1
|
Alibardi L. Microscopic structure and immunolabeling of extremely overlapped scales in some scincid, anguid, and pygopod lizards. PROTOPLASMA 2025; 262:99-115. [PMID: 39212701 DOI: 10.1007/s00709-024-01982-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Skink, anguid, and pygopod lizards possess an extremely flat skin, imparting a compact and solid body and shining surface that facilitates their slider and/or fossorial movements. The present morphological study, conducted using immunohistochemistry and electron microscopy, has analyzed the microscopical morphology of extremely overlapped scales in different lizards, including species with limb reduction (scincids such as Lerista bougainvilli, Scincella lateralis, Lampropholis delicata) or legless (pygopods such as Lialis burtonis and Delma molleri and the anguid Anguis fragilis). The outer surface of the epidermis shows different micro-structures of the Oberhautchen layer containing corneous beta-proteins (CBPs) with variable immunoreactivity for these proteins. The beta-layer is relatively thick in most of these species, probably in relation to the resistance against strong mechanical forces acting on scales during the movements on harsh substrates. The scincid and anguid lizards also possess and regenerate osteoderms that reinforce scales flatness and mechanical resistance during the serpentiform or fossorial movements of these reptiles. Osteoderms are absent in pygopods. Roundish cells with a granular content are detected in the deep hinge region of scales in Lerista and Lampropholis skinks. Whether these cells may secrete substances that facilitate scale anti-friction and also determine shining of the skin surface remains to be shown.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab Padova, Padua, Italy.
- Department of Biology, University of Bologna, Via Selmi 3, 40126, Bologna, Italy.
| |
Collapse
|
2
|
Alibardi L. Scales of non-avian reptiles and their derivatives contain corneous beta proteins coded from genes localized in the Epidermal Differentiation Complex. Tissue Cell 2023; 85:102228. [PMID: 37793208 DOI: 10.1016/j.tice.2023.102228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 10/06/2023]
Abstract
The evolution of modern reptiles from basic reptilian ancestors gave rise to scaled vertebrates. Scales are of different types, and their corneous layer can shed frequently during the year in lepidosaurians (lizards, snakes), 1-2 times per year in the tuatara and in some freshwater turtle, irregularly in different parts of the body in crocodilians, or simply wore superficially in marine and terrestrial turtles. Lepidosaurians possess tuberculate, non-overlapped or variably overlapped scales with inter-scale (hinge) regions. The latter are hidden underneath the outer scale surface or may be more exposed in specific body areas. Hinge regions allow stretching during growth and movement so that the skin remains mechanically functional. Crocodilian and turtles feature flat and shield scales (scutes) with narrow inter-scale regions for stretching and growth. The epidermis of non-avian reptilian hinge regions is much thinner than the exposed outer surface of scales and is less cornified. Despite the thickness of the epidermis, scales are mainly composed of variably amount of Corneous Beta Proteins (CBPs) that are coded in a gene cluster known as EDC (Epidermal Differentiation Complex). These are small proteins, 100-200 amino acid long of 8-25 kDa, rich in glycine and cysteine but also in serine, proline and valine that participate to the formation of beta-sheets in the internal part of the protein, the beta-region. This region determines the further polymerization of CBPs in filamentous proteins that, together a network of Intermediate Filament Keratins (IFKs) and other minor epidermal proteins from the EDC make the variable pliable or inflexible corneous material of reptilian scales, claws and of turtle beak. The acquisition of scales and skin derivatives with different mechanical and material properties, mainly due to the evolution of reptile CBPs, is essential for the life and different adaptations of these vertebrates.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab Padova, Italy; Department of Biology, University of Bologna, Bologna, Italy.
| |
Collapse
|
3
|
Alibardi L. Introduction to the Study on Regeneration in Lizards as an Amniote Model of Organ Regeneration. J Dev Biol 2021; 9:51. [PMID: 34842730 PMCID: PMC8628930 DOI: 10.3390/jdb9040051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 11/17/2022] Open
Abstract
Initial observations on the regeneration of the tail in lizards were recorded in brief notes by Aristotle over 2000 years ago, as reported in his book, History of Animals (cited from [...].
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab Padova, 35100 Padova, Italy;
- Department of Biology, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| |
Collapse
|
4
|
Parry DAD. Structures of the ß-Keratin Filaments and Keratin Intermediate Filaments in the Epidermal Appendages of Birds and Reptiles (Sauropsids). Genes (Basel) 2021; 12:591. [PMID: 33920614 PMCID: PMC8072682 DOI: 10.3390/genes12040591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 01/14/2023] Open
Abstract
The epidermal appendages of birds and reptiles (the sauropsids) include claws, scales, and feathers. Each has specialized physical properties that facilitate movement, thermal insulation, defence mechanisms, and/or the catching of prey. The mechanical attributes of each of these appendages originate from its fibril-matrix texture, where the two filamentous structures present, i.e., the corneous ß-proteins (CBP or ß-keratins) that form 3.4 nm diameter filaments and the α-fibrous molecules that form the 7-10 nm diameter keratin intermediate filaments (KIF), provide much of the required tensile properties. The matrix, which is composed of the terminal domains of the KIF molecules and the proteins of the epidermal differentiation complex (EDC) (and which include the terminal domains of the CBP), provides the appendages, with their ability to resist compression and torsion. Only by knowing the detailed structures of the individual components and the manner in which they interact with one another will a full understanding be gained of the physical properties of the tissues as a whole. Towards that end, newly-derived aspects of the detailed conformations of the two filamentous structures will be discussed and then placed in the context of former knowledge.
Collapse
Affiliation(s)
- David A D Parry
- School of Fundamental Sciences, Massey University, Private Bag 11-222, Palmerston North 4442, New Zealand
| |
Collapse
|
5
|
Alibardi L. Development, structure, and protein composition of reptilian claws and hypotheses of their evolution. Anat Rec (Hoboken) 2020; 304:732-757. [PMID: 33015957 DOI: 10.1002/ar.24515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/23/2020] [Accepted: 07/10/2020] [Indexed: 11/06/2022]
Abstract
Here, we review the development, morphology, genes, and proteins of claws in reptiles. Claws likely form owing to the inductive influence of phalangeal mesenchyme on the apical epidermis of developing digits, resulting in hyperproliferation and intense protein synthesis in the dorsal epidermis, which forms the unguis. The tip of claws results from prevalent cell proliferation and distal movement along most of the ungueal epidermis in comparison to the ventral surface forming the subunguis. Asymmetrical growth between the unguis and subunguis forces beta-cells from the unguis to rotate into the apical part of the subunguis, sharpening the claw tip. Further sharpening occurs by scratching and mechanical wearing. Ungueal keratinocytes elongate, form an intricate perimeter and cementing junctions, and remain united impeding desquamation. In contrast, thin keratinocytes in the subunguis form a smooth perimeter, accumulate less corneous beta proteins (CBPs) and cysteine-poor intermediate filament (IF)-keratins, and desquamate. In addition to prevalent glycine-cysteine-tyrosine rich CBPs, special cysteine-rich IF-keratins are also synthesized in the claw, generating numerous SS bonds that harden the thick and compact corneous material. Desquamation and mechanical wear at the tip ensure that the unguis curvature remains approximately stable over time. Reptilian claws are likely very ancient in evolution, although the unguis differentiated like the outer scale surface of scales, while the subunguis might have derived from the inner scale surface. The few hair-like IF-keratins synthesized in reptilian claws indicate that ancestors of sauropsids and mammals shared cysteine-rich IF-keratins. However, the number of these keratins remained low in reptiles, while new types of CBPs function to strengthen claws.
Collapse
|
6
|
Wang F, Chen M, Cai F, Li P, Yan J, Zhou K. Expression of specific corneous beta proteins in the developing digits of the Japanese gecko (Gekko japonicus) reveals their role in the growth of adhesive setae. Comp Biochem Physiol B Biochem Mol Biol 2020; 240:110370. [DOI: 10.1016/j.cbpb.2019.110370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 10/05/2019] [Accepted: 10/14/2019] [Indexed: 01/03/2023]
|
7
|
Alibardi L. Tail regeneration in Lepidosauria as an exception to the generalized lack of organ regeneration in amniotes. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2019; 336:145-164. [PMID: 31532061 DOI: 10.1002/jez.b.22901] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 07/14/2019] [Accepted: 08/08/2019] [Indexed: 02/06/2023]
Abstract
The present review hypothesizes that during the transition from water to land, amniotes lost part of the genetic program for metamorphosis utilized in larvae of their amphibian ancestors, a program that in extant fish and amphibians allows organ regeneration. The direct development of amniotes, with their growth from embryos to adults, occurred with the elimination of larval stages, increases the efficiency of immune responses and the complexity of nervous circuits. In amniotes, T-cells and macrophages likely eliminate embryonic-larval antigens that are replaced with the definitive antigens of adult organs. Among lepidosaurians numerous lizard families during the Permian and Triassic evolved the process of tail autotomy to escape predation, followed by tail regeneration. Autotomy limits inflammation allowing the formation of a regenerative blastema rich in the immunosuppressant and hygroscopic hyaluronic acid. Expression loss of developmental genes for metamorphosis and segmentation in addition to an effective immune system, determined an imperfect regeneration of the tail. Genes involved in somitogenesis were likely lost or are inactivated and the axial skeleton and muscles of the original tail are replaced with a nonsegmented cartilaginous tube and segmental myotomes. Lack of neural genes, negative influence of immune system, and isolation of the regenerating spinal cord within the cartilaginous tube impede the production of nerve and glial cells, and a stratified spinal cord with ganglia. Tissue and organ regeneration in other body regions of lizards and other reptiles is relatively limited, like in the other amniotes, although the cartilage shows a higher regenerative capability than in mammals.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab Padova and Department of Biology, University of Bologna, Bologna, Italy
| |
Collapse
|
8
|
Holthaus KB, Eckhart L, Dalla Valle L, Alibardi L. Review: Evolution and diversification of corneous beta‐proteins, the characteristic epidermal proteins of reptiles and birds. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2019; 330:438-453. [DOI: 10.1002/jez.b.22840] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 11/28/2018] [Accepted: 12/23/2018] [Indexed: 02/04/2023]
Affiliation(s)
- Karin Brigit Holthaus
- Department of DermatologyMedical University of ViennaWien Austria
- Dipartimento di Scienze Biologiche, Geologiche ed Ambientali (BiGeA)University of BolognaBologna Italy
| | - Leopold Eckhart
- Department of DermatologyMedical University of ViennaWien Austria
| | | | - Lorenzo Alibardi
- Dipartimento di Scienze Biologiche, Geologiche ed Ambientali (BiGeA)University of BolognaBologna Italy
- Comparative Histolab PadovaPadova Italy
| |
Collapse
|
9
|
Alibardi L. Review: cornification, morphogenesis and evolution of feathers. PROTOPLASMA 2017; 254:1259-1281. [PMID: 27614891 DOI: 10.1007/s00709-016-1019-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 08/19/2016] [Indexed: 05/11/2023]
Abstract
Feathers are corneous microramifications of variable complexity derived from the morphogenesis of barb ridges. Histological and ultrastructural analyses on developing and regenerating feathers clarify the three-dimensional organization of cells in barb ridges. Feather cells derive from folds of the embryonic epithelium of feather germs from which barb/barbule cells and supportive cells organize in a branching structure. The following degeneration of supportive cells allows the separation of barbule cells which are made of corneous beta-proteins and of lower amounts of intermediate filament (IF)(alpha) keratins, histidine-rich proteins, and corneous proteins of the epidermal differentiation complex. The specific protein association gives rise to a corneous material with specific biomechanic properties in barbules, rami, rachis, or calamus. During the evolution of different feather types, a large expansion of the genome coding for corneous feather beta-proteins occurred and formed 3-4-nm-thick filaments through a different mechanism from that of 8-10 nm IF keratins. In the chick, over 130 genes mainly localized in chromosomes 27 and 25 encode feather corneous beta-proteins of 10-12 kDa containing 97-105 amino acids. About 35 genes localized in chromosome 25 code for scale proteins (14-16 kDa made of 122-146 amino acids), claws and beak proteins (14-17 kDa proteins of 134-164 amino acids). Feather morphogenesis is periodically re-activated to produce replacement feathers, and multiple feather types can result from the interactions of epidermal and dermal tissues. The review shows schematic models explaining the translation of the morphogenesis of barb ridges present in the follicle into the three-dimensional shape of the main types of branched or un-branched feathers such as plumulaceous, pennaceous, filoplumes, and bristles. The temporal pattern of formation of barb ridges in different feather types and the molecular control from the dermal papilla through signaling molecules are poorly known. The evolution and diversification of the process of morphogenesis of barb ridges and patterns of their formation within feathers follicle allowed the origin and diversification of numerous types of feathers, including the asymmetric planar feathers for flight.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab and Department of BIGEA, University of Bologna, via Selmi 3, 40126, Bologna, Italy.
| |
Collapse
|
10
|
Fraser RDB, Parry DAD. Filamentous Structure of Hard β-Keratins in the Epidermal Appendages of Birds and Reptiles. Subcell Biochem 2017; 82:231-252. [PMID: 28101864 DOI: 10.1007/978-3-319-49674-0_8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The structures of avian and reptilian epidermal appendages, such as feathers, claws and scales, have been modelled using X-ray diffraction and electron microscopy data, combined with sequence analyses. In most cases, a family of closely related molecules makes up the bulk of the appendage, and each of these molecules contains a central β-rich 34-residue segment, which has been identified as the principal component of the framework of the 3.4 nm diameter filaments. The N- and C-terminal segments form the matrix component of the filament/matrix complex. The 34-residue β-rich central domains occur in pairs, related by either a parallel dyad or a perpendicular dyad axis, and form a β-sandwich stabilized by apolar interactions. They are also twisted in a right-handed manner. In feather, the filaments are packed into small sheets and it is possible to determine their likely orientation within the sheets from the low-angle X-ray diffraction data. The physical properties of the various epidermal appendages can be related to the amino acid sequence and composition of defined molecular segments characteristic of the chains concerned.
Collapse
Affiliation(s)
- R D Bruce Fraser
- Institute of Fundamental Sciences, Massey University, Private Bag 11-222, Palmerston North, 4442, New Zealand
- , 28 Satinay Drive, Noosa Parklands, Tewantin, Qld, 4565, Australia
| | - David A D Parry
- Institute of Fundamental Sciences and Riddet Institute, Massey University, Private Bag 11-222, Palmerston North, 4442, New Zealand.
| |
Collapse
|
11
|
Alibardi L, Michieli F, Dalla Valle L. Low-cysteine alpha-keratins and corneous beta-proteins are initially formed in the regenerating tail epidermis of lizard. J Morphol 2016; 278:119-130. [PMID: 27807871 DOI: 10.1002/jmor.20624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 09/28/2016] [Accepted: 10/14/2016] [Indexed: 11/08/2022]
Abstract
During tail regeneration in lizards, the stratified regenerating epidermis progressively gives rise to neogenic scales that form a new epidermal generation. Initially, a soft, un-scaled, pliable, and extensible epidermis is formed that is progressively replaced by a resistant but non-extensible scaled epidermis. This suggests that the initial corneous proteins are later replaced with harder corneous proteins. Using PCR and immunocytochemistry, the present study shows an upregulation in the synthesis of low-cysteine type I and II alpha-keratins and of corneous beta-proteins with a medium cysteine content and a low content in glycine (formerly termed beta-keratins) produced at the beginning of epidermal regeneration. Quantitative PCR indicates upregulation in the production of alpha-keratin mRNAs, particularly of type I, between normal and the thicker regenerating epidermis. PCR-data also indicate a higher upregulation for cysteine-rich corneous beta-proteins and a high but less intense upregulation of low glycine corneous protein mRNAs at the beginning of scale regeneration. Immunolabeling confirms the localization of these proteins, and in particular of beta-proteins with a medium content in cysteine initially formed in the wound epidermis and later in the differentiating corneous layers of regenerating scales. It is concluded that the wound epidermis initially contains alpha-keratins and corneous beta-proteins with a lower cysteine content than more specialized beta-proteins later formed in the mature scales. These initial corneous proteins are likely related to the pliability of the wound epidermis while more specialized alpha-keratins and beta-proteins richer in glycine and cysteine are synthesized later in the mature and inflexible scales. J. Morphol. 278:119-130, 2017. ©© 2016 Wiley Periodicals,Inc.
Collapse
Affiliation(s)
- L Alibardi
- Comparative Histolab and Dipartimento di Bigea, Università di Bologna, Bologna, Italy
| | - F Michieli
- Dipartimento di Biologia, Università di Padova, Padova, Italy
| | - L Dalla Valle
- Dipartimento di Biologia, Università di Padova, Padova, Italy
| |
Collapse
|
12
|
Alibardi L. Review: mapping epidermal beta-protein distribution in the lizard Anolis carolinensis shows a specific localization for the formation of scales, pads, and claws. PROTOPLASMA 2016; 253:1405-1420. [PMID: 26597267 DOI: 10.1007/s00709-015-0909-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 11/09/2015] [Indexed: 06/05/2023]
Abstract
The epidermis of lizards is made of multiple alpha- and beta-layers with different characteristics comprising alpha-keratins and corneous beta-proteins (formerly beta-keratins). Three main modifications of body scales are present in the lizard Anolis carolinensis: gular scales, adhesive pad lamellae, and claws. The 40 corneous beta-proteins present in this specie comprise glycine-rich and glycine-cysteine-rich subfamilies, while the 41 alpha-keratins comprise cysteine-poor and cysteine-rich subfamilies, the latter showing homology to hair keratins. Other genes for corneous proteins are present in the epidermal differentiation complex, the locus where corneous protein genes are located. The review summarizes the main sites of immunolocalization of beta-proteins in different scales and their derivatives producing a unique map of body distribution for these structural proteins. Small glycine-rich beta-proteins participate in the formation of the mechanically resistant beta-layer of most scales. Small glycine-cysteine beta-proteins have a more varied localization in different scales and are also present in the pliable alpha-layer. In claws, cysteine-rich alpha-keratins prevail over cysteine-poor alpha-keratins and mix to glycine-cysteine-rich beta-proteins. The larger beta-proteins with a molecular mass similar to that of alpha-keratins participate in the formation of the fibrous meshwork present in differentiating beta-cells and likely interact with alpha-keratins. The diverse localization of alpha-keratins, beta-proteins, and other proteins of the epidermal differentiation complex gives rise to variably pliable, elastic, or hard corneous layers in different body scales. The corneous layers formed in the softer or harder scales, in the elastic pad lamellae, or in the resistant claws possess peculiar properties depending on the ratio of specific corneous proteins.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab and Department of Biology, Geology and Environmental Sciences, University of Bologna, via Selmi 3, 40126, Bologna, Italy.
| |
Collapse
|
13
|
ALIBARDI LORENZO. Sauropsids Cornification is Based on Corneous Beta-Proteins, a Special Type of Keratin-Associated Corneous Proteins of the Epidermis. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2016; 326:338-351. [DOI: 10.1002/jez.b.22689] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Revised: 06/22/2016] [Accepted: 07/05/2016] [Indexed: 12/13/2022]
Affiliation(s)
- LORENZO ALIBARDI
- Comparative Histolab and Department of Bigea; University of Bologna; Italy
| |
Collapse
|
14
|
Calvaresi M, Eckhart L, Alibardi L. The molecular organization of the beta-sheet region in Corneous beta-proteins (beta-keratins) of sauropsids explains its stability and polymerization into filaments. J Struct Biol 2016; 194:282-91. [DOI: 10.1016/j.jsb.2016.03.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 02/29/2016] [Accepted: 03/05/2016] [Indexed: 11/17/2022]
|
15
|
Alibardi L. The Process of Cornification Evolved From the Initial Keratinization in the Epidermis and Epidermal Derivatives of Vertebrates: A New Synthesis and the Case of Sauropsids. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 327:263-319. [DOI: 10.1016/bs.ircmb.2016.06.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Alibardi L. Immunolocalization of FGF7 (KGF) in the regenerating tail of lizard suggests it is involved in the differentiation of the epidermis. Acta Histochem 2015; 117:718-24. [PMID: 26508592 DOI: 10.1016/j.acthis.2015.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 09/01/2015] [Accepted: 09/15/2015] [Indexed: 11/28/2022]
Abstract
Previous studies showed that Fibroblast Growth Factors (FGF) 1 and 2 are localized in the tissues of the regenerating tail in lizards. In the present immunofluorescence and immunoblotting study we have specifically analyzed the presence and distribution of FGF7 (keratinocyte growth factor) in the regenerating tissues of the tail. FGF7 immunoreactivity is mainly detected in the regenerating epidermis and in sparse fibroblasts of the underlying dermis of the regenerating scales while it is weaker in the other tissues such as the apical ependymal cells and early regenerating muscles. Immunolabeled mesenchymal fibroblasts are frequently present under the epidermis of the forming outer scale surface, a localization that might be connected to beta-cell differentiation in this region of the scale. FGF7 immunolabeling is also seen in differentiating beta-keratinocytes of the beta-layer in the regenerating scales. The present immunofluorescent observations suggest that FGF7 is specifically utilized as a paracrine factor during the process of differentiation of the epidermal layers in the regenerating scales and in particular for beta-cells differentiation.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab and Dipartimento di Biologia, Universita' di Bologna, via Selmi 3, Bologna, Italy
| |
Collapse
|
17
|
Fraser RB, Parry DA. Amino acid sequence homologies in the hard keratins of birds and reptiles, and their implications for molecular structure and physical properties. J Struct Biol 2014; 188:213-24. [DOI: 10.1016/j.jsb.2014.10.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 10/24/2014] [Accepted: 10/28/2014] [Indexed: 11/30/2022]
|
18
|
Wu JF, Zhang J, Xue G, Zhang HQ. Expression and localization of trefoil factor family genes in rat submandibular glands. Biotech Histochem 2014; 89:424-32. [PMID: 24588600 DOI: 10.3109/10520295.2014.885565] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The trefoil factor (TFF) family, which comprises TFF1, TFF2 and TFF3, plays an essential role in epithelial regeneration within the gastrointestinal tract. All three TFFs are present in human saliva; TFF3 is the predominant trefoil peptide. Little is known about the expression and tissue distribution of TFFs in rats, which are commonly used as a model system for human studies. We investigated the localization of the TFF genes that encode secretory peptides in rat submandibular glands (SMG). All three TFFs were expressed in rat SMG, although their location varied. Substantial amounts of TFF1 were detected only in the cytoplasm of epithelial cells in the SMG granular convoluted tubules (GCT), while TFF2 and TFF3 were widely distributed in the cytoplasm of epithelial cells of intercalated ducts (ID), striated ducts (SD) and interlobular ducts (ILD). The three TFFs also were detected especially in the lumens of the SD and ILD. Semi-quantitative RT-PCR and in situ hybridization experiments confirmed TFF1, TFF2 and TFF3 mRNA expressions in the SMG. Greater expression of TFF peptides and mRNA was observed in male rats than in females. The broad expression of TFFs in rat SMG cells and lumens suggests that TFFs function in this organ by their secretion into the duct lumens. We also found differences in TFF expression profiles between rat and human SMG; therefore, caution should be exercised when using rats as a model for human TFF studies.
Collapse
Affiliation(s)
- J F Wu
- Department of Histology and Embryology, Hebei North University , Zhangjiakou
| | | | | | | |
Collapse
|
19
|
Immunoreactivity to the pre-core box antibody shows that most glycine-rich beta-proteins accumulate in lepidosaurian beta-layer and in the corneous layer of crocodilian and turtle epidermis. Micron 2014; 57:31-40. [DOI: 10.1016/j.micron.2013.10.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 10/04/2013] [Accepted: 10/04/2013] [Indexed: 11/18/2022]
|
20
|
Ultrastructural immunocytochemistry for the central region of keratin associated-beta-proteins (beta-keratins) shows the epitope is constantly expressed in reptilian epidermis. Tissue Cell 2013; 45:241-52. [DOI: 10.1016/j.tice.2013.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 01/22/2013] [Accepted: 01/28/2013] [Indexed: 11/21/2022]
|
21
|
Dalla Valle L, Michieli F, Benato F, Skobo T, Alibardi L. Molecular characterization of alpha-keratins in comparison to associated beta-proteins in soft-shelled and hard-shelled turtles produced during the process of epidermal differentiation. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2013; 320:428-41. [DOI: 10.1002/jez.b.22517] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 04/25/2013] [Accepted: 05/10/2013] [Indexed: 11/10/2022]
Affiliation(s)
- L. Dalla Valle
- Department of Biology; University of Padova; Padova; Italy
| | - F. Michieli
- Department of Biology; University of Padova; Padova; Italy
| | - F. Benato
- Department of Biology; University of Padova; Padova; Italy
| | - T. Skobo
- Department of Biology; University of Padova; Padova; Italy
| | - L. Alibardi
- Comparative Histolab and Department of Biology; University of Bologna; Bologna; Italy
| |
Collapse
|
22
|
Alibardi L. Immunocytochemistry indicates that glycine-rich beta-proteins are present in the beta-layer, while cysteine-rich beta-proteins are present in beta- and alpha-layers of snake epidermis. ACTA ZOOL-STOCKHOLM 2013. [DOI: 10.1111/azo.12030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab and Department of Biology; University of Bologna; Bologna 40126 Italy
| |
Collapse
|
23
|
Alibardi L. Immunolocalization of keratin-associated beta-proteins in developing epidermis of lizard suggests that adhesive setae contain glycine-cysteine-rich proteins. J Morphol 2012; 274:97-107. [DOI: 10.1002/jmor.20081] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 08/13/2012] [Accepted: 08/20/2012] [Indexed: 01/11/2023]
|
24
|
Alibardi L. Comparative immunolocalization of keratin-associated beta-proteins (beta-keratins) supports a new explanation for the cyclical process of keratinocyte differentiation in lizard epidermis. ACTA ZOOL-STOCKHOLM 2012. [DOI: 10.1111/azo.12003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab and Department of Biology University of Bologna Bologna Italy
| |
Collapse
|
25
|
Alibardi L. Cornification in reptilian epidermis occurs through the deposition of keratin-associated beta-proteins (beta-keratins) onto a scaffold of intermediate filament keratins. J Morphol 2012; 274:175-93. [DOI: 10.1002/jmor.20086] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
26
|
Klein MCG, Gorb SN. Epidermis architecture and material properties of the skin of four snake species. J R Soc Interface 2012; 9:3140-55. [PMID: 22896567 DOI: 10.1098/rsif.2012.0479] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
On the basis of structural and experimental data, it was previously demonstrated that the snake integument consists of a hard, robust, inflexible outer surface (Oberhäutchen and β-layer) and softer, flexible inner layers (α-layers). It is not clear whether this phenomenon is a general adaptation of snakes to limbless locomotion or only to specific conditions, such as habitat and locomotion. The aim of the present study was to compare the structure and material properties of the outer scale layers (OSLs) and inner scale layers (ISLs) of the exuvium epidermis in four snake species specialized to live in different habitats: Lampropeltis getula californiae (terrestrial), Epicrates cenchria cenchria (generalist), Morelia viridis (arboreal) and Gongylophis colubrinus (sand-burrowing). Scanning electron microscopy (SEM) of skin cross sections revealed a strong variation in the epidermis structure between species. The nanoindentation experiments clearly demonstrated a gradient of material properties along the epidermis in the integument of all the species studied. The presence of such a gradient is a possible adaptation to locomotion and wear minimization on natural substrates. In general, the difference in both the effective elastic modulus and hardness of the OSL and ISL between species was not large compared with the difference in epidermis thickness and architecture.
Collapse
Affiliation(s)
- Marie-Christin G Klein
- Functional Morphology and Biomechanics, Zoological Institute of the University of Kiel, Am Botanischen Garten 1-9, 24098 Kiel, Germany.
| | | |
Collapse
|
27
|
Alibardi L. Immunolocalization of keratin-associated beta-proteins (beta-keratins) in the regenerating lizard epidermis indicates a new process for the differentiation of the epidermis in lepidosaurians. J Morphol 2012; 273:1272-9. [DOI: 10.1002/jmor.20057] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 05/21/2012] [Accepted: 05/28/2012] [Indexed: 11/08/2022]
|
28
|
ALIBARDI L, SEGALLA A, DALLA VALLE L. Distribution of Specific Keratin-Associated Beta-Proteins (Beta-Keratins) in the Epidermis of the Lizard Anolis carolinensis Helps to Clarify the Process of Cornification in Lepidosaurians. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2012; 318:388-403. [DOI: 10.1002/jez.b.22454] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- L. ALIBARDI
- Comparative Histolab and Department of Biology; University of Bologna; Bologna; Italy
| | - A. SEGALLA
- Department of Biology; University of Padova; Padova; Italy
| | - L. DALLA VALLE
- Department of Biology; University of Padova; Padova; Italy
| |
Collapse
|
29
|
Polazzi E, Alibardi L. Cell culture from lizard skin: A tool for the study of epidermal differentiation. Tissue Cell 2011; 43:350-8. [DOI: 10.1016/j.tice.2011.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 07/27/2011] [Accepted: 07/28/2011] [Indexed: 11/26/2022]
|
30
|
Fraser RB, Parry DA. The structural basis of the two-dimensional net pattern observed in the X-ray diffraction pattern of avian keratin. J Struct Biol 2011; 176:340-9. [DOI: 10.1016/j.jsb.2011.08.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 08/16/2011] [Accepted: 08/16/2011] [Indexed: 11/30/2022]
|
31
|
Klein MCG, Deuschle JK, Gorb SN. Material properties of the skin of the Kenyan sand boa Gongylophis colubrinus (Squamata, Boidae). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2010; 196:659-68. [PMID: 20623229 DOI: 10.1007/s00359-010-0556-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 06/21/2010] [Accepted: 06/22/2010] [Indexed: 11/26/2022]
Abstract
On the basis of structural data, it has been previously assumed that the integument of snakes consists of a hard, robust, inflexible outer surface (Oberhäutchen and beta-layer) and soft, flexible inner layers (alpha-layers). The aim of this study was to compare material properties of the outer and inner scale layers of the exuvium of Gongylophis colubrinus, to relate the structure of the snake integument to its mechanical properties. The nanoindentation experiments have demonstrated that the outer scale layers are harder, and have a higher effective elastic modulus than the inner scale layers. The results obtained provide strong evidence about the presence of a gradient in the material properties of the snake integument. The possible functional significance of this gradient is discussed here as a feature minimizing damage to the integument during sliding locomotion on an abrasive surface, such as sand.
Collapse
Affiliation(s)
- Marie-Christin G Klein
- Department of Functional Morphology and Biomechanics, Zoological Institute of the University of Kiel, Am Botanischen Garten 1-9, 24098, Kiel, Germany.
| | | | | |
Collapse
|
32
|
Alibardi L, Dalla Valle L, Nardi A, Toni M. Evolution of hard proteins in the sauropsid integument in relation to the cornification of skin derivatives in amniotes. J Anat 2010; 214:560-86. [PMID: 19422429 DOI: 10.1111/j.1469-7580.2009.01045.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Hard skin appendages in amniotes comprise scales, feathers and hairs. The cell organization of these appendages probably derived from the localization of specialized areas of dermal-epidermal interaction in the integument. The horny scales and the other derivatives were formed from large areas of dermal-epidermal interaction. The evolution of these skin appendages was characterized by the production of specific coiled-coil keratins and associated proteins in the inter-filament matrix. Unlike mammalian keratin-associated proteins, those of sauropsids contain a double beta-folded sequence of about 20 amino acids, known as the core-box. The core-box shows 60%-95% sequence identity with known reptilian and avian proteins. The core-box determines the polymerization of these proteins into filaments indicated as beta-keratin filaments. The nucleotide and derived amino acid sequences for these sauropsid keratin-associated proteins are presented in conjunction with a hypothesis about their evolution in reptiles-birds compared to mammalian keratin-associated proteins. It is suggested that genes coding for ancestral glycine-serine-rich sequences of alpha-keratins produced a new class of small matrix proteins. In sauropsids, matrix proteins may have originated after mutation and enrichment in proline, probably in a central region of the ancestral protein. This mutation gave rise to the core-box, and other regions of the original protein evolved differently in the various reptilians orders. In lepidosaurians, two main groups, the high glycine proline and the high cysteine proline proteins, were formed. In archosaurians and chelonians two main groups later diversified into the high glycine proline tyrosine, non-feather proteins, and into the glycine-tyrosine-poor group of feather proteins, which evolved in birds. The latter proteins were particularly suited for making the elongated barb/barbule cells of feathers. In therapsids-mammals, mutations of the ancestral proteins formed the high glycine-tyrosine or the high cysteine proteins but no core-box was produced in the matrix proteins of the hard corneous material of mammalian derivatives.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Dipartimento di Biologia evoluzionistica sperimentale, University of Bologna, Italy.
| | | | | | | |
Collapse
|
33
|
Dalla Valle L, Nardi A, Bonazza G, Zuccal C, Emera D, Alibardi L. Forty keratin-associated β-proteins (β-keratins) form the hard layers of scales, claws, and adhesive pads in the green anole lizard, Anolis carolinensis. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2010; 314:11-32. [DOI: 10.1002/jez.b.21306] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
34
|
Dalla Valle L, Nardi A, Alibardi L. Isolation of a new class of cysteine-glycine-proline-rich beta-proteins (beta-keratins) and their expression in snake epidermis. J Anat 2010; 216:356-67. [PMID: 20070430 DOI: 10.1111/j.1469-7580.2009.01192.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Scales of snakes contain hard proteins (beta-keratins), now referred to as keratin-associated beta-proteins. In the present study we report the isolation, sequencing, and expression of a new group of these proteins from snake epidermis, designated cysteine-glycine-proline-rich proteins. One deduced protein from expressed mRNAs contains 128 amino acids (12.5 kDa) with a theoretical pI at 7.95, containing 10.2% cysteine and 15.6% glycine. The sequences of two more snake cysteine-proline-rich proteins have been identified from genomic DNA. In situ hybridization shows that the messengers for these proteins are present in the suprabasal and early differentiating beta-cells of the renewing scale epidermis. The present study shows that snake scales, as previously seen in scales of lizards, contain cysteine-rich beta-proteins in addition to glycine-rich beta-proteins. These keratin-associated beta-proteins mix with intermediate filament keratins (alpha-keratins) to produce the resistant corneous layer of snake scales. The specific proportion of these two subfamilies of proteins in different scales can determine various degrees of hardness in scales.
Collapse
|
35
|
Alibardi L. Cell biology of adhesive setae in gecko lizards. ZOOLOGY 2009; 112:403-24. [DOI: 10.1016/j.zool.2009.03.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Revised: 03/13/2009] [Accepted: 03/19/2009] [Indexed: 10/20/2022]
|
36
|
Dalla Valle L, Nardi A, Toni M, Emera D, Alibardi L. Beta-keratins of turtle shell are glycine-proline-tyrosine rich proteins similar to those of crocodilians and birds. J Anat 2009; 214:284-300. [PMID: 19207990 DOI: 10.1111/j.1469-7580.2008.01030.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
This study presents, for the first time, sequences of five beta-keratin cDNAs from turtle epidermis obtained by means of 5'- and 3'-rapid amplification of cDNA ends (RACE) analyses. The deduced amino acid sequences correspond to distinct glycine-proline-serine-tyrosine rich proteins containing 122-174 amino acids. In situ hybridization shows that beta-keratin mRNAs are expressed in cells of the differentiating beta-layers of the shell scutes. Southern blotting analysis reveals that turtle beta-keratins belong to a well-conserved multigene family. This result was confirmed by the amplification and sequencing of 13 genomic fragments corresponding to beta-keratin genes. Like snake, crocodile and avian beta-keratin genes, turtle beta-keratins contain an intron that interrupts the 5'-untranslated region. The length of the intron is variable, ranging from 0.35 to 1.00 kb. One of the sequences obtained from genomic amplifications corresponds to one of the five sequences obtained from cDNA cloning; thus, sequences of a total of 17 turtle beta-keratins were determined in the present study. The predicted molecular weight of the 17 different deduced proteins range from 11.9 to 17.0 kDa with a predicted isoelectric point of 6.8-8.4; therefore, they are neutral to basic proteins. A central region rich in proline and with beta-strand conformation shows high conservation with other reptilian and avian beta-keratins, and it is likely involved in their polymerization. Glycine repeat regions, often containing tyrosine, are localized toward the C-terminus. Phylogenetic analysis shows that turtle beta-keratins are more similar to crocodilian and avian beta-keratins than to those of lizards and snakes.
Collapse
|
37
|
Alibardi L, Toni M. Immunocytochemistry and protein analysis suggest that reptilian claws contain small high cysteine–glycine proteins. Tissue Cell 2009; 41:180-92. [DOI: 10.1016/j.tice.2008.10.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 10/07/2008] [Accepted: 10/08/2008] [Indexed: 10/21/2022]
|
38
|
Ye C, Wu X, Yan P, Amato G. beta-Keratins in crocodiles reveal amino acid homology with avian keratins. Mol Biol Rep 2009; 37:1169-74. [PMID: 19266314 DOI: 10.1007/s11033-009-9480-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Accepted: 02/18/2009] [Indexed: 10/21/2022]
Abstract
The DNA sequences encoding beta-keratin have been obtained from Marsh Mugger (Crocodylus palustris) and Orinoco Crocodiles (Crocodylus intermedius). Through the deduced amino acid sequence, these proteins are rich in glycine, proline and serine. The central region of the proteins are composed of two beta-folded regions and show a high degree of identity with beta-keratins of aves and squamates. This central part is thought to be the site of polymerization to build the framework of beta-keratin filaments. It is believed that the beta-keratins in reptiles and birds share a common ancestry. Near the C-terminal, these beta-keratins contain a peptide rich in glycine-X and glycine-X-X, and the distinctive feature of the region is some 12-amino acid repeats, which are similar to the 13-amino acid repeats in chick scale keratin but absent from avian feather keratin. From our phylogenetic analysis, the beta-keratins in crocodile have a closer relationship with avian keratins than the other keratins in reptiles.
Collapse
Affiliation(s)
- Changjiang Ye
- College of Life Sciences, and Key Laboratory for Conservation and Exploitation of Biological Resource in Anhui Province, Anhui Normal University, Wuhu, China
| | | | | | | |
Collapse
|
39
|
Dalla Valle L, Nardi A, Gelmi C, Toni M, Emera D, Alibardi L. Beta-keratins of the crocodilian epidermis: composition, structure, and phylogenetic relationships. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2009; 312:42-57. [PMID: 18942103 DOI: 10.1002/jez.b.21241] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Nucleotide and deduced amino acid sequences of three beta-keratins of Nile crocodile scales are presented. Using 5'- and 3'-RACE analysis, two cDNA sequences of 1 kb (Cr-gptrp-1) and 1.5 kb (Cr-gptrp-2) were determined, corresponding to 17.4 and 19.3 kDa proteins, respectively, and a pI of 8.0. In genomic DNA amplifications, we determined that the 5'-UTR of Cr-gptrp-2 contains an intron of 621 nucleotides. In addition, we isolated a third gene (Cr-gptrp-3) in genomic DNA amplifications that exhibits seven amino acid differences with Cr-gptrp-2. Genomic organization of the sequenced crocodilian beta-keratin genes is similar to avian beta-keratin genes. Deduced proteins are rich in glycine, proline, serine, and tyrosine, and contain cysteines toward the N- and C-terminal regions, likely for the formation of disulfide bonds. Prediction of the secondary structure suggests that the central core box of 20 amino acids contains two beta-strands and has 75-90% identity with chick beta-keratins. Toward the C-terminus, numerous glycine-glycine-tyrosine and glycine-glycine-leucine repeats are present, which may contribute to making crocodile scales hard. In situ hybridization shows expression of beta-keratin genes in differentiating beta-cells of epidermal transitional layers. Phylogenetic analysis of the available archosaurian and lepidosaurian beta-keratins suggests that feather keratins diversified early from nonfeather keratins, deep in archosaur evolution. However, only the complete knowledge of all crocodilian beta-keratins will confirm whether feather keratins have an origin independent of those in bird scales, which preceded the split between birds and crocodiles.
Collapse
|
40
|
Hallahan DL, Keiper-Hrynko NM, Shang TQ, Ganzke TS, Toni M, Dalla Valle L, Alibardi L. Analysis of gene expression in gecko digital adhesive pads indicates significant production of cysteine- and glycine-rich beta-keratins. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2009; 312:58-73. [DOI: 10.1002/jez.b.21242] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
41
|
Chang C, Wu P, Baker RE, Maini PK, Alibardi L, Chuong CM. Reptile scale paradigm: Evo-Devo, pattern formation and regeneration. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2009; 53:813-26. [PMID: 19557687 PMCID: PMC2874329 DOI: 10.1387/ijdb.072556cc] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The purpose of this perspective is to highlight the merit of the reptile integument as an experimental model. Reptiles represent the first amniotes. From stem reptiles, extant reptiles, birds and mammals have evolved. Mammal hairs and feathers evolved from Therapsid and Sauropsid reptiles, respectively. The early reptilian integument had to adapt to the challenges of terrestrial life, developing a multi-layered stratum corneum capable of barrier function and ultraviolet protection. For better mechanical protection, diverse reptilian scale types have evolved. The evolution of endothermy has driven the convergent evolution of hair and feather follicles: both form multiple localized growth units with stem cells and transient amplifying cells protected in the proximal follicle. This topological arrangement allows them to elongate, molt and regenerate without structural constraints. Another unique feature of reptile skin is the exquisite arrangement of scales and pigment patterns, making them testable models for mechanisms of pattern formation. Since they face the constant threat of damage on land, different strategies were developed to accommodate skin homeostasis and regeneration. Temporally, they can be under continuous renewal or sloughing cycles. Spatially, they can be diffuse or form discrete localized growth units (follicles). To understand how gene regulatory networks evolved to produce increasingly complex ectodermal organs, we have to study how prototypic scale-forming pathways in reptiles are modulated to produce appendage novelties. Despite the fact that there are numerous studies of reptile scales, molecular analyses have lagged behind. Here, we underscore how further development of this novel experimental model will be valuable in filling the gaps of our understanding of the Evo-Devo of amniote integuments.
Collapse
Affiliation(s)
- Cheng Chang
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- School of Life Science, Lanzhou University, Lanzhou, Gansu, China
| | - Ping Wu
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Ruth E. Baker
- Centre for Mathematical Biology, Mathematical Institute, University of Oxford, UK
| | - Philip K. Maini
- Centre for Mathematical Biology, Mathematical Institute, University of Oxford, UK
- Oxford Centre for Integrative Systems Biology, Department of Biochemistry, University of Oxford, UK
| | - Lorenzo Alibardi
- Dipartimento di Biologia Evoluzionistica Sperimentale, University of Bologna, Bologna, Italy
| | - Cheng-Ming Chuong
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
42
|
Alibardi L. Cornification in developing claws of the common Australian skink (Lampropholis guichenoti) (Squamata, Lacertidae). ACTA ACUST UNITED AC 2008. [DOI: 10.1080/11250000801973334] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
43
|
Identification of reptilian genes encoding hair keratin-like proteins suggests a new scenario for the evolutionary origin of hair. Proc Natl Acad Sci U S A 2008; 105:18419-23. [PMID: 19001262 DOI: 10.1073/pnas.0805154105] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The appearance of hair is one of the main evolutionary innovations in the amniote lineage leading to mammals. The main components of mammalian hair are cysteine-rich type I and type II keratins, also known as hard alpha-keratins or "hair keratins." To determine the evolutionary history of these important structural proteins, we compared the genomic loci of the human hair keratin genes with the homologous loci of the chicken and of the green anole lizard Anolis carolinenis. The genome of the chicken contained one type II hair keratin-like gene, and the lizard genome contained two type I and four type II hair keratin-like genes. Orthology of the latter genes and mammalian hair keratins was supported by gene locus synteny, conserved exon-intron organization, and amino acid sequence similarity of the encoded proteins. The lizard hair keratin-like genes were expressed most strongly in the digits, indicating a role in claw formation. In addition, we identified a novel group of reptilian cysteine-rich type I keratins that lack homologues in mammals. Our data show that cysteine-rich alpha-keratins are not restricted to mammals and suggest that the evolution of mammalian hair involved the co-option of pre-existing structural proteins.
Collapse
|
44
|
Alibardi L, Toni M. Cytochemical and molecular characteristics of the process of cornification during feather morphogenesis. ACTA ACUST UNITED AC 2008; 43:1-69. [DOI: 10.1016/j.proghi.2008.01.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2008] [Accepted: 01/21/2008] [Indexed: 10/22/2022]
|
45
|
Alibardi L, Toni M, Dalla Valle L. Hard cornification in reptilian epidermis in comparison to cornification in mammalian epidermis. Exp Dermatol 2008; 16:961-76. [PMID: 18031455 DOI: 10.1111/j.1600-0625.2007.00609.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The structure of reptilian hard (beta)-keratins, their nucleotide and amino acid sequence, and the organization of their genes are presented. These 13-19 kDa proteins are basic, rich in glycine, proline and serine, and different from cytokeratins. Their mRNAs are expressed in beta-cells. The central part of beta-keratins (this region has been previously termed 'core-box' and is peculiar of all sauropsid proteins) is composed of two beta-folded regions and shows a high identity with avian beta-keratins. This central part present in all beta-keratins, including feather keratins, is the site of polymerization to build the framework of beta-keratin filaments. Beta-keratins appear cytokeratin-associated proteins. Their central region might have originated in an ancestral glycine-rich protein present in stem reptiles from which beta-keratins evolved and diversified into reptiles and birds. Stem reptiles of the Carboniferous period might have possessed glycine-rich proteins derived from exons/domains corresponding to the variable, glycine-rich region of cytokeratins. Beta-keratins might have derived from a gene coding for small glycine-rich keratin-associated proteins. The glycine-rich regions evolved differently in the lineage leading to modern reptiles and birds versus that leading to mammals. In the reptilian lineage some amino acid regions produced by point mutations and amino acid changes might have given rise to originate the central beta-pleated region. The latter allowed the formation of filamentous proteins (beta-keratins) associated with intermediate filament keratins and replaced them in beta-keratin cells. In the mammalian lineage no beta-pleated region was generated in their matrix proteins, the glycine-rich keratin-associated proteins. The latter evolved as glycine-tyrosine-rich, sulphur-rich, and ultra-sulphur-rich proteins that are used for building hairs, horns and nails.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Dipartimento di Biologia, University of Bologna, Bologna, Italy.
| | | | | |
Collapse
|
46
|
Dalla Valle L, Nardi A, Belvedere P, Toni M, Alibardi L. Beta-keratins of differentiating epidermis of snake comprise glycine-proline-serine-rich proteins with an avian-like gene organization. Dev Dyn 2007; 236:1939-53. [PMID: 17576619 DOI: 10.1002/dvdy.21202] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Beta-keratins of reptilian scales have been recently cloned and characterized in some lizards. Here we report for the first time the sequence of some beta-keratins from the snake Elaphe guttata. Five different cDNAs were obtained using 5'- and 3'-RACE analyses. Four sequences differ by only few nucleotides in the coding region, whereas the last cDNA shows, in this region, only 84% of identity. The gene corresponding to one of the cDNA sequences has a single intron present in the 5'-untranslated region. This genomic organization is similar to that of birds' beta-keratins. Cloning and Southern blotting analysis suggest that snake beta-keratins belong to a family of high-related genes as for geckos. PCR analysis suggests a head-to-tail orientation of genes in the same chromosome. In situ hybridization detected beta-keratin transcripts almost exclusively in differentiating oberhautchen and beta-cells of the snake epidermis in renewal phase. This is confirmed by Northern blotting that showed, in this phase, a high expression of two different transcripts whereas only the longer transcript is expressed at a much lower level in resting skin. The cDNA coding sequences encoded putative glycine-proline-serine rich proteins containing 137-139 amino acids, with apparent isoelectric point at 7.5 and 8.2. A central region, rich in proline, shows over 50% homology with avian scale, claw, and feather keratins. The prediction of secondary structure shows mainly a random coil conformation and few beta-strand regions in the central region, likely involved in the formation of a fibrous framework of beta-keratins. This region was possibly present in basic reptiles that originated reptiles and birds.
Collapse
|
47
|
Alibardi L, Toni M. Characterization of keratins and associated proteins involved in the corneification of crocodilian epidermis. Tissue Cell 2007; 39:311-23. [PMID: 17707449 DOI: 10.1016/j.tice.2007.06.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Revised: 06/12/2007] [Accepted: 06/14/2007] [Indexed: 11/15/2022]
Abstract
Crocodilian keratinocytes accumulate keratin and form a corneous cell envelope of which the composition is poorly known. The present immunological study characterizes the molecular weight, isoelectric point (pI) and the protein pattern of alpha- and beta-keratins in the epidermis of crocodilians. Some acidic alpha-keratins of 47-68 kDa are present. Cross-reactive bands for loricrin (70, 66, 55 kDa), sciellin (66, 55-57 kDa), and filaggrin-AE2-positive keratins (67, 55 kDa) are detected while caveolin is absent. These proteins may participate in the formation of the cornified cell membranes, especially in hinge regions among scales. Beta-keratins of 17-20 kDa and of prevalent basic pI (7.0-8.4) are also present. Acidic beta-keratins of 10-16 kDa are scarce and may represent altered forms of the original basic proteins. Crocodilian beta-keratins are not recognized by a lizard beta-keratin antibody (A68B), and by a turtle beta-keratin antibody (A685). This result indicates that these antibodies recognize specific epitopes in different reptiles. Conversely, crocodilian beta-keratins cross-react with the Beta-universal antibody indicating they share a specific 20 amino acid epitope with avian beta-keratins. Although crocodilian beta-keratins are larger proteins than those present in birds our results indicate presence of shared epitopes between avian and crocodilian beta-keratins which give good indication for the future determination of the sequence of these proteins.
Collapse
Affiliation(s)
- L Alibardi
- Dipartimento di Biologia, Sezione Anatomia, Comparata, via Selmi 3, 40126, University of Bologna, 40126 Bologna, Italy.
| | | |
Collapse
|
48
|
Toni M, Dalla Valle L, Alibardi L. Hard (Beta-)keratins in the epidermis of reptiles: composition, sequence, and molecular organization. J Proteome Res 2007; 6:3377-92. [PMID: 17705524 DOI: 10.1021/pr0702619] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Beta-keratins form the hard corneous material of reptilian scales. In the present review, the distribution and molecular characteristics of beta-keratins in reptiles are presented. In lepidosaurians immunoreactive, protein bands at 12-18 kDa are generally present with less frequent proteins at higher molecular weight. In chelonians, bands at 13-18 and 22-24 kDa are detected. In crocodilians, bands at 14-20 kDa and weaker bands at 30-32 kDa are seen. Protein bands above 25 kDa are probably polymerized beta-keratins or aggregates. Two-dimensional gel electrophoresis shows that beta-keratins are mainly basic and that acidic-neutral keratins may derive from post-translational modifications. Beta-keratins comprise glycine-proline-rich and cystein-proline-rich proteins of 13-19 kDa. Beta-keratin genes may or may not contain introns and are present in multiple copies with a linear organization as in avian beta-keratin genes. Despite amino acid differences toward N- and C-terminals all beta-keratins share high homology in their central, beta-folded region of 20 amino acids, indicated as core-box. This region is implicated in the formation of beta-keratin filaments of scales, claws, and feathers. The homology of the core-box suggests that these proteins evolved from a progenitor sequence present in the stem of reptiles. Beta-keratins have diversified in their amino acid sequences producing secondary (and tertiary) conformations that suited them for their mechanical role in scales. In birds, a small beta-keratin has allowed the formation of feathers. It is suggested that beta-keratins represent the reptilian counterpart of keratin associated or matrix proteins present in mammalian hairs, claws, and horns.
Collapse
Affiliation(s)
- Mattia Toni
- Dipartimento di Biologia evoluzionistica sperimentale, University of Bologna, Italy, and Dipartimento di Biologia, University of Padova, Italy
| | | | | |
Collapse
|
49
|
Alibardi L, Toni M, Dalla Valle L. Expression of beta-keratin mRNAs and proline uptake in epidermal cells of growing scales and pad lamellae of gecko lizards. J Anat 2007; 211:104-16. [PMID: 17553098 PMCID: PMC2375798 DOI: 10.1111/j.1469-7580.2007.00752.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Beta-keratins form a large part of the proteins contained in the hard beta layer of reptilian scales. The expression of genes encoding glycine-proline-rich beta-keratins in normal and regenerating epidermis of two species of gecko lizards has been studied by in situ hybridization. The probes localize mRNAs in differentiating oberhautchen and beta cells of growing scales and in modified scales, termed pad lamellae, on the digits of gecko lizards. In situ localization at the ultrastructural level shows clusters of gold particles in the cytoplasm among beta-keratin filaments of oberhautchen and beta cells. They are also present in the differentiating elongation or setae of oberhautchen cells present in pad lamellae. Setae allow geckos to adhere and climb vertical surfaces. Oberhautchen and beta cells also incorporate tritiated proline. The fine localization of the beta-keratin mRNAs and the uptake of proline confirms the biomolecular data that identified glycine-proline-rich beta-keratin in differentiating beta cells of gecko epidermis. The present study also shows the presence of differentiating and metabolically active cells in both inner and outer oberhautchen/beta cells at the base of the outer setae localized at the tip of pad lamellae. The addition of new beta and alpha cells to the corneous layer near the tip of the outer setae explains the anterior movement of the setae along the apical free-margin of pad lamellae. The rapid replacement of setae ensures the continuous usage of the gecko's adhesive devices, the pad lamellae, during most of their active life.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Dipartimento di Biologia Evoluzionistica Sperimentale, Bologna, Italy.
| | | | | |
Collapse
|
50
|
Toni M, Dalla Valle L, Alibardi L. The Epidermis of Scales in Gecko Lizards Contains Multiple Forms of β-Keratins Including Basic Glycine-Proline-Serine-Rich Proteins. J Proteome Res 2007; 6:1792-805. [PMID: 17439263 DOI: 10.1021/pr060626+] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The epidermis of scales of gecko lizards comprises alpha- and beta-keratins. Using bidimensional electrophoresis and immunoblotting, we have characterized keratins of corneous layers of scales in geckos, especially beta-keratins in digit pad lamellae. In the latter, the formation of thin bristles (setae) allow for the adhesion and climbing vertical or inverted surfaces. alpha-Keratins of 55-66 kDa remain in the acidic and neutral range of pI, while beta-keratins of 13-18 kDa show a broader variation of pI (4-10). Some protein spots for beta-keratins correspond to previously sequenced, basic glycine-proline-serine-rich beta-keratins of 169-191 amino acids. The predicted secondary structure shows that a large part of the molecule has a random-coiled conformation, small alpha helix regions, and a central region with 2-3 strands (beta-folding). The latter, termed core-box, shows homology with feather-scale-claw keratins of birds and is involved in the formation of beta-keratin filaments. Immunolocalization of beta-keratins indicates that these proteins are mainly present in the beta-layer and oberhautchen layer, including setae. The sequenced proteins of setae form bundles of keratins that determine their elongation. This process resembles that of feather-keratin on the elongation of barbule cells in feathers. It is suggested that small proteins rich in glycine, serine, and proline evolved in reptiles and birds to reinforce the mechanical resistance of the cytokeratin cytoskeleton initially present in the epidermis of scales and feathers.
Collapse
Affiliation(s)
- M Toni
- Dipartimento di Biologia evoluzionistica sperimentale, University of Bologna, Italy, and Dipartimento di Biologia, University of Padova, Italy
| | | | | |
Collapse
|