of murine limb bud ectoderm and mesoderm after exposure to cadmium or acetazolamide. ACTA ACUST UNITED AC 2009; 85:588-98. [PMID: 19274763 DOI: 10.1002/bdra.20577] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND A variety of drugs, environmental chemicals, and physical agents induce a common limb malformation in the offspring of pregnant mice exposed on day 9 of gestation. This malformation, postaxial, right-sided forelimb ectrodactyly, is thought to arise via an alteration of hedgehog signaling. METHODS We have studied two of these teratogens, acetazolamide and cadmium, using the technique of microarray analysis of limb bud ectoderm and mesoderm to search for changes in gene expression that could indicate a common pathway to postaxial limb reduction. RESULTS Results indicated a generalized up-regulation of gene expression after exposure to acetazolamide but a generalized down-regulation due to cadmium exposure. An intriguing observation was a cadmium-induced reduction of Mt1 and Mt2 expression in the limb bud mesoderm indicating a lowering of embryonic zinc. CONCLUSIONS We propose that these two teratogens and others (valproic acid and ethanol) lower sonic hedgehog signaling by perturbation of zinc function in the sonic hedgehog protein.
Collapse
Affiliation(s)
- Claire M Schreiner
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, and Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio 45229, USA
| | | | | |
Collapse
|
9
|
Bell SM, Schreiner CM, Wert SE, Mucenski ML, Scott WJ, Whitsett JA. R-spondin 2 is required for normal laryngeal-tracheal, lung and limb morphogenesis. Development 2008; 135:1049-58. [DOI: 10.1242/dev.013359] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Herein, we demonstrate that Lrp6-mediated R-spondin 2 signaling through the canonical Wnt pathway is required for normal morphogenesis of the respiratory tract and limbs. We show that the footless insertional mutation creates a severe hypomorphic R-spondin 2 allele (Rspo2Tg). The predicted protein encoded by Rspo2Tg neither bound the cell surface nor activated the canonical Wnt signaling reporter TOPFLASH. Rspo2 activation of TOPFLASH was dependent upon the second EGF-like repeat of Lrp6. Rspo2Tg/Tg mice had severe malformations of laryngeal-tracheal cartilages, limbs and palate, and lung hypoplasia consistent with sites of Rspo2 expression. Rspo2Tg/Tg lung defects were associated with reduced branching, a reduction in TOPGAL reporter activity, and reduced expression of the downstream Wnt target Irx3. Interbreeding the Rspo2Tg and Lrp6- alleles resulted in more severe defects consisting of marked lung hypoplasia and absence of tracheal-bronchial rings, laryngeal structures and all limb skeletal elements.
Collapse
Affiliation(s)
- Sheila M. Bell
- Section of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center and The University of Cincinnati College of Medicine,Cincinnati, OH 45229, USA
| | - Claire M. Schreiner
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center and The University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Susan E. Wert
- Section of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center and The University of Cincinnati College of Medicine,Cincinnati, OH 45229, USA
| | - Michael L. Mucenski
- Section of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center and The University of Cincinnati College of Medicine,Cincinnati, OH 45229, USA
| | - William J. Scott
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center and The University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Jeffrey A. Whitsett
- Section of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center and The University of Cincinnati College of Medicine,Cincinnati, OH 45229, USA
| |
Collapse
|
10
|
Johnson CS, Zucker RM, Hunter ES, Sulik KK. Perturbation of retinoic acid (RA)-mediated limb development suggests a role for diminished RA signaling in the teratogenesis of ethanol. ACTA ACUST UNITED AC 2007; 79:631-41. [PMID: 17676605 DOI: 10.1002/bdra.20385] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND A proposed mechanism for ethanol teratogenicity entails ethanol-mediated reductions in retinoic acid (RA). This premise was investigated utilizing a mouse model, with limb reduction defects as the teratogenic end point. METHODS Ethanol, Disulfiram, or BMS-189453 was administered to C57BL/6J mice on the 9(th) day of pregnancy. Forelimb morphology was assessed on gestation day 18 using Alcian blue and Alizarin red staining. Nile blue sulfate or LysoTracker Red (LTR) vital staining identified cell death in the limb bud. The ability of RA to prevent ethanol-induced cell death was assessed by coadministration followed by laser scanning confocal microscopic examination of LTR-staining. In situ hybridization and qPCR were used to examine gene expression in treated limb buds. RESULTS Ethanol, Disulfiram, and BMS-189453 resulted in postaxial ectrodactyly, intermediate ectrodactyly, and other digital defects. Excessive Nile blue sulfate staining was evident in the presumptive AER following each of the three exposures. Ethanol-induced LTR staining was prevented by RA supplementation. Both in situ hybridization and qPCR illustrated decreases in Shh and Tbx5 in ethanol-exposed embryos as compared to control. CONCLUSIONS Contrary to studies of prolonged RA deficiency, acute exposure to functional antagonists of RA results in limb defects that are morphologically similar to those caused by ethanol. The rescue of ethanol-induced cell death by RA and similar changes in Shh transcription further suggest that RA contributes to ethanol-induced limb dysmorphology. Moreover, the repression of key mediators of limb development soon after ethanol exposure adds to the existing knowledge of the pathogenic effects of ethanol.
Collapse
Affiliation(s)
- Corey S Johnson
- The Department of Cell and Developmental Biology, and Bowles Center for Alcohol Studies, The University of North Carolina, Chapel Hill, North Carolina, USA
| | | | | | | |
Collapse
|
11
|
Shimizu H, Lee GS, Beedanagari SR, Collins MD. Altered localization of gene expression in both ectoderm and mesoderm is associated with a murine strain difference in retinoic acid-induced forelimb ectrodactyly. ACTA ACUST UNITED AC 2007; 79:465-82. [PMID: 17335046 DOI: 10.1002/bdra.20358] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND Defects in digit number or fusion as a teratogenic response are well documented in humans and intensively studied in various mouse models. Maternal exposure to excess levels of all-trans-retinoic acid (RA) at gestational day 9.5 induces postaxial ectrodactyly (digit loss) in the murine C57BL/6N strain but not in the SWV/Fnn strain. METHODS Whole-mount in situ hybridization was used to examine the differential expression of limb patterning genes at the transcriptional level between the two mouse strains following the maternal exposure to a teratogenic level of RA. The detection of a gene with altered expression was followed by either the evaluation of other genes that were synexpressed or with an assessment of downstream genes. RESULTS In the C57BL/6N limb bud following maternal RA administration, gene-specific perturbations were observed within hours of the RA injection in the posterior pre-AER (apical ectodermal ridge) (Fgf8, Dlx3, Bmp4, Sp8, but not Dlx2 or p63), whereas these genes were normally expressed in the SWV/Fnn limb bud. Furthermore, although RA caused comparable reductions of Shh expression between the strains in the 12 h after administration, some Shh downstream genes were differentially expressed (e.g., Gli1, Ptc, and Hoxd13), whereas others were not (e.g., Fgf4, Bmp4, and Gremlin). CONCLUSIONS It is proposed that altered gene expression in both pre-AER and mesoderm is involved in the pathogenesis of postaxial digit loss, and that because the alterations in the pre-AER occur relatively early in the temporal sequence of events, those changes are candidates for an initiating factor in the malformation.
Collapse
Affiliation(s)
- Hirohito Shimizu
- Department of Environmental Health Sciences, UCLA School of Public Health, Los Angeles, California 90095, USA
| | | | | | | |
Collapse
|
12
|
Kovacic P, Pozos RS. Cell signaling (mechanism and reproductive toxicity): redox chains, radicals, electrons, relays, conduit, electrochemistry, and other medical implications. ACTA ACUST UNITED AC 2007; 78:333-44. [PMID: 17315245 DOI: 10.1002/bdrc.20083] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This article deals with a novel, simple, integrated approach to cell signaling involving basic biochemical principles, and their relationship to reproductive toxicity. Initially, an overview of the biological aspects is presented. According to the hypothetical approach, cell signaling entails interaction of redox chains, involving initiation, propagation, and termination. The messengers are mainly radicals and electrons that are generated during electron transfer (ET) and hydrogen atom abstraction reactions. Termination and initiation processes in the chain occur at relay sites occupied by redox functionalities, including quinones, metal complexes, and imines, as well as redox amino acids. Conduits for the messengers, comprising species with nonbonding electrons, are omnipresent. Details are provided for the various electron transfer processes. In relation to the varying rates of cell communication, rationale is based on electrons and size of radicals. Another fit is similarly seen in inspection of endogenous precursors of reactive oxygen species (ROS); namely, proteins bearing redox moieties, lipid oxidation products, and carbohydrate radicals. A hypothesis is advanced in which electromagnetic fields associated with mobile radicals and electrons play a role. Although radicals have previously been investigated as messengers, the area occupies a minor part of the research, and it has not attracted broad consensus as an important component. For the first time, an integrated framework is presented composed of radicals, electrons, relays, conduits, and electrical fields. The approach is in keeping with the vast majority of experimental observations. Cell signaling also plays an important role in reproductive toxicity. The main classes that cause birth defects, including ROS, radiation, metal compounds, medicinals, abused drugs, and miscellaneous substances, are known to participate in the signaling process. A unifying basis exists, in that both signaling and reproductive toxicity are characterized by the electron transfer-reactive oxygen species-oxidative stress (ET-ROS-OS) scheme. This article also incorporates representative examples of the extensive investigations dealing with various medical implications. There is considerable literature pointing to a role for cell communication in a wide variety of illnesses.
Collapse
Affiliation(s)
- Peter Kovacic
- Department of Chemistry, San Diego State University, San Diego, California 92182-1030, USA.
| | | |
Collapse
|
13
|
Baek GH, Kim JK, Chung MS, Lee SK. Terminal hemimelia of the lower extremity: absent lateral ray and a normal fibula. INTERNATIONAL ORTHOPAEDICS 2007; 32:263-7. [PMID: 17558505 PMCID: PMC2269019 DOI: 10.1007/s00264-006-0293-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2006] [Accepted: 10/20/2006] [Indexed: 10/23/2022]
Abstract
Congenital lateral ray deficiency is considered to be a manifestation of fibular hemimelia. However, we have noted patients with absent lateral ray but stable knee and ankle joints, and named this condition terminal hemimelia of the lower extremity. This study was undertaken to further define this group of patients and to compare these patients with fibular hemimelia patients. Four boys and one girl of mean age six years two months were in the terminal hemimelic group and four boys and three girls of mean age eight years seven months in the fibular hemimelic group at the final evaluation. Clinical features commonly observed in the fibular hemimelia such as knee valgus, knee instability, tibial bowing, ball and socket ankle, ankle instability, tarsal coalition, leg length inequality were compared between both groups. Terminal hemimelia of the lower extremity was the same as fibular hemimelia in clinical features below the ankle joint. However, terminal hemimela was found to be milder than fibular hemimelia in terms of limb shortening. The clinical features above the ankle joint were different between both groups. Knees and ankles were stable, and gait disturbance were rarely noticed in patients with terminal hemimelia of the lower extremity.
Collapse
Affiliation(s)
- Goo Hyun Baek
- Department of Orthopedic Surgery, College of Medicine, Seoul National University, Seoul, Korea.
| | | | | | | |
Collapse
|
14
|
Abstract
Alternatives to animal testing in developmental toxicology have been the subject of three decades of research. The aims of these investigations have been to reduce animal experimentation, to refine effect assessment and mechanistic studies, and to accelerate and simplify safety testing in an area of toxicology that uses relatively many animals. Many alternatives have been developed over the years with different compexities, using biologic material ranging from continuous cell lines to complete embryos. The validation of alternatives and their application in testing strategies is still in its infancy, although significant steps towards these aims are currently being made. The introduction of the genomics technology is a promising emerging area in developmental toxicity testing in vitro. Future application of alternatives in testing strategies for developmental toxicity may significantly gain from the inclusion of gene expression studies, given the unique programme of gene expression changes in embryonic and foetal development.
Collapse
Affiliation(s)
- Aldert H Piersma
- Laboratory for Toxicology, Pathology and Genetics, National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, the Netherlands.
| |
Collapse
|
15
|
Collins MD, Eckhoff C, Weiss R, Resnick E, Nau H, Scott WJ. Differential teratogenesis of all-trans-retinoic acid administered on gestational day 9.5 to SWV and C57BL/6N mice: Emphasis on limb dysmorphology. ACTA ACUST UNITED AC 2006; 76:96-106. [PMID: 16463421 DOI: 10.1002/bdra.20232] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Mouse strain differences in teratologic response are well documented. However, because retinoids cause similar malformation syndromes across many species, the strain differences may be predicted to be minimal. The goals of this study were to characterize and explain the differences between the C57BL/6N and SWV mouse strains in terms of all-trans-retinoic acid (RA)-induced teratologic effects at the time of gestation that cause postaxial forelimb ectrodactyly. METHODS Visceral and skeletal malformations were determined by Wilson's sectioning and double-staining techniques, respectively; developmental staging was performed according to the somite count; and retinoid concentrations were assessed by HPLC. RESULTS C57BL/6N mice were more susceptible than SWV mice to induction of embryolethality, cardiovascular defects, and forelimb ectrodactyly, whereas the opposite was true for the induction of ear, thymus, and tail agenesis, and cleft palate, gastroschisis, and anal atresia. As determined by somite counts, 1 strain intercross was developmentally advanced compared to the parental strains and the reciprocal cross. Retinoid susceptibility was equivalent between the reciprocal crosses for some malformations and determined by the maternal genotype for others. Toxicokinetic experiments showed that whole-embryo peak retinoid concentrations did not differ between the strains, but the area under the curve (AUC) for all-trans-RA was 1.3 times higher in C57BL/6N than in SWV embryos. CONCLUSIONS The malformation spectrum induced by RA was strain-specific, and the strain sensitivity for forelimb ectrodactyly was consistent with all previously tested teratogenic agents (i.e., C57BL/6N was more sensitive than SWV). The strain differences in teratologic effects were not explained by developmental timing differences or toxicokinetic differences at the whole-embryo level.
Collapse
Affiliation(s)
- M D Collins
- Children's Hospital Research Foundation, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.
| | | | | | | | | | | |
Collapse
|