1
|
Wakabayashi T, Naito H. Cellular heterogeneity and stem cells of vascular endothelial cells in blood vessel formation and homeostasis: Insights from single-cell RNA sequencing. Front Cell Dev Biol 2023; 11:1146399. [PMID: 37025170 PMCID: PMC10070846 DOI: 10.3389/fcell.2023.1146399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/06/2023] [Indexed: 04/08/2023] Open
Abstract
Vascular endothelial cells (ECs) that constitute the inner surface of blood vessels are essential for new vessel formation and organ homeostasis. ECs display remarkable phenotypic heterogeneity across different organs and the vascular tree during angiogenesis and homeostasis. Recent advances in single cell RNA sequencing (scRNA-seq) technologies have allowed a new understanding of EC heterogeneity in both mice and humans. In particular, scRNA-seq has identified new molecular signatures for arterial, venous and capillary ECs in different organs, as well as previously unrecognized specialized EC subtypes, such as the aerocytes localized in the alveolar capillaries of the lung. scRNA-seq has also revealed the gene expression profiles of specialized tissue-resident EC subtypes that are capable of clonal expansion and contribute to adult angiogenesis, a process of new vessel formation from the pre-existing vasculature. These specialized tissue-resident ECs have been identified in various different mouse tissues, including aortic endothelium, liver, heart, lung, skin, skeletal muscle, retina, choroid, and brain. Transcription factors and signaling pathways have also been identified in the specialized tissue-resident ECs that control angiogenesis. Furthermore, scRNA-seq has also documented responses of ECs in diseases such as cancer, age-related macular degeneration, Alzheimer's disease, atherosclerosis, and myocardial infarction. These new findings revealed by scRNA-seq have the potential to provide new therapeutic targets for different diseases associated with blood vessels. In this article, we summarize recent advances in the understanding of the vascular endothelial cell heterogeneity and endothelial stem cells associated with angiogenesis and homeostasis in mice and humans, and we discuss future prospects for the application of scRNA-seq technology.
Collapse
Affiliation(s)
- Taku Wakabayashi
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Osaka, Japan
- Wills Eye Hospital, Thomas Jefferson University, Philadelphia, PA, United States
- *Correspondence: Taku Wakabayashi, ; Hisamichi Naito,
| | - Hisamichi Naito
- Department of Vascular Physiology, Kanazawa University Graduate School of Medical Science, Kanazawa, Ishikawa, Japan
- *Correspondence: Taku Wakabayashi, ; Hisamichi Naito,
| |
Collapse
|
2
|
Guo F, Zhu Y, Han Y, Feng X, Pan Z, He Y, Li Y, Jin L. DEPP Deficiency Contributes to Browning of White Adipose Tissue. Int J Mol Sci 2022; 23:ijms23126563. [PMID: 35743009 PMCID: PMC9223522 DOI: 10.3390/ijms23126563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 11/23/2022] Open
Abstract
Decidual protein induced by progesterone (DEPP) was originally identified as a modulator in the process of decidualization in the endometrium. Here, we define that DEPP is involved in adipose tissue thermogenesis, which contributes to metabolic regulation. Knockdown of DEPP suppressed adipocyte differentiation and lipid accumulation in 3T3-L1 cells, induced expression of brown adipose tissue (BAT) markers in primary brown adipocyte and induced mouse embryonic fibroblasts (MEFs) differentiation to brown adipocytes. Moreover, DEPP deficiency in mice induced white adipocyte browning and enhanced BAT activity. Cold exposure stimulated more browning of white adipose tissue (WAT) and maintained higher body temperature in DEPP knockout mice compared to that in wild-type control mice. DEPP deficiency also protected mice against high-fat-diet-induced insulin resistance. Mechanistic studies demonstrated that DEPP competitively binds SIRT1, inhibiting the interaction between peroxisome proliferator-activated receptor gamma (PPARγ) and Sirtuin 1 (SIRT1). Collectively, these findings suggest that DEPP plays a crucial role in orchestrating thermogenesis through regulating adipocyte programs and thus might be a potential target for the treatment of metabolic disorders.
Collapse
Affiliation(s)
- Fusheng Guo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China; (F.G.); (Y.Z.); (Y.H.); (X.F.); (Z.P.)
| | - Yanlin Zhu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China; (F.G.); (Y.Z.); (Y.H.); (X.F.); (Z.P.)
| | - Yaping Han
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China; (F.G.); (Y.Z.); (Y.H.); (X.F.); (Z.P.)
| | - Xuhui Feng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China; (F.G.); (Y.Z.); (Y.H.); (X.F.); (Z.P.)
| | - Zhifu Pan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China; (F.G.); (Y.Z.); (Y.H.); (X.F.); (Z.P.)
| | - Ying He
- Laboratory Animal Center, Xiamen University, Xiamen 361102, China;
| | - Yong Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China; (F.G.); (Y.Z.); (Y.H.); (X.F.); (Z.P.)
- Correspondence: (Y.L.); (L.J.)
| | - Lihua Jin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China; (F.G.); (Y.Z.); (Y.H.); (X.F.); (Z.P.)
- Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
- Correspondence: (Y.L.); (L.J.)
| |
Collapse
|
3
|
Kuwahara M, Akasaki Y, Kurakazu I, Sueishi T, Toya M, Uchida T, Tsutsui T, Hirose R, Tsushima H, Teramura T, Nakashima Y. C10orf10/DEPP activates mitochondrial autophagy and maintains chondrocyte viability in the pathogenesis of osteoarthritis. FASEB J 2022; 36:e22145. [PMID: 34997944 DOI: 10.1096/fj.202100896r] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 12/13/2021] [Accepted: 12/21/2021] [Indexed: 12/11/2022]
Abstract
Osteoarthritis (OA), the most prevalent joint disease, is characterized by the progressive loss of articular cartilage. Autophagy, a lysosomal degradation pathway, maintains cellular homeostasis, and autophagic dysfunction in chondrocytes is a hallmark of OA pathogenesis. However, the cause of autophagic dysfunction in OA chondrocytes remains incompletely understood. Recent studies have reported that decidual protein induced by progesterone (C10orf10/DEPP) positively regulates autophagic functions. In this study, we found that DEPP was involved in mitochondrial autophagic functions of chondrocytes, as well as in OA pathogenesis. DEPP expression decreased in human OA chondrocytes in the absence or presence of pro-inflammatory cytokines, and was induced by starvation, hydrogen peroxide (H2 O2 ), and hypoxia (cobalt chloride). For functional studies, DEPP knockdown decreased autophagic flux induced by H2 O2 , whereas DEPP overexpression increased autophagic flux and maintained cell viability following H2 O2 treatment. DEPP was downregulated by knockdown of forkhead box class O (FOXO) transcription factors and modulated the autophagic function regulated by FOXO3. In an OA mouse model by destabilization of the medial meniscus, DEPP-knockout mice exacerbated the progression of cartilage degradation with TUNEL-positive cells, and chondrocytes isolated from knockout mice were decreased autophagic flux and increased cell death following H2 O2 treatment. Subcellular fractionation analysis revealed that mitochondria-located DEPP activated mitochondrial autophagy via BCL2 interacting protein 3. Taken together, our data demonstrate that DEPP is a major stress-inducible gene involved in the activation of mitochondrial autophagy in chondrocytes, and maintains chondrocyte viability during OA pathogenesis. DEPP represents a potential therapeutic target for enhancing autophagy in patients with OA.
Collapse
Affiliation(s)
- Masanari Kuwahara
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka City, Japan
| | - Yukio Akasaki
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka City, Japan
| | - Ichiro Kurakazu
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka City, Japan
| | - Takuya Sueishi
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka City, Japan
| | - Masakazu Toya
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka City, Japan
| | - Taisuke Uchida
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka City, Japan
| | - Tomoaki Tsutsui
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka City, Japan
| | - Ryota Hirose
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka City, Japan
| | - Hidetoshi Tsushima
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka City, Japan
| | - Takeshi Teramura
- Division of Cell Biology for Regenerative Medicine, Institute of Advanced Clinical Medicine, Kindai University Faculty of Medicine, Osaka-sayama, Japan
| | - Yasuharu Nakashima
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka City, Japan
| |
Collapse
|
4
|
Grant D, Wanner N, Frimel M, Erzurum S, Asosingh K. Comprehensive phenotyping of endothelial cells using flow cytometry 1: Murine. Cytometry A 2020; 99:251-256. [PMID: 33345421 DOI: 10.1002/cyto.a.24292] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 12/21/2022]
Abstract
The endothelium forms a selective barrier between circulating blood or lymph and surrounding tissue. Endothelial cells play an essential role in vessel homeostasis, and identification of these cells is critical in vascular biology research. However, characteristics of endothelial cells differ depending on the location and type of blood or lymph vessel. Endothelial cell subsets are numerous and often identified using different flow cytometric markers, making immunophenotyping these cells complex. In part 1 of this two part review series, we present a comprehensive overview of markers for the flow cytometric identification and phenotyping of murine endothelial subsets. These subsets can be distinguished using a panel of cell surface and intracellular markers shared by all endothelial cells in combination with additional markers of specialized endothelial cell types. This review can be used to determine the best markers for identifying and phenotyping desired murine endothelial cell subsets.
Collapse
Affiliation(s)
- Dillon Grant
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - Nicholas Wanner
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - Matthew Frimel
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - Serpil Erzurum
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - Kewal Asosingh
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA.,Flow Cytometry Core Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
5
|
Liu F, Yao Z, Lü P, Jiao QB, Liu Q, Wu HX, You Y, Minamisawa S. Pathophysiologic Role of Molecules Determining Arteriovenous Differentiation in Adult Life. J Vasc Res 2020; 57:245-253. [PMID: 32535603 DOI: 10.1159/000507627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 03/26/2020] [Indexed: 11/19/2022] Open
Abstract
The structural differences between arteries and veins are genetically predetermined. Vascular identity markers, the molecular markers specific to veins and arteries, determine the differential development of vessels during embryogenesis and their expression persists in adult vessels. It is revealed that they can be reactivated under various pathophysiologic conditions even after vessel differentiation. Thus, once considered as quiescent in adults, vascular identity markers may actually play significant roles in vascular remodeling. Manipulation of vascular identity and the underlying molecular mechanisms might be a novel strategy to improve vascular remodeling for clinical application.
Collapse
Affiliation(s)
- Fang Liu
- Nuclear Medicine Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhong Yao
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Ping Lü
- Vascular Surgery Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,
| | - Qi-Bin Jiao
- Department of Cardiology, The Affiliated Hospital of Hangzhou Normal University, Institute of Ageing Research, School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Qin Liu
- Vascular Surgery Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong-Xiao Wu
- Vascular Surgery Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yun You
- Vascular Surgery Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Susumu Minamisawa
- Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
6
|
The Expression of Decidual Protein Induced by Progesterone (DEPP) is Controlled by Three Distal Consensus Hypoxia Responsive Element (HRE) in Hypoxic Retinal Epithelial Cells. Genes (Basel) 2020; 11:genes11010111. [PMID: 31963726 PMCID: PMC7016973 DOI: 10.3390/genes11010111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/10/2020] [Accepted: 01/14/2020] [Indexed: 11/16/2022] Open
Abstract
Hypoxia affects the development and/or progression of several retinopathies. Decidual protein induced by progesterone (DEPP) has been identified as a hypoxia-responsive gene that may be part of cellular pathways such as autophagy and connected to retinal diseases. To increase our understanding of DEPP regulation in the eye, we defined its expression pattern in mouse and human retina and retinal pigment epithelium (RPE). Interestingly, DEPP expression was increased in an age-dependent way in the central human RPE. We showed that DEPP was regulated by hypoxia in the mouse retina and eyecup and that this regulation was controlled by hypoxia-inducible transcription factors 1 and 2 (HIF1 and HIF2). Furthermore, we identified three hypoxia response elements (HREs) about 3.5 kb proximal to the transcriptional start site that were responsible for hypoxic induction of DEPP in a human RPE cell line. Comparative genomics analysis suggested that one of the three HREs resides in a highly conserved genomic region. Collectively, we defined the molecular elements controlling hypoxic induction of DEPP in an RPE cell line, and provided evidence for an enrichment of DEPP in the aged RPE of human donors. This makes DEPP an interesting gene to study with respect to aging and age-related retinal pathologies.
Collapse
|
7
|
Hwangbo C, Wu J, Papangeli I, Adachi T, Sharma B, Park S, Zhao L, Ju H, Go GW, Cui G, Inayathullah M, Job JK, Rajadas J, Kwei SL, Li MO, Morrison AR, Quertermous T, Mani A, Red-Horse K, Chun HJ. Endothelial APLNR regulates tissue fatty acid uptake and is essential for apelin's glucose-lowering effects. Sci Transl Med 2018; 9:9/407/eaad4000. [PMID: 28904225 DOI: 10.1126/scitranslmed.aad4000] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 01/30/2017] [Accepted: 08/10/2017] [Indexed: 12/15/2022]
Abstract
Treatment of type 2 diabetes mellitus continues to pose an important clinical challenge, with most existing therapies lacking demonstrable ability to improve cardiovascular outcomes. The atheroprotective peptide apelin (APLN) enhances glucose utilization and improves insulin sensitivity. However, the mechanism of these effects remains poorly defined. We demonstrate that the expression of APLNR (APJ/AGTRL1), the only known receptor for apelin, is predominantly restricted to the endothelial cells (ECs) of multiple adult metabolic organs, including skeletal muscle and adipose tissue. Conditional endothelial-specific deletion of Aplnr (AplnrECKO ) resulted in markedly impaired glucose utilization and abrogation of apelin-induced glucose lowering. Furthermore, we identified inactivation of Forkhead box protein O1 (FOXO1) and inhibition of endothelial expression of fatty acid (FA) binding protein 4 (FABP4) as key downstream signaling targets of apelin/APLNR signaling. Both the Apln-/- and AplnrECKO mice demonstrated increased endothelial FABP4 expression and excess tissue FA accumulation, whereas concurrent endothelial Foxo1 deletion or pharmacologic FABP4 inhibition rescued the excess FA accumulation phenotype of the Apln-/- mice. The impaired glucose utilization in the AplnrECKO mice was associated with excess FA accumulation in the skeletal muscle. Treatment of these mice with an FABP4 inhibitor abrogated these metabolic phenotypes. These findings provide mechanistic insights that could greatly expand the therapeutic repertoire for type 2 diabetes and related metabolic disorders.
Collapse
Affiliation(s)
- Cheol Hwangbo
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, CT 06511, USA
| | - Jingxia Wu
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, CT 06511, USA
| | - Irinna Papangeli
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, CT 06511, USA
| | - Takaomi Adachi
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, CT 06511, USA
| | - Bikram Sharma
- Department of Biology, Stanford University, Stanford, CA 94304, USA
| | - Saejeong Park
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, CT 06511, USA
| | - Lina Zhao
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, CT 06511, USA
| | - Hyekyung Ju
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, CT 06511, USA
| | - Gwang-Woong Go
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, CT 06511, USA
| | - Guoliang Cui
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06511, USA
| | - Mohammed Inayathullah
- Biomaterials and Advanced Drug Delivery Laboratory, Stanford University, Stanford, CA 94304, USA
| | - Judith K Job
- Biomaterials and Advanced Drug Delivery Laboratory, Stanford University, Stanford, CA 94304, USA
| | - Jayakumar Rajadas
- Biomaterials and Advanced Drug Delivery Laboratory, Stanford University, Stanford, CA 94304, USA
| | - Stephanie L Kwei
- Section of Plastic and Reconstructive Surgery, Yale School of Medicine, New Haven, CT 06511, USA
| | - Ming O Li
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Alan R Morrison
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, CT 06511, USA
| | - Thomas Quertermous
- Division of Cardiovascular Medicine, Stanford University, Stanford, CA 94304, USA
| | - Arya Mani
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, CT 06511, USA
| | - Kristy Red-Horse
- Department of Biology, Stanford University, Stanford, CA 94304, USA
| | - Hyung J Chun
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, CT 06511, USA.
| |
Collapse
|
8
|
Li W, Ji M, Lin Y, Miao Y, Chen S, Li H. DEPP/DEPP1/C10ORF10 regulates hepatic glucose and fat metabolism partly via ROS-induced FGF21. FASEB J 2018; 32:5459-5469. [PMID: 29702025 DOI: 10.1096/fj.201800357r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Decidual protein induced by progesterone (DEPP/DEPP1/C10ORF10) is induced by denying access to food and reduced by refeeding in insulin-sensitive organs in vivo. The negative regulation of DEPP by insulin is also proven in several cell lines. However, the functions of DEPP in insulin-sensitive organs remain unknown. In the present study, we investigated the impact of DEPP on hepatic energy metabolism and addressed the underlying mechanisms. The metabolic effects of DEPP were investigated in mice with adenovirus-mediated hepatic overexpression. Liver triglyceride (TG), glycogen, and serum metabolites were detected by biochemical assays. Energy homeostasis was measured by indirect calorimetry. Quantitative PCR was used to examine expression of genes involved in fatty acid oxidation, ketogenesis, lipogenesis, and gluconeogenesis. To evaluate the role of fibroblast growth factor 21 (FGF21) mediating the metabolic effects of DEPP, FGF21 antibody was administrated intraperitoneally to mice at 24 h after the delivery of adenovirus, and the metabolic alterations were examined. Reactive oxygen species (ROS) levels were measured by catalase activity assay, live cell fluorescence, or quantitative PCR. Effects of DEPP on the phenotype of db/db mice were also assessed. Acute hepatic overexpression of DEPP significantly reduced serum glucose and TG levels, dramatically elevated β-hydroxybutyrate levels, and improved glucose clearance. Compared with controls, DEPP overexpression reduced food intake, the energy expenditure rate, and the respiratory quotient. DEPP overexpression significantly increased fatty acid oxidation and ketogenesis but suppressed lipid synthesis and gluconeogenesis. Investigations of the underlying mechanisms revealed that DEPP regulates energy metabolism by inducing oxidative stress. With the impairment of the ROS scavenging system and promotion of ROS formation, DEPP overexpression leads to ROS accumulation. FGF21 is upregulated in response to oxidative stress and mediates the effects of DEPP on fatty acid oxidation, ketogenesis, and lipid synthesis but not gluconeogenesis, as evidenced by the fact that the FGF21 antibody dramatically suppressed a DEPP-induced increase of fatty acid oxidation and ketogenesis, reversed the reduction of lipid synthesis, but did not change the suppression of gluconeogenesis. Moreover, overexpression of DEPP in db/ db mice led to a marked reduction in body weight and serum glucose levels and significantly improved insulin sensitivity. Hepatic overexpression of DEPP in mice promotes fatty acid oxidation and ketogenesis and suppresses lipogenesis and gluconeogenesis, which is partly mediated by FGF21 induced by elevated cellular ROS levels.-Li, W., Ji, M., Lin, Y., Miao, Y., Chen, S., Li, H. DEPP/DEPP1/C10ORF10 regulates hepatic glucose and fat metabolism partly via ROS-induced FGF21.
Collapse
Affiliation(s)
- Wenli Li
- Department of Pathophysiology, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Nanjing Medical University, Nanjing, China
| | - Meiling Ji
- Department of Pathophysiology, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Nanjing Medical University, Nanjing, China
| | - Yandie Lin
- Department of Pathophysiology, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Nanjing Medical University, Nanjing, China
| | - Yi Miao
- Department of Pathophysiology, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Nanjing Medical University, Nanjing, China
| | - Simin Chen
- Department of Pathophysiology, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Nanjing Medical University, Nanjing, China
| | - Hao Li
- Department of Pathophysiology, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Nanjing Medical University, Nanjing, China
| |
Collapse
|
9
|
Cheah NP, Pennings JL, Vermeulen JP, Godschalk RW, van Schooten FJ, Opperhuizen A. In vitro effects of low-level aldehyde exposures on human umbilical vein endothelial cells. Toxicol Res (Camb) 2015. [DOI: 10.1039/c4tx00213j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Aldehydes cause gene expression changes for genes associated with cardiovascular disease. Exposure to aldehydes from tobacco smoke needs to be controlled.
Collapse
Affiliation(s)
- Nuan P. Cheah
- Department of Toxicology
- Maastricht University
- Maastricht
- The Netherlands
- Centre for Health Protection
| | - Jeroen L.A. Pennings
- Centre for Health Protection
- National Institute for Public Health and the Environment (RIVM)
- Bilthoven
- The Netherlands
| | - Jolanda P. Vermeulen
- Centre for Health Protection
- National Institute for Public Health and the Environment (RIVM)
- Bilthoven
- The Netherlands
| | | | | | - Antoon Opperhuizen
- Department of Toxicology
- Maastricht University
- Maastricht
- The Netherlands
- Netherlands Food and Consumer Product Safety Authority (NVWA)
| |
Collapse
|
10
|
Salcher S, Hagenbuchner J, Geiger K, Seiter MA, Rainer J, Kofler R, Hermann M, Kiechl-Kohlendorfer U, Ausserlechner MJ, Obexer P. C10ORF10/DEPP, a transcriptional target of FOXO3, regulates ROS-sensitivity in human neuroblastoma. Mol Cancer 2014; 13:224. [PMID: 25261981 PMCID: PMC4197242 DOI: 10.1186/1476-4598-13-224] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 09/24/2014] [Indexed: 11/25/2022] Open
Abstract
Background FOXO transcription factors control cellular levels of reactive oxygen species (ROS) which critically contribute to cell survival and cell death in neuroblastoma. In the present study we investigated the regulation of C10orf10/DEPP by the transcription factor FOXO3. As a physiological function of C10orf10/DEPP has not been described so far we analyzed its effects on cellular ROS detoxification and death sensitization in human neuroblastoma cells. Methods The effect of DEPP on cellular ROS was measured by catalase activity assay and live cell fluorescence microscopy using the ROS-sensitive dye reduced MitoTracker Red CM-H2XROS. The cellular localization of DEPP was determined by confocal microscopy of EYFP-tagged DEPP, fluorescent peroxisomal- and mitochondrial probes and co-immunoprecipitation of the PEX7 receptor. Results We report for the first time that DEPP regulates ROS detoxification and localizes to peroxisomes and mitochondria in neuroblastoma cells. FOXO3-mediated apoptosis involves a biphasic ROS accumulation. Knockdown of DEPP prevented the primary and secondary ROS wave during FOXO3 activation and attenuated FOXO3- and H2O2-induced apoptosis. Conditional overexpression of DEPP elevates cellular ROS levels and sensitizes to H2O2 and etoposide-induced cell death. In neuronal cells, cellular ROS are mainly detoxified in peroxisomes by the enzyme CAT/catalase. As DEPP contains a peroxisomal-targeting-signal-type-2 (PTS2) sequence at its N-terminus that allows binding to the PEX7 receptor and import into peroxisomes, we analyzed the effect of DEPP on cellular detoxification by measuring enzyme activity of catalase. Catalase activity was reduced in DEPP-overexpressing cells and significantly increased in DEPP-knockdown cells. DEPP directly interacts with the PEX7 receptor and localizes to the peroxisomal compartment. In parallel, the expression of the transcription factor peroxisome proliferator-activated receptor gamma (PPARG), a critical regulator of catalase enzyme activity, was strongly upregulated in DEPP-knockdown cells. Conclusion The combined data indicate that in neuroblastoma DEPP localizes to peroxisomes and mitochondria and impairs cellular ROS detoxification, which sensitizes tumor cells to ROS-induced cell death. Electronic supplementary material The online version of this article (doi:10.1186/1476-4598-13-224) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Michael J Ausserlechner
- Department of Pediatrics I, Medical University Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria.
| | | |
Collapse
|
11
|
Decellularized allogeneic heart valves demonstrate self-regeneration potential after a long-term preclinical evaluation. PLoS One 2014; 9:e99593. [PMID: 24940754 PMCID: PMC4062459 DOI: 10.1371/journal.pone.0099593] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 05/16/2014] [Indexed: 01/02/2023] Open
Abstract
Tissue-engineered heart valves are proposed as novel viable replacements granting longer durability and growth potential. However, they require extensive in vitro cell-conditioning in bioreactor before implantation. Here, the propensity of non-preconditioned decellularized heart valves to spontaneous in body self-regeneration was investigated in a large animal model. Decellularized porcine aortic valves were evaluated for right ventricular outflow tract (RVOT) reconstruction in Vietnamese Pigs (n = 11) with 6 (n = 5) and 15 (n = 6) follow-up months. Repositioned native valves (n = 2 for each time) were considered as control. Tissue and cell components from explanted valves were investigated by histology, immunohistochemistry, electron microscopy, and gene expression. Most substitutes constantly demonstrated in vivo adequate hemodynamic performances and ex vivo progressive repopulation during the 15 implantation months without signs of calcifications, fibrosis and/or thrombosis, as revealed by histological, immunohistochemical, ultrastructural, metabolic and transcriptomic profiles. Colonizing cells displayed native-like phenotypes and actively synthesized novel extracellular matrix elements, as collagen and elastin fibers. New mature blood vessels, i.e. capillaries and vasa vasorum, were identified in repopulated valves especially in the medial and adventitial tunicae of regenerated arterial walls. Such findings correlated to the up-regulated vascular gene transcription. Neoinnervation hallmarks were appreciated at histological and ultrastructural levels. Macrophage populations with reparative M2 phenotype were highly represented in repopulated valves. Indeed, no aspects of adverse/immune reaction were revealed in immunohistochemical and transcriptomic patterns. Among differentiated elements, several cells were identified expressing typical stem cell markers of embryonic, hematopoietic, neural and mesenchymal lineages in significantly higher number and specific topographic distribution in respect to control valves. Following the longest follow-up ever realized in preclinical models, non-preconditioned decellularized allogeneic valves offer suitable microenvironment for in vivo cell homing and tissue remodeling. Manufactured with simple, timesaving and cost-effective procedures, these promising valve replacements hold promise to become an effective alternative, especially for pediatric patients.
Collapse
|
12
|
Deng J, Dong Y, Li C, Zuo W, Meng G, Xu C, Li J. Decreased expression of C10orf10 and its prognostic significance in human breast cancer. PLoS One 2014; 9:e99730. [PMID: 24936657 PMCID: PMC4061027 DOI: 10.1371/journal.pone.0099730] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 05/14/2014] [Indexed: 11/18/2022] Open
Abstract
Breast cancer is a common malignant tumor, which severely threatens the health of women with an increasing incidence in many countries. Here, we identified C10orf10 as a novel differentially expression gene using expression microarray screening. The expression analysis indicated that C10orf10 was frequently decreased in human breast cancers compared to noncancerous breast tissues (81/95, P = 0.0063). Kaplan-Meier analysis indicated that patients with low C10orf10 expression showed a poorer prognosis both in mRNA (n = 1115, P = 0.0013) and protein (n = 100, P = 0.003) levels. Univariate and multivariate analysis showed that the C10orf10 expression was an independent prognostic factor for overall survival of breast cancer patients. Further analysis revealed that low expression of C10orf10 was an unfavorable factor for the prognosis of the patients who were luminal A, luminal B, Her2+ subtypes, at histological grade 2, lymph node negative and ER positive. Our data provided the first evidence that C10orf10 expression was frequently decreased in breast cancer tissues, and low expression of C10orf10 may be an important prognostic factor for poorer survival time of breast cancer patients.
Collapse
Affiliation(s)
- Junjiang Deng
- Department of Oncology, Southwest Hospital, Third Military Medical University, Chongqing, China
- Cadre’s Sanatorium, Third Military Medical University, Chongqing, China
| | - Yan Dong
- Department of Oncology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Chong Li
- Department of Oncology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Wenwei Zuo
- Department of Oncology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Gang Meng
- Department of Pathology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Chengping Xu
- Department of Pathology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jianjun Li
- Department of Oncology, Southwest Hospital, Third Military Medical University, Chongqing, China
- * E-mail:
| |
Collapse
|
13
|
The c10orf10 gene product is a new link between oxidative stress and autophagy. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1076-88. [DOI: 10.1016/j.bbamcr.2014.02.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 01/21/2014] [Accepted: 02/06/2014] [Indexed: 01/12/2023]
|
14
|
Li W, Mukouyama YS. Tissue-specific venous expression of the EPH family receptor EphB1 in the skin vasculature. Dev Dyn 2013; 242:976-88. [PMID: 23649798 DOI: 10.1002/dvdy.23985] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 04/23/2013] [Accepted: 04/24/2013] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND The major arteries and veins are formed early during development. The molecular tools to identify arterial and venous endothelial cells improve our understanding of arterial-venous differentiation and branching morphogenesis. Compared with arterial differentiation, relatively little is known about what controls venous development, due to lack of definitive molecular markers for venous endothelial cells. RESULTS Here we report that the antibody against EphB1, an EphB class receptor, makes it possible to establish a reliable whole-mount immunohistochemical analysis of venous identity with greater resolution than previously possible in embryonic and adult skin vasculature models. EphB1 expression is restricted to the entire venous vasculature throughout embryonic development to adulthood, whereas the previously established venous marker EphB4 is also detectable in lymphatic vasculature. This venous-restricted expression of EphB1 is established after the vascular remodeling of the primary capillary plexus has occurred. Compared with its venous-specific expression in the skin, however, EphB1 is not restricted to the venous vasculature in yolk sac, trunk and lung. CONCLUSIONS These studies introduce EphB1 as a new venous-restricted marker in a tissue-specific and time-dependent manner.
Collapse
Affiliation(s)
- Wenling Li
- Laboratory of Stem Cell and Neuro-Vascular Biology, Genetics and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
15
|
Lanner F, Lee KL, Ortega GC, Sohl M, Li X, Jin S, Hansson EM, Claesson-Welsh L, Poellinger L, Lendahl U, Farnebo F. Hypoxia-induced arterial differentiation requires adrenomedullin and notch signaling. Stem Cells Dev 2013; 22:1360-9. [PMID: 23379656 DOI: 10.1089/scd.2012.0259] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Hypoxia (low oxygen) and Notch signaling are 2 important regulators of vascular development, but how they interact in controlling the choice between arterial and venous fates for endothelial cells during vasculogenesis is less well understood. In this report, we show that hypoxia and Notch signaling intersect in promotion of arterial differentiation. Hypoxia upregulated expression of the Notch ligand Dll4 and increased Notch signaling in a process requiring the vasoactive hormone adrenomedullin. Notch signaling also upregulated Dll4 expression, leading to a positive feedback loop sustaining Dll4 expression and Notch signaling. In addition, hypoxia-mediated upregulation of the arterial marker genes Depp, connexin40 (Gja5), Cxcr4, and Hey1 required Notch signaling. In conclusion, the data reveal an intricate interaction between hypoxia and Notch signaling in the control of endothelial cell differentiation, including a hypoxia/adrenomedullin/Dll4 axis that initiates Notch signaling and a requirement for Notch signaling to effectuate hypoxia-mediated induction of the arterial differentiation program.
Collapse
Affiliation(s)
- Fredrik Lanner
- Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Huddinge, Sweden.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Chen S, Gai J, Wang Y, Li H. FoxO regulates expression of decidual protein induced by progesterone (DEPP) in human endothelial cells. FEBS Lett 2011; 585:1796-800. [PMID: 21510935 DOI: 10.1016/j.febslet.2011.04.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2010] [Revised: 03/30/2011] [Accepted: 04/11/2011] [Indexed: 11/17/2022]
Abstract
DEPP was initially cloned from the human endometrial stromal cell cDNA library, but the transcriptional regulation of DEPP remains largely unknown. We demonstrate here that expression of DEPP is FoxO-dependent in human endothelial cells. Two functional FoxO-responsive elements are identified in the DEPP promoter. Hypoxia stimulates DEPP expression in the endothelial cell line EA.hy926. Hypoxia-induced upregulation of DEPP is dependent on FoxO expression. We conclude that DEPP is regulated at the level of transcription by FoxO in human vascular endothelial cells.
Collapse
Affiliation(s)
- Simin Chen
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | | | | | | |
Collapse
|
17
|
Abstract
The endothelium is composed of specialized epithelial cells that line the vasculature, the lymph vessels, and the heart. These endothelial cells are characterized by their stratification and are connected via intercellular junctions that confer specific permeability. Although all endothelium acts as a barrier, considerable heterogeneity exists among different organs and even within vessels. During development, the endothelial cells are specified before they migrate to their final destination, and then they commit to an arterial or venous fate. From the venous endothelial cell population, a subset of cells is further specified as lymphatic endothelium. The endothelium can be highly permeable, as in the lymph vessels, or impenetrable, as in the blood-brain barrier. These differences arise during development and are orchestrated through a series of signaling pathways. This review details how endothelial cells arise and are directed to their specific fate, specifically targeting what differentiates endothelial populations.
Collapse
Affiliation(s)
- Laura A. Dyer
- McAllister Heart Institute, University of North Carolina, Chapel Hill, North Carolina
| | - Cam Patterson
- McAllister Heart Institute, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
18
|
Rivera M, Muto A, Feigel A, Kondo Y, Dardik A. Venous and arterial identity: a role for caveolae? Vascular 2009; 17 Suppl 1:S10-4. [PMID: 19426603 DOI: 10.2310/6670.2008.00088] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Venous and arterial identity is predetermined in the embryo, with embryonic vessels expressing Eph-B4 differentiating into veins and vessels expressing ephrin-B2 differentiating into arteries. The specialized membrane organelles lipid rafts and caveolae serve as localized domains for proteins to interact with one another and play a role in signal transduction and vesicular trafficking. Several tyrosine kinase membrane receptors, including Eph-B1, have been colocalized to caveolae. These data suggest that caveolae and Eph receptors may have coordinated roles in determining vessel identity, not only during embryogenesis but perhaps also during adult vascular remodeling and angiogenesis.
Collapse
Affiliation(s)
- Mariangela Rivera
- Department of Surgery and the Interdepartmental Program in Vascular Biology and Therapeutics, Yale University School of Medicine, New Haven, CT 06520-8089, USA
| | | | | | | | | |
Collapse
|
19
|
Rau KK, McIlwrath SL, Wang H, Lawson JJ, Jankowski MP, Zylka MJ, Anderson DJ, Koerber HR. Mrgprd enhances excitability in specific populations of cutaneous murine polymodal nociceptors. J Neurosci 2009; 29:8612-9. [PMID: 19571152 PMCID: PMC2756673 DOI: 10.1523/jneurosci.1057-09.2009] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 04/28/2009] [Accepted: 05/18/2009] [Indexed: 11/21/2022] Open
Abstract
The Mas-related G protein-coupled receptor D (Mrgprd) is selectively expressed in nonpeptidergic nociceptors that innervate the outer layers of mammalian skin. The function of Mrgprd in nociceptive neurons and the physiologically relevant somatosensory stimuli that activate Mrgprd-expressing (Mrgprd(+)) neurons are currently unknown. To address these issues, we studied three Mrgprd knock-in mouse lines using an ex vivo somatosensory preparation to examine the role of the Mrgprd receptor and Mrgprd(+) afferents in cutaneous somatosensation. In mouse hairy skin, Mrgprd, as marked by expression of green fluorescent protein reporters, was expressed predominantly in the population of nonpeptidergic, TRPV1-negative, C-polymodal nociceptors. In mice lacking Mrgprd, this population of nociceptors exhibited decreased sensitivity to cold, heat, and mechanical stimuli. Additionally, in vitro patch-clamp studies were performed on cultured dorsal root ganglion neurons from Mrgprd(-/-) and Mrgprd(+/-) mice. These studies revealed a higher rheobase in neurons from Mrgprd(-/-) mice than from Mrgprd(+/-) mice. Furthermore, the application of the Mrgprd ligand beta-alanine significantly reduced the rheobase and increased the firing rate in neurons from Mrgprd(+/-) mice but was without effect in neurons from Mrgprd(-/-) mice. Our results demonstrate that Mrgprd influences the excitability of polymodal nonpeptidergic nociceptors to mechanical and thermal stimuli.
Collapse
Affiliation(s)
- Kristofer K. Rau
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Sabrina L. McIlwrath
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Hong Wang
- Cell and Molecular Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, and
| | - Jeffrey J. Lawson
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Michael P. Jankowski
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Mark J. Zylka
- Cell and Molecular Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, and
| | - David J. Anderson
- Division of Biology, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California 91125
| | - H. Richard Koerber
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| |
Collapse
|
20
|
Szasz T, Eddy S, Paulauskis J, Burnett R, Ellekilde M, Iovanna JL, Watts SW. Differential expression of pancreatitis-associated protein and thrombospondins in arterial versus venous tissues. J Vasc Res 2009; 46:551-60. [PMID: 19571575 DOI: 10.1159/000226223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Accepted: 11/18/2008] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND/AIMS Arteries and veins modulate cardiovascular homeostasis and contribute to hypertension pathogenesis. Functional differences between arteries and veins are based upon differences in gene expression. To better characterize these expression patterns, and to identify candidate genes that could be manipulated selectively in the venous system, we performed whole genome expression profiling of arteries and veins. METHODS We used the CodeLink platform and the major artery (thoracic aorta) and vein (caudal vena cava) of the rat. RESULTS The most prominent difference was pancreatitis-associated protein (PAP1), expressed 64-fold higher in vena cava versus aorta. Expression of mRNA for thrombospondins (TSP-1, TSP-4) was greater than 5-fold higher in veins versus arteries. Higher mRNA expression of TSP-1, TSP-2, TSP-4 and PAP1 in vena cava versus aorta was confirmed by PCR. Immunohistochemical analysis of tissue sections qualitatively confirmed a higher expression of these proteins in vena cava versus aorta. CONCLUSION This is the first gene array study of adult rat arterial and venous tissues, and also the first study to report differences in inflammatory genes between arteries and veins. Data from these studies may provide novel insights into the genetic basis for functional differences between arteries and veins in health and disease.
Collapse
Affiliation(s)
- Theodora Szasz
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824-1317, USA.
| | | | | | | | | | | | | |
Collapse
|
21
|
Brain tumor hypoxia: tumorigenesis, angiogenesis, imaging, pseudoprogression, and as a therapeutic target. J Neurooncol 2009; 92:317-35. [PMID: 19357959 DOI: 10.1007/s11060-009-9827-2] [Citation(s) in RCA: 209] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Accepted: 02/23/2009] [Indexed: 02/07/2023]
Abstract
Hypoxia is implicated in many aspects of tumor development, angiogenesis, and growth in many different tumors. Brain tumors, particularly the highly aggressive glioblastoma multiforme (GBM) with its necrotic tissues, are likely affected similarly by hypoxia, although this involvement has not been closely studied. Invasion, apoptosis, chemoresistance, resistance to antiangiogenic therapy, and radiation resistance may all have hypoxic mechanisms. The extent of the influence of hypoxia in these processes makes it an attractive therapeutic target for GBM. Because of their relationship to glioma and meningioma growth and angiogenesis, hypoxia-regulated molecules, including hypoxia inducible factor-1, carbonic anhydrase IX, glucose transporter 1, and vascular endothelial growth factor, may be suitable subjects for therapies. Furthermore, other novel hypoxia-regulated molecules that may play a role in GBM may provide further options. Emerging imaging techniques may allow for improved determination of hypoxia in human brain tumors to better focus therapeutic treatments; however, tumor pseudoprogression, which may be prompted by hypoxia, poses further challenges. An understanding of the role of hypoxia in tumor development and growth is important for physicians involved in the care of patients with brain tumors.
Collapse
|
22
|
Lin ZY, Chuang WL, Chuang YH. Amphotericin B up-regulates angiogenic genes in hepatocellular carcinoma cell lines. Eur J Clin Invest 2009; 39:239-45. [PMID: 19260954 DOI: 10.1111/j.1365-2362.2008.02066.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Amphotericin B (AmB) has a discordant influence on epirubicin (4'-epidoxorubicin) cytotoxicity in hepatocellular carcinoma (HCC). This indicates that the cellular function of HCC may be significantly influenced by AmB. Whether the influence of AmB on HCC has any possibility to influence cancer growth has not been studied. This study was to try and clarify this issue. MATERIALS AND METHODS Two HCC cell lines including one without augmentation of the epirubicin cytotoxicity by AmB (cell line A; HCC24/KMUH) and one with this effect (cell line B; HCC38/KMUH) were studied by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and whole human genome microarray (experimental group: 2.5 microg mL(-1) AmB). RESULTS Differential expressions of genes induced by AmB in two cell lines had no influence on cell proliferation as determined by MTT assay. Only cell line B showed up-regulation of genes related to oxidative stress, acute phase reaction, cytokine-cytokine receptor interaction and complement and coagulation cascades. Among the chemokine genes up-regulated by AmB, five genes (CCL2, CXCL1, CXCL5, CXCL6, IL8) were angiogenic. Cell line B also showed up-regulation of one angiogenic C10orf10 gene and down-regulation of one angiostatic chemokine gene (CXCL10). Up- or down-regulation of other genes in cell line A and B did not show any evidence to promote angiogenesis. CONCLUSION AmB has the capacity to concomitantly up-regulate angiogenic genes in HCC cells susceptible to AmB-induced oxidative stress.
Collapse
Affiliation(s)
- Z Y Lin
- Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| | | | | |
Collapse
|
23
|
Arterial versus venous endothelial cells. Cell Tissue Res 2008; 335:5-16. [PMID: 18972135 DOI: 10.1007/s00441-008-0706-5] [Citation(s) in RCA: 181] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Accepted: 09/17/2008] [Indexed: 12/12/2022]
Abstract
Vascular endothelial cells (ECs) form the inner lining of all blood vessels from the largest artery and veins, viz., the aorta and venae cavae, respectively, to the capillaries that connect the arterial and venous systems. Because these two major conducting systems of the cardiovasculature differ functionally, it is not surprising that the physical makeup of arteries and veins, including the ECs that line their lumina, are also distinct. Although few would argue that the local environment contributes to the differences between arteries and veins, recent evidence has shown that the specification of arterial and venous identity is largely genetically determined.
Collapse
|
24
|
Lang I, Schweizer A, Hiden U, Ghaffari-Tabrizi N, Hagendorfer G, Bilban M, Pabst MA, Korgun ET, Dohr G, Desoye G. Human fetal placental endothelial cells have a mature arterial and a juvenile venous phenotype with adipogenic and osteogenic differentiation potential. Differentiation 2008; 76:1031-43. [PMID: 18673379 DOI: 10.1111/j.1432-0436.2008.00302.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Growing interest in the sources of origin of blood vessel related diseases has led to an increasing knowledge about the heterogeneity and plasticity of endothelial cells lining arteries and veins. So far, most of these studies were performed on animal models. Here, we hypothesized that the plasticity of human fetal endothelial cells depends on their vascular bed of origin i.e. vein or artery and further that the differences between arterial and venous endothelial cells would extend to phenotype and genotype. We established a method for the isolation of fetal arterial and venous endothelial cells from the human placenta and studied the characteristics of both cell types. Human placental arterial endothelial cells (HPAEC) and human placental venous endothelial cells (HPVEC) express classical endothelial markers and differ in their phenotypic, genotypic, and functional characteristics: HPAEC are polygonal cells with a smooth surface growing in loose arrangements and forming monolayers with classical endothelial cobblestone morphology. They express artery-related genes (hey-2, connexin 40, depp) and more endothelial-associated genes than HPVEC. Functional testing demonstrated that vascular endothelial growth factors (VEGFs) induce a higher proliferative response on HPAEC, whereas placental growth factors (PlGFs) are only effective on HPVEC. HPVEC are spindle-shaped cells with numerous microvilli at their surface. They grow closely apposed to each other, form fibroblastoid swirling patterns at confluence and have shorter generation and population doubling times than HPAEC. HPVEC overexpress development-associated genes (gremlin, mesenchyme homeobox 2, stem cell protein DSC54) and show an enhanced differentiation potential into adipocytes and osteoblasts in contrast to HPAEC. These data provide collective evidence for a juvenile venous and a more mature arterial phenotype of human fetal endothelial cells. The high plasticity of the fetal venous endothelial cells may reflect their role as tissue-resident endothelial progenitors during embryonic development with a possible benefit for regenerative cell therapy.
Collapse
Affiliation(s)
- Ingrid Lang
- Institute of Cell Biology, Histology and Embryology, Center of Molecular Medicine, Medical University of Graz, Graz 8010, Austria.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Zhang G, Zhou J, Fan Q, Zheng Z, Zhang F, Liu X, Hu S. Arterial-venous endothelial cell fate is related to vascular endothelial growth factor and Notch status during human bone mesenchymal stem cell differentiation. FEBS Lett 2008; 582:2957-64. [PMID: 18671974 DOI: 10.1016/j.febslet.2008.07.031] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 07/15/2008] [Accepted: 07/16/2008] [Indexed: 12/26/2022]
Abstract
Human bone mesenchymal stem cells (hMSCs) can differentiate into endothelial cells (ECs), so we aimed to investigate whether hMSCs could also differentiate into a specific arterial or venous ECs. hMSCs were induced to differentiate into ECs using vascular endothelial growth factor (VEGF). Low VEGF concentration (50 ng/ml) upregulated the venous marker gene EphB4, however high concentration (100 ng/ml) upregulated the arterial marker genes ephrinB2, Dll4 and Notch4, and downregulated the venous marker genes EphB4 and COUP-TFll. This VEGF dose-dependent induction was largely blocked by inhibition of the Notch pathway in hMSCs treated with gamma-secretase inhibitor. Therefore, differentiation of hMSCs into arterial- or venous-specific ECs depends on VEGF and is regulated by the Notch pathway.
Collapse
Affiliation(s)
- Gang Zhang
- Department of Cardiac Surgery, Shandong Provincial Hospital, Shandong University, Jingwu Road 324, Jinan, PR China
| | | | | | | | | | | | | |
Collapse
|
26
|
Deciphering arterial identity through gene expression, genetics, and chemical biology. Curr Opin Hematol 2008; 15:221-7. [DOI: 10.1097/moh.0b013e3282f97daa] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Ragel BT, Couldwell WT, Gillespie DL, Jensen RL. Identification of hypoxia-induced genes in a malignant glioma cell line (U-251) by cDNA microarray analysis. Neurosurg Rev 2007; 30:181-7; discussion 187. [PMID: 17486380 DOI: 10.1007/s10143-007-0070-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Revised: 01/19/2007] [Accepted: 02/04/2007] [Indexed: 12/12/2022]
Abstract
Overcoming the metabolic restrictions of hypoxia may allow the progression of lower-grade tumors to glioblastoma multiforme. Our findings of up-regulation of HIF-1alpha and its downstream targets VEGF, GLUT-1, and CAIX in higher-grade gliomas support this hypothesis. We compared the gene expression profiles of the U-251 malignant glioma cell line under normoxic and hypoxic conditions to discover future research targets. U-251 cells were grown to 75% confluence and exposed to either normoxic or hypoxic conditions for 24 h. RNA was extracted, amplified, and hybridized to a cDNA microarray chip containing ~8,800 universal cellular genes. A threefold increase in mRNA expression was used as a threshold value for differential expression. Identified genes were divided into cell cycle control, stress response, and "newly connected" genes. Hybridization identified 11 hypoxia-induced genes: 1 involved with cell cycle control (CCNG2), 6 in stress response (IGFBP3, SLC2A3, GSTT2, FOS, DDIT3, AKR1C3), and 2 newly connected genes (Depp, AKAP4). One stress-related gene (AKR1C3) encodes for an enzyme that synthesizes progesterone. Of newly connected genes, the gene decidual protein induced by progesterone (Depp) showed the highest expression (4.2-fold increase). Possible future targeting for "hypoxic" glioma cells includes the targets for the AP-1 transcription factor complex (FOS), as well as blockade of the enzyme AKR1C3 with nonsteroidal anti-inflammatory drugs. Possible functions of the highly expressed gene Depp include tumor vascularization. Future studies will focus on the hypothesis that Depp is up-regulated in an autocrine fashion by the AKR1C3 enzyme in U-251 glioma cells under hypoxic conditions.
Collapse
Affiliation(s)
- Brian T Ragel
- Department of Neurosurgery, University of Utah, Salt Lake City, UT 84132, USA
| | | | | | | |
Collapse
|
28
|
Abstract
Endothelial cells, which form the inner cellular lining of blood vessels and lymphatics, display remarkable heterogeneity in structure and function. This is the second of a 2-part review on the phenotypic heterogeneity of blood vessel endothelial cells. The first part discusses the scope, the underlying mechanisms, and the diagnostic and therapeutic implications of phenotypic heterogeneity. Here, these principles are applied to an understanding of organ-specific phenotypes in representative vascular beds including arteries and veins, heart, lung, liver, and kidney. The goal is to underscore the importance of site-specific properties of the endothelium in mediating homeostasis and focal vascular pathology, while at the same time emphasizing the value of approaching the endothelium as an integrated system.
Collapse
Affiliation(s)
- William C Aird
- Division of Molecular and Vascular Medicine, Department of Medicine, and Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Mass 02215, USA.
| |
Collapse
|
29
|
Abstract
Endothelial cells, which form the inner cellular lining of blood vessels and lymphatics, display remarkable heterogeneity in structure and function. This is the first of a 2-part review focused on phenotypic heterogeneity of blood vessel endothelium. This review provides an historical perspective of our understanding of endothelial heterogeneity, discusses the scope of phenotypic diversity across the vascular tree, and addresses proximate and evolutionary mechanisms of endothelial cell heterogeneity. The overall goal is to underscore the importance of phenotypic heterogeneity as a core property of the endothelium.
Collapse
Affiliation(s)
- William C Aird
- Division of Molecular and Vascular Medicine, Department of Medicine, and Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Mass 02215, USA.
| |
Collapse
|
30
|
Yamashita JK. Differentiation of Arterial, Venous, and Lymphatic Endothelial Cells From Vascular Progenitors. Trends Cardiovasc Med 2007; 17:59-63. [PMID: 17292048 DOI: 10.1016/j.tcm.2007.01.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recent discoveries of molecular markers for arterial, venous, and lymphatic endothelial cells (ECs) made it possible to investigate mechanisms of the vascular diversification at the cellular level. Recently, these three EC types have been successfully induced from mouse embryonic stem cells. Molecular and cellular dissection of EC diversification processes in vitro using embryonic stem cell system would provide novel insights into vascular development and materials for cell therapy as well as gene therapy and novel drugs. Further investigation of tissue-specific vascular diversification in detail would be important for future vascular biology and medicine.
Collapse
Affiliation(s)
- Jun K Yamashita
- Laboratory of Stem Cell Differentiation, Center for Stem Cell Research, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan.
| |
Collapse
|
31
|
Croy BA, van den Heuvel MJ, Borzychowski AM, Tayade C. Uterine natural killer cells: a specialized differentiation regulated by ovarian hormones. Immunol Rev 2007; 214:161-85. [PMID: 17100884 DOI: 10.1111/j.1600-065x.2006.00447.x] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
In adult females of many species, a transient population of natural killer (NK) cells appears in cycles within the uterine endometrium (lining). Appearance of these lymphocytes coincides with specific phases of the ovarian hormone cycle and/or early pregnancy. Studies in rodents, women, and pigs dominate the literature and suggest the uterine (u)NK cells are an activated subset sharing many but not all features with circulating or lymphoid organ-residing NK cells. During successful murine pregnancy, uNK cells appear to regulate initiation of structural changes in the feed arterial systems that support maternal endometrial tissue at sites of implantation and subsequent placental development. These changes, which reverse after pregnancy, create a higher volume arterial bed with flaccid vessels unresponsive to vasoactive compounds. These unique pregnancy-associated arterial changes elevate the volume of low-pressure, nutrient-rich, maternal arterial blood available to conceptuses. Regulation of the differentiation, activation, and functions of uNK cells is only partially known, and there is lively debate regarding whether and how uNK cells participate in infertility or spontaneous abortion. This review highlights the biology of uNK cells during successful pregnancy.
Collapse
Affiliation(s)
- B Anne Croy
- Department of Anatomy and Cell Biology, Research Group in Reproduction, Development and Sexual Function, Queen's University, Kingston, ON, Canada.
| | | | | | | |
Collapse
|
32
|
Hirashima M, Suda T. Differentiation of arterial and venous endothelial cells and vascular morphogenesis. ACTA ACUST UNITED AC 2006; 13:137-45. [PMID: 16728330 DOI: 10.1080/10623320600698078] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The vascular system is comprised of an organized hierarchical structure of arteries, veins, and capillaries. Recent studies in zebrafish, chick, and mouse reveal that the identity of artery and vein is governed by genetic factors as well as blood flow. The ephrin/Eph system establishes arterial and venous endothelial cell identity, and is important for structural segregation between arteries and veins. Analyses using loss- or gain-of-function mutations in zebrafish and mice show that Su(H)/RBP-J-dependent Delta/Notch signaling is a key mediator of arterial endothelial cell fate decision and vascular patterning. Vascular endothelial growth factor has also been shown to work upstream of Notch and is a key player in arteriogenesis. On the other hand, an orphan nuclear receptor, COUP-TFII, induces venous endothelial cell differentiation by suppressing the Notch signaling. Arteriovenous malformations are frequently induced by a loss of arterial and venous cell specification. These insights indicate that the balance of these genetic factors and modification by epigenetic factors such as hemodynamics and oxygen tension are important for proper endothelial cell identities in vascular morphogenesis.
Collapse
Affiliation(s)
- Masanori Hirashima
- The Sakaguchi Laboratory of Developmental Biology, School of Medicine, Keio University, Tokyo, Japan.
| | | |
Collapse
|
33
|
Abstract
Vascular diseases are the most common causes of morbidity and mortality in the Western world. These conditions, whether they involve small and/or large vessels, invariably manifest as localized lesions within the vascular tree. For example, atherosclerosis preferentially affects arteries at branch points, the outer wall of bifurcations, and the inner walls of curvatures. An important question is how systemic alterations in blood-borne factors (eg, those associated with cardiac risk factors) result in focal vasculopathy. A clue to the answer lies in the complex spatial and temporal dynamics of the endothelium. The goal of this review is to highlight concepts of endothelial cell heterogeneity and to apply these principles to an understanding of the pathogenesis, diagnosis, and treatment of atherosclerosis.
Collapse
Affiliation(s)
- William C Aird
- Division of Molecular and Vascular Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA.
| |
Collapse
|