1
|
Fuentes R, Marlow FL, Abrams EW, Zhang H, Kobayashi M, Gupta T, Kapp LD, DiNardo Z, Heller R, Cisternas R, García-Castro P, Segovia-Miranda F, Montecinos-Franjola F, Vought W, Vejnar CE, Giraldez AJ, Mullins MC. Maternal regulation of the vertebrate oocyte-to-embryo transition. PLoS Genet 2024; 20:e1011343. [PMID: 39052672 DOI: 10.1371/journal.pgen.1011343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/06/2024] [Accepted: 06/13/2024] [Indexed: 07/27/2024] Open
Abstract
Maternally-loaded factors in the egg accumulate during oogenesis and are essential for the acquisition of oocyte and egg developmental competence to ensure the production of viable embryos. However, their molecular nature and functional importance remain poorly understood. Here, we present a collection of 9 recessive maternal-effect mutants identified in a zebrafish forward genetic screen that reveal unique molecular insights into the mechanisms controlling the vertebrate oocyte-to-embryo transition. Four genes, over easy, p33bjta, poached and black caviar, were found to control initial steps in yolk globule sizing and protein cleavage during oocyte maturation that act independently of nuclear maturation. The krang, kazukuram, p28tabj, and spotty genes play distinct roles in egg activation, including cortical granule biology, cytoplasmic segregation, the regulation of microtubule organizing center assembly and microtubule nucleation, and establishing the basic body plan. Furthermore, we cloned two of the mutant genes, identifying the over easy gene as a subunit of the Adaptor Protein complex 5, Ap5m1, which implicates it in regulating intracellular trafficking and yolk vesicle formation. The novel maternal protein Krang/Kiaa0513, highly conserved in metazoans, was discovered and linked to the function of cortical granules during egg activation. These mutant genes represent novel genetic entry points to decipher the molecular mechanisms functioning in the oocyte-to-embryo transition, fertility, and human disease. Additionally, our genetic adult screen not only contributes to the existing knowledge in the field but also sets the basis for future investigations. Thus, the identified maternal genes represent key players in the coordination and execution of events prior to fertilization.
Collapse
Affiliation(s)
- Ricardo Fuentes
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Florence L Marlow
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine Mount Sinai, New York, New York, United States of America
| | - Elliott W Abrams
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Biology, Purchase College, State University of New York, Purchase, New York, United States of America
| | - Hong Zhang
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Manami Kobayashi
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Tripti Gupta
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Lee D Kapp
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Zachary DiNardo
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Ronald Heller
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Ruth Cisternas
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Priscila García-Castro
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Fabián Segovia-Miranda
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Felipe Montecinos-Franjola
- Laboratory of Cell Structure and Dynamics, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health, Bethesda, Maryland, United States of America
| | - William Vought
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Charles E Vejnar
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Antonio J Giraldez
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Mary C Mullins
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
2
|
Shamipour S, Hofmann L, Steccari I, Kardos R, Heisenberg CP. Yolk granule fusion and microtubule aster formation regulate cortical granule translocation and exocytosis in zebrafish oocytes. PLoS Biol 2023; 21:e3002146. [PMID: 37289834 DOI: 10.1371/journal.pbio.3002146] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/03/2023] [Indexed: 06/10/2023] Open
Abstract
Dynamic reorganization of the cytoplasm is key to many core cellular processes, such as cell division, cell migration, and cell polarization. Cytoskeletal rearrangements are thought to constitute the main drivers of cytoplasmic flows and reorganization. In contrast, remarkably little is known about how dynamic changes in size and shape of cell organelles affect cytoplasmic organization. Here, we show that within the maturing zebrafish oocyte, the surface localization of exocytosis-competent cortical granules (Cgs) upon germinal vesicle breakdown (GVBD) is achieved by the combined activities of yolk granule (Yg) fusion and microtubule aster formation and translocation. We find that Cgs are moved towards the oocyte surface through radially outward cytoplasmic flows induced by Ygs fusing and compacting towards the oocyte center in response to GVBD. We further show that vesicles decorated with the small Rab GTPase Rab11, a master regulator of vesicular trafficking and exocytosis, accumulate together with Cgs at the oocyte surface. This accumulation is achieved by Rab11-positive vesicles being transported by acentrosomal microtubule asters, the formation of which is induced by the release of CyclinB/Cdk1 upon GVBD, and which display a net movement towards the oocyte surface by preferentially binding to the oocyte actin cortex. We finally demonstrate that the decoration of Cgs by Rab11 at the oocyte surface is needed for Cg exocytosis and subsequent chorion elevation, a process central in egg activation. Collectively, these findings unravel a yet unrecognized role of organelle fusion, functioning together with cytoskeletal rearrangements, in orchestrating cytoplasmic organization during oocyte maturation.
Collapse
Affiliation(s)
- Shayan Shamipour
- Institute of Science and Technology Austria, Klosterneuburg, Austria
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Laura Hofmann
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Irene Steccari
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Roland Kardos
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | | |
Collapse
|
3
|
Concha ML, Reig G. Origin, form and function of extraembryonic structures in teleost fishes. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210264. [PMID: 36252221 PMCID: PMC9574637 DOI: 10.1098/rstb.2021.0264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 04/12/2022] [Indexed: 12/18/2022] Open
Abstract
Teleost eggs have evolved a highly derived early developmental pattern within vertebrates as a result of the meroblastic cleavage pattern, giving rise to a polar stratified architecture containing a large acellular yolk and a small cellular blastoderm on top. Besides the acellular yolk, the teleost-specific yolk syncytial layer (YSL) and the superficial epithelial enveloping layer are recognized as extraembryonic structures that play critical roles throughout embryonic development. They provide enriched microenvironments in which molecular feedback loops, cellular interactions and mechanical signals emerge to sculpt, among other things, embryonic patterning along the dorsoventral and left-right axes, mesendodermal specification and the execution of morphogenetic movements in the early embryo and during organogenesis. An emerging concept points to a critical role of extraembryonic structures in reinforcing early genetic and morphogenetic programmes in reciprocal coordination with the embryonic blastoderm, providing the necessary boundary conditions for development to proceed. In addition, the role of the enveloping cell layer in providing mechanical, osmotic and immunological protection during early stages of development, and the autonomous nutritional support provided by the yolk and YSL, have probably been key aspects that have enabled the massive radiation of teleosts to colonize every ecological niche on the Earth. This article is part of the theme issue 'Extraembryonic tissues: exploring concepts, definitions and functions across the animal kingdom'.
Collapse
Affiliation(s)
- Miguel L. Concha
- Integrative Biology Program, Institute of Biomedical Sciences (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
- Biomedical Neuroscience Institute (BNI), Santiago 8380453, Chile
- Center for Geroscience, Brain Health and Metabolism (GERO), Santiago 7800003, Chile
| | - Germán Reig
- Escuela de Tecnología Médica y del Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O’Higgins, Santiago 7800003, Chile
| |
Collapse
|
4
|
Rojas J, Hinostroza F, Vergara S, Pinto-Borguero I, Aguilera F, Fuentes R, Carvacho I. Knockin' on Egg's Door: Maternal Control of Egg Activation That Influences Cortical Granule Exocytosis in Animal Species. Front Cell Dev Biol 2021; 9:704867. [PMID: 34540828 PMCID: PMC8446563 DOI: 10.3389/fcell.2021.704867] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/16/2021] [Indexed: 12/23/2022] Open
Abstract
Fertilization by multiple sperm leads to lethal chromosomal number abnormalities, failed embryo development, and miscarriage. In some vertebrate and invertebrate eggs, the so-called cortical reaction contributes to their activation and prevents polyspermy during fertilization. This process involves biogenesis, redistribution, and subsequent accumulation of cortical granules (CGs) at the female gamete cortex during oogenesis. CGs are oocyte- and egg-specific secretory vesicles whose content is discharged during fertilization to block polyspermy. Here, we summarize the molecular mechanisms controlling critical aspects of CG biology prior to and after the gametes interaction. This allows to block polyspermy and provide protection to the developing embryo. We also examine how CGs form and are spatially redistributed during oogenesis. During egg activation, CG exocytosis (CGE) and content release are triggered by increases in intracellular calcium and relies on the function of maternally-loaded proteins. We also discuss how mutations in these factors impact CG dynamics, providing unprecedented models to investigate the genetic program executing fertilization. We further explore the phylogenetic distribution of maternal proteins and signaling pathways contributing to CGE and egg activation. We conclude that many important biological questions and genotype–phenotype relationships during fertilization remain unresolved, and therefore, novel molecular players of CG biology need to be discovered. Future functional and image-based studies are expected to elucidate the identity of genetic candidates and components of the molecular machinery involved in the egg activation. This, will open new therapeutic avenues for treating infertility in humans.
Collapse
Affiliation(s)
- Japhet Rojas
- Laboratorio Fisiología de la Reproducción, Departamento de Biología y Química, Facultad de Ciencias Básicas, Universidad Católica del Maule, Talca, Chile.,Escuela de Ingeniería en Biotecnología, Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Talca, Chile
| | - Fernando Hinostroza
- Laboratorio Fisiología de la Reproducción, Departamento de Biología y Química, Facultad de Ciencias Básicas, Universidad Católica del Maule, Talca, Chile.,Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca, Chile.,Centro de Investigación en Neuropsicología y Neurociencias Cognitivas, Facultad de Ciencias de la Salud, Universidad Católica del Maule, Talca, Chile
| | - Sebastián Vergara
- Laboratorio Fisiología de la Reproducción, Departamento de Biología y Química, Facultad de Ciencias Básicas, Universidad Católica del Maule, Talca, Chile.,Escuela de Ingeniería en Biotecnología, Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Talca, Chile
| | - Ingrid Pinto-Borguero
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Felipe Aguilera
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Ricardo Fuentes
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Ingrid Carvacho
- Laboratorio Fisiología de la Reproducción, Departamento de Biología y Química, Facultad de Ciencias Básicas, Universidad Católica del Maule, Talca, Chile
| |
Collapse
|
5
|
Shamipour S, Caballero-Mancebo S, Heisenberg CP. Cytoplasm's Got Moves. Dev Cell 2021; 56:213-226. [PMID: 33321104 DOI: 10.1016/j.devcel.2020.12.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/22/2020] [Accepted: 11/30/2020] [Indexed: 01/01/2023]
Abstract
Cytoplasm is a gel-like crowded environment composed of various macromolecules, organelles, cytoskeletal networks, and cytosol. The structure of the cytoplasm is highly organized and heterogeneous due to the crowding of its constituents and their effective compartmentalization. In such an environment, the diffusive dynamics of the molecules are restricted, an effect that is further amplified by clustering and anchoring of molecules. Despite the crowded nature of the cytoplasm at the microscopic scale, large-scale reorganization of the cytoplasm is essential for important cellular functions, such as cell division and polarization. How such mesoscale reorganization of the cytoplasm is achieved, especially for large cells such as oocytes or syncytial tissues that can span hundreds of micrometers in size, is only beginning to be understood. In this review, we will discuss recent advances in elucidating the molecular, cellular, and biophysical mechanisms by which the cytoskeleton drives cytoplasmic reorganization across different scales, structures, and species.
Collapse
Affiliation(s)
- Shayan Shamipour
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | | | | |
Collapse
|
6
|
Moravec CE, Pelegri F. The role of the cytoskeleton in germ plasm aggregation and compaction in the zebrafish embryo. Curr Top Dev Biol 2020; 140:145-179. [PMID: 32591073 DOI: 10.1016/bs.ctdb.2020.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The transmission of genetic information from one generation to another is crucial for survival of animal species. This is accomplished by the induction of primordial germ cells (PGCs) that will eventually establish the germline. In some animals the germline is induced by signals in gastrula, whereas in others it is specified by inheritance of maternal determinants, known as germ plasm. In zebrafish, aggregation and compaction of maternally derived germ plasm during the first several embryonic cell cycles is essential for generation of PGCs. These processes are controlled by cellular functions associated with the cellular division apparatus. Ribonucleoparticles containing germ plasm components are bound to both the ends of astral microtubules and a dynamic F-actin network through a mechanism integrated with that which drives the cell division program. In this chapter we discuss the role that modifications of the cell division apparatus, including the cytoskeleton and cytoskeleton-associated proteins, play in the regulation of zebrafish germ plasm assembly.
Collapse
Affiliation(s)
- Cara E Moravec
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, United States
| | - Francisco Pelegri
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, United States.
| |
Collapse
|
7
|
Fuentes R, Tajer B, Kobayashi M, Pelliccia JL, Langdon Y, Abrams EW, Mullins MC. The maternal coordinate system: Molecular-genetics of embryonic axis formation and patterning in the zebrafish. Curr Top Dev Biol 2020; 140:341-389. [PMID: 32591080 DOI: 10.1016/bs.ctdb.2020.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Axis specification of the zebrafish embryo begins during oogenesis and relies on proper formation of well-defined cytoplasmic domains within the oocyte. Upon fertilization, maternally-regulated cytoplasmic flow and repositioning of dorsal determinants establish the coordinate system that will build the structure and developmental body plan of the embryo. Failure of specific genes that regulate the embryonic coordinate system leads to catastrophic loss of body structures. Here, we review the genetic principles of axis formation and discuss how maternal factors orchestrate axis patterning during zebrafish early embryogenesis. We focus on the molecular identity and functional contribution of genes controlling critical aspects of oogenesis, egg activation, blastula, and gastrula stages. We examine how polarized cytoplasmic domains form in the oocyte, which set off downstream events such as animal-vegetal polarity and germ line development. After gametes interact and form the zygote, cytoplasmic segregation drives the animal-directed reorganization of maternal determinants through calcium- and cell cycle-dependent signals. We also summarize how maternal genes control dorsoventral, anterior-posterior, mesendodermal, and left-right cell fate specification and how signaling pathways pattern these axes and tissues during early development to instruct the three-dimensional body plan. Advances in reverse genetics and phenotyping approaches in the zebrafish model are revealing positional patterning signatures at the single-cell level, thus enhancing our understanding of genotype-phenotype interactions in axis formation. Our emphasis is on the genetic interrogation of novel and specific maternal regulatory mechanisms of axis specification in the zebrafish.
Collapse
Affiliation(s)
- Ricardo Fuentes
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile.
| | - Benjamin Tajer
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, United States
| | - Manami Kobayashi
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, United States
| | - Jose L Pelliccia
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, United States
| | | | - Elliott W Abrams
- Department of Biology, Purchase College, State University of New York, Harrison, NY, United States
| | - Mary C Mullins
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, United States.
| |
Collapse
|
8
|
Abstract
Soon after fertilization the zebrafish embryo generates the pool of cells that will give rise to the germline and the three somatic germ layers of the embryo (ectoderm, mesoderm and endoderm). As the basic body plan of the vertebrate embryo emerges, evolutionarily conserved developmental signaling pathways, including Bmp, Nodal, Wnt, and Fgf, direct the nearly totipotent cells of the early embryo to adopt gene expression profiles and patterns of cell behavior specific to their eventual fates. Several decades of molecular genetics research in zebrafish has yielded significant insight into the maternal and zygotic contributions and mechanisms that pattern this vertebrate embryo. This new understanding is the product of advances in genetic manipulations and imaging technologies that have allowed the field to probe the cellular, molecular and biophysical aspects underlying early patterning. The current state of the field indicates that patterning is governed by the integration of key signaling pathways and physical interactions between cells, rather than a patterning system in which distinct pathways are deployed to specify a particular cell fate. This chapter focuses on recent advances in our understanding of the genetic and molecular control of the events that impart cell identity and initiate the patterning of tissues that are prerequisites for or concurrent with movements of gastrulation.
Collapse
Affiliation(s)
- Florence L Marlow
- Icahn School of Medicine Mount Sinai Department of Cell, Developmental and Regenerative Biology, New York, NY, United States.
| |
Collapse
|
9
|
Rouillon C, Depincé A, Chênais N, Le Bail PY, Labbé C. Somatic cell nuclear transfer in non-enucleated goldfish oocytes: understanding DNA fate during oocyte activation and first cellular division. Sci Rep 2019; 9:12462. [PMID: 31462687 PMCID: PMC6713701 DOI: 10.1038/s41598-019-48096-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 07/30/2019] [Indexed: 12/17/2022] Open
Abstract
Nuclear transfer consists in injecting a somatic nucleus carrying valuable genetic information into a recipient oocyte to sire a diploid offspring which bears the genome of interest. It requires that the oocyte (maternal) DNA is removed. In fish, because enucleation is difficult to achieve, non-enucleated oocytes are often used and disappearance of the maternal DNA was reported in some clones. The present work explores which cellular events explain spontaneous erasure of maternal DNA, as mastering this phenomenon would circumvent the painstaking procedure of fish oocyte enucleation. The fate of the somatic and maternal DNA during oocyte activation and first cell cycle was studied using DNA labeling and immunofluorescence in goldfish clones. Maternal DNA was always found as an intact metaphase within the oocyte, and polar body extrusion was minimally affected after oocyte activation. During the first cell cycle, only 40% of the clones displayed symmetric cleavage, and these symmetric clones contributed to 80% of those surviving at hatching. Maternal DNA was often fragmented and located under the cleavage furrow. The somatic DNA was organized either into a normal mitotic spindle or abnormal multinuclear spindle. Scenarios matching the DNA behavior and the embryo fate are proposed.
Collapse
Affiliation(s)
- Charlène Rouillon
- INRA, UR1037 LPGP, Fish Physiology and Genomics, Campus de Beaulieu, F-35000, Rennes, France.
| | - Alexandra Depincé
- INRA, UR1037 LPGP, Fish Physiology and Genomics, Campus de Beaulieu, F-35000, Rennes, France
| | - Nathalie Chênais
- INRA, UR1037 LPGP, Fish Physiology and Genomics, Campus de Beaulieu, F-35000, Rennes, France
| | - Pierre-Yves Le Bail
- INRA, UR1037 LPGP, Fish Physiology and Genomics, Campus de Beaulieu, F-35000, Rennes, France
| | - Catherine Labbé
- INRA, UR1037 LPGP, Fish Physiology and Genomics, Campus de Beaulieu, F-35000, Rennes, France.
| |
Collapse
|
10
|
Shamipour S, Kardos R, Xue SL, Hof B, Hannezo E, Heisenberg CP. Bulk Actin Dynamics Drive Phase Segregation in Zebrafish Oocytes. Cell 2019; 177:1463-1479.e18. [PMID: 31080065 DOI: 10.1016/j.cell.2019.04.030] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 02/07/2019] [Accepted: 04/12/2019] [Indexed: 10/26/2022]
Abstract
Segregation of maternal determinants within the oocyte constitutes the first step in embryo patterning. In zebrafish oocytes, extensive ooplasmic streaming leads to the segregation of ooplasm from yolk granules along the animal-vegetal axis of the oocyte. Here, we show that this process does not rely on cortical actin reorganization, as previously thought, but instead on a cell-cycle-dependent bulk actin polymerization wave traveling from the animal to the vegetal pole of the oocyte. This wave functions in segregation by both pulling ooplasm animally and pushing yolk granules vegetally. Using biophysical experimentation and theory, we show that ooplasm pulling is mediated by bulk actin network flows exerting friction forces on the ooplasm, while yolk granule pushing is achieved by a mechanism closely resembling actin comet formation on yolk granules. Our study defines a novel role of cell-cycle-controlled bulk actin polymerization waves in oocyte polarization via ooplasmic segregation.
Collapse
Affiliation(s)
- Shayan Shamipour
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Roland Kardos
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Shi-Lei Xue
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Björn Hof
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Edouard Hannezo
- Institute of Science and Technology Austria, Klosterneuburg, Austria.
| | | |
Collapse
|
11
|
Fuentes R, Mullins MC, Fernández J. Formation and dynamics of cytoplasmic domains and their genetic regulation during the zebrafish oocyte-to-embryo transition. Mech Dev 2018; 154:259-269. [PMID: 30077623 DOI: 10.1016/j.mod.2018.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 08/01/2018] [Indexed: 12/13/2022]
Abstract
Establishment and movement of cytoplasmic domains is of great importance for the emergence of cell polarity, germline segregation, embryonic axis specification and correct sorting of organelles and macromolecules into different embryonic cells. The zebrafish oocyte, egg and zygote are valuable material for the study of cytoplasmic domains formation and dynamics during development. In this review we examined how cytoplasmic domains form and are relocated during zebrafish early embryogenesis. Distinct cortical cytoplasmic domains (also referred to as ectoplasm domains) form first during early oogenesis by the localization of mRNAs to the vegetal or animal poles of the oocyte or radially throughout the cortex. Cytoplasmic segregation in the late oocyte relocates non-cortical cytoplasm (endoplasm) into the preblastodisc and yolk cell. The preblastodisc is a precursor to the blastodisc, which gives rise to the blastoderm and most the future embryo. After egg activation, the blastodisc enlarges by transport of cytoplasm from the yolk cell to the animal pole, along defined pathways or streamers that include a complex cytoskeletal meshwork and cytoplasmic movement at different speeds. A powerful actin ring, assembled at the margin of the blastodisc, appears to drive the massive streaming of cytoplasm. The fact that the mechanism(s) leading to the formation and relocation of cytoplasmic domains are affected in maternal-effect mutants indicates that these processes are under maternal control. Here, we also discuss why these mutants represent outstanding genetic entry points to investigate the genetic basis of cytoplasmic segregation. Functional studies, combined with the analysis of zebrafish mutants, generated by forward and reverse genetic strategies, are expected to decipher the molecular mechanism(s) by which the maternal factors regulate cytoplasmic movements during early vertebrate development.
Collapse
Affiliation(s)
- Ricardo Fuentes
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mary C Mullins
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Juan Fernández
- Department of Biology, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
12
|
Eno C, Pelegri F. Modulation of F-actin dynamics by maternal Mid1ip1L controls germ plasm aggregation and furrow recruitment in the zebrafish embryo. Development 2018; 145:dev156596. [PMID: 29724756 PMCID: PMC6001372 DOI: 10.1242/dev.156596] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 04/23/2018] [Indexed: 12/11/2022]
Abstract
During the early embryonic cell cycles, zebrafish germ plasm ribonucleoparticles (RNPs) gradually multimerize and become recruited to the forming furrows. RNPs multimerization occurs prior to and during furrow initiation, as forming aggregates move outward through their association with the tips of growing interphase astral microtubules. Germ plasm RNPs are also associated with short cortical F-actin. We show that, in embryos mutant for the cytoskeletal regulator mid1ip1l, germ plasm RNPs fail to become recruited to the furrow, accumulating instead at the periphery of the blastodisc. RNP aggregates are associated with zones of mid1ip1l-dependent cyclical local cortical F-actin network enrichments, as well as contractions at both the cortex and the contractile ring. F-actin inhibition in wild-type embryos mimics the RNP peripheral accumulation defect of mid1ip1l mutants. Our studies suggest that a common mechanism underlies distinct steps of germ plasm RNP segregation. At the cortex, this process attenuates microtubule-dependent outward RNP movement to retain RNPs in the blastodisc cortex and allow their recruitment to the furrows. F-actin network contraction likely also facilitates higher-order germ plasm RNP multimerization.
Collapse
Affiliation(s)
- Celeste Eno
- Laboratory of Genetics, University of Wisconsin, Madison, WI 53706, USA
| | - Francisco Pelegri
- Laboratory of Genetics, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
13
|
Stringari C, Abdeladim L, Malkinson G, Mahou P, Solinas X, Lamarre I, Brizion S, Galey JB, Supatto W, Legouis R, Pena AM, Beaurepaire E. Multicolor two-photon imaging of endogenous fluorophores in living tissues by wavelength mixing. Sci Rep 2017; 7:3792. [PMID: 28630487 PMCID: PMC5476668 DOI: 10.1038/s41598-017-03359-8] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 04/27/2017] [Indexed: 12/26/2022] Open
Abstract
Two-photon imaging of endogenous fluorescence can provide physiological and metabolic information from intact tissues. However, simultaneous imaging of multiple intrinsic fluorophores, such as nicotinamide adenine dinucleotide(phosphate) (NAD(P)H), flavin adenine dinucleotide (FAD) and retinoids in living systems is generally hampered by sequential multi-wavelength excitation resulting in motion artifacts. Here, we report on efficient and simultaneous multicolor two-photon excitation of endogenous fluorophores with absorption spectra spanning the 750-1040 nm range, using wavelength mixing. By using two synchronized pulse trains at 760 and 1041 nm, an additional equivalent two-photon excitation wavelength at 879 nm is generated, and achieves simultaneous excitation of blue, green and red intrinsic fluorophores. This method permits an efficient simultaneous imaging of the metabolic coenzymes NADH and FAD to be implemented with perfect image co-registration, overcoming the difficulties associated with differences in absorption spectra and disparity in concentration. We demonstrate ratiometric redox imaging free of motion artifacts and simultaneous two-photon fluorescence lifetime imaging (FLIM) of NADH and FAD in living tissues. The lifetime gradients of NADH and FAD associated with different cellular metabolic and differentiation states in reconstructed human skin and in the germline of live C. Elegans are thus simultaneously measured. Finally, we present multicolor imaging of endogenous fluorophores and second harmonic generation (SHG) signals during the early stages of Zebrafish embryo development, evidencing fluorescence spectral changes associated with development.
Collapse
Affiliation(s)
- Chiara Stringari
- Laboratory for Optics and Biosciences, Ecole polytechnique, CNRS, INSERM, Université Paris-Saclay, 91128, Palaiseau cedex, France.
| | - Lamiae Abdeladim
- Laboratory for Optics and Biosciences, Ecole polytechnique, CNRS, INSERM, Université Paris-Saclay, 91128, Palaiseau cedex, France
| | - Guy Malkinson
- Laboratory for Optics and Biosciences, Ecole polytechnique, CNRS, INSERM, Université Paris-Saclay, 91128, Palaiseau cedex, France
| | - Pierre Mahou
- Laboratory for Optics and Biosciences, Ecole polytechnique, CNRS, INSERM, Université Paris-Saclay, 91128, Palaiseau cedex, France
| | - Xavier Solinas
- Laboratory for Optics and Biosciences, Ecole polytechnique, CNRS, INSERM, Université Paris-Saclay, 91128, Palaiseau cedex, France
| | - Isabelle Lamarre
- Laboratory for Optics and Biosciences, Ecole polytechnique, CNRS, INSERM, Université Paris-Saclay, 91128, Palaiseau cedex, France
| | | | | | - Willy Supatto
- Laboratory for Optics and Biosciences, Ecole polytechnique, CNRS, INSERM, Université Paris-Saclay, 91128, Palaiseau cedex, France
| | - Renaud Legouis
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette, France
| | - Ana-Maria Pena
- L'Oréal Research and Innovation, 93600, Aulnay sous Bois, France
| | - Emmanuel Beaurepaire
- Laboratory for Optics and Biosciences, Ecole polytechnique, CNRS, INSERM, Université Paris-Saclay, 91128, Palaiseau cedex, France.
| |
Collapse
|
14
|
Pereiro L, Loosli F, Fernández J, Härtel S, Wittbrodt J, Concha ML. Gastrulation in an annual killifish: Molecular and cellular events during germ layer formation in Austrolebias. Dev Dyn 2017; 246:812-826. [DOI: 10.1002/dvdy.24496] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 01/27/2017] [Accepted: 01/28/2017] [Indexed: 12/18/2022] Open
Affiliation(s)
- Luisa Pereiro
- Anatomy and Developmental Biology; Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile; Santiago Chile
| | - Felix Loosli
- Karlsruhe Institute of Technology; Institute of Toxicology and Genetics; Karlsruhe Germany
| | - Juan Fernández
- Department of Biology; Faculty of Sciences, Universidad de Chile; Santiago Chile
| | - Steffen Härtel
- Anatomy and Developmental Biology; Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile; Santiago Chile
- Biomedical Neuroscience Institute; Santiago Chile
- National Center for Health Information Systems CENS; Santiago Chile
| | - Joachim Wittbrodt
- Center for Organismal Studies; Heidelberg University; Heidelberg Germany
| | - Miguel L. Concha
- Anatomy and Developmental Biology; Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile; Santiago Chile
- Biomedical Neuroscience Institute; Santiago Chile
- Center for Geroscience, Brain Health and Metabolism; Santiago Chile
| |
Collapse
|
15
|
Welch E, Pelegri F. Cortical depth and differential transport of vegetally localized dorsal and germ line determinants in the zebrafish embryo. BIOARCHITECTURE 2016; 5:13-26. [PMID: 26528729 PMCID: PMC4832442 DOI: 10.1080/19490992.2015.1080891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In zebrafish embryos, factors involved in both axis induction and primordial germ cell (PGC) development are localized to the vegetal pole of the egg. However, upon egg activation axis induction factors experience an asymmetric off-center shift whereas PGC factors undergo symmetric animally-directed movement. We examined the spatial relationship between the proposed dorsal genes wnt8a and grip2a and the PGC factor dazl at the vegetal cortex. We find that RNAs for these genes localize to different cortical depths, with the RNA for the PGC factor dazl at a deeper cortical level than those for axis-inducing factors. In addition, and in contrast to the role of microtubules in the long-range transport of dorsal determinants, we find that germ line determinant transport depends on the actin cytoskeleton. Our results support a model in which vegetal cortex differential RNA transport behavior is facilitated by RNA localization along cortical depth and differential coupling to cortical transport.
Collapse
Affiliation(s)
- Elaine Welch
- a Laboratory of Genetics; University of Wisconsin - Madison ; Madison , WI USA
| | - Francisco Pelegri
- a Laboratory of Genetics; University of Wisconsin - Madison ; Madison , WI USA
| |
Collapse
|
16
|
Eno C, Solanki B, Pelegri F. aura (mid1ip1l) regulates the cytoskeleton at the zebrafish egg-to-embryo transition. Development 2016; 143:1585-99. [PMID: 26965374 PMCID: PMC4986165 DOI: 10.1242/dev.130591] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 03/01/2016] [Indexed: 12/11/2022]
Abstract
Embryos from females homozygous for a recessive maternal-effect mutation in the gene aura exhibit defects including reduced cortical integrity, defective cortical granule (CG) release upon egg activation, failure to complete cytokinesis, and abnormal cell wound healing. We show that the cytokinesis defects are associated with aberrant cytoskeletal reorganization during furrow maturation, including abnormal F-actin enrichment and microtubule reorganization. Cortical F-actin prior to furrow formation fails to exhibit a normal transition into F-actin-rich arcs, and drug inhibition is consistent with aura function promoting F-actin polymerization and/or stabilization. In mutants, components of exocytic and endocytic vesicles, such as Vamp2, Clathrin and Dynamin, are sequestered in unreleased CGs, indicating a need for CG recycling in the normal redistribution of these factors. However, the exocytic targeting factor Rab11 is recruited to the furrow plane normally at the tip of bundling microtubules, suggesting an alternative anchoring mechanism independent of membrane recycling. A positional cloning approach indicates that the mutation in aura is associated with a truncation of Mid1 interacting protein 1 like (Mid1ip1l), previously identified as an interactor of the X-linked Opitz G/BBB syndrome gene product Mid1. A Cas9/CRISPR-induced mutant allele in mid1ip1l fails to complement the originally isolated aura maternal-effect mutation, confirming gene assignment. Mid1ip1l protein localizes to cortical F-actin aggregates, consistent with a direct role in cytoskeletal regulation. Our studies indicate that maternally provided aura (mid1ip1l) acts during the reorganization of the cytoskeleton at the egg-to-embryo transition and highlight the importance of cytoskeletal dynamics and membrane recycling during this developmental period.
Collapse
Affiliation(s)
- Celeste Eno
- Laboratory of Genetics, University of Wisconsin - Madison, 425-G Henry Mall, Room 2455 Genetics, Madison, WI 53706, USA
| | - Bharti Solanki
- Laboratory of Genetics, University of Wisconsin - Madison, 425-G Henry Mall, Room 2455 Genetics, Madison, WI 53706, USA
| | - Francisco Pelegri
- Laboratory of Genetics, University of Wisconsin - Madison, 425-G Henry Mall, Room 2455 Genetics, Madison, WI 53706, USA
| |
Collapse
|
17
|
Li-Villarreal N, Forbes MM, Loza AJ, Chen J, Ma T, Helde K, Moens CB, Shin J, Sawada A, Hindes AE, Dubrulle J, Schier AF, Longmore GD, Marlow FL, Solnica-Krezel L. Dachsous1b cadherin regulates actin and microtubule cytoskeleton during early zebrafish embryogenesis. Development 2015; 142:2704-18. [PMID: 26160902 DOI: 10.1242/dev.119800] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 06/25/2015] [Indexed: 01/04/2023]
Abstract
Dachsous (Dchs), an atypical cadherin, is an evolutionarily conserved regulator of planar cell polarity, tissue size and cell adhesion. In humans, DCHS1 mutations cause pleiotropic Van Maldergem syndrome. Here, we report that mutations in zebrafish dchs1b and dchs2 disrupt several aspects of embryogenesis, including gastrulation. Unexpectedly, maternal zygotic (MZ) dchs1b mutants show defects in the earliest developmental stage, egg activation, including abnormal cortical granule exocytosis (CGE), cytoplasmic segregation, cleavages and maternal mRNA translocation, in transcriptionally quiescent embryos. Later, MZdchs1b mutants exhibit altered dorsal organizer and mesendodermal gene expression, due to impaired dorsal determinant transport and Nodal signaling. Mechanistically, MZdchs1b phenotypes can be explained in part by defective actin or microtubule networks, which appear bundled in mutants. Accordingly, disruption of actin cytoskeleton in wild-type embryos phenocopied MZdchs1b mutant defects in cytoplasmic segregation and CGE, whereas interfering with microtubules in wild-type embryos impaired dorsal organizer and mesodermal gene expression without perceptible earlier phenotypes. Moreover, the bundled microtubule phenotype was partially rescued by expressing either full-length Dchs1b or its intracellular domain, suggesting that Dchs1b affects microtubules and some developmental processes independent of its known ligand Fat. Our results indicate novel roles for vertebrate Dchs in actin and microtubule cytoskeleton regulation in the unanticipated context of the single-celled embryo.
Collapse
Affiliation(s)
- Nanbing Li-Villarreal
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Meredyth M Forbes
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY 10461, USA
| | - Andrew J Loza
- Department of Internal Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Jiakun Chen
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Taylur Ma
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Kathryn Helde
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Cecilia B Moens
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Jimann Shin
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Atsushi Sawada
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Anna E Hindes
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Julien Dubrulle
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Alexander F Schier
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Gregory D Longmore
- Department of Internal Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Florence L Marlow
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY 10461, USA Department of Neuroscience, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY 10461, USA
| | - Lilianna Solnica-Krezel
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
18
|
Antileo E, Garri C, Tapia V, Muñoz JP, Chiong M, Nualart F, Lavandero S, Fernández J, Núñez MT. Endocytic pathway of exogenous iron-loaded ferritin in intestinal epithelial (Caco-2) cells. Am J Physiol Gastrointest Liver Physiol 2013; 304:G655-61. [PMID: 23370673 DOI: 10.1152/ajpgi.00472.2012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Ferritin, a food constituent of animal and vegetal origin, is a source of dietary iron. Its hollow central cavity has the capacity to store up to 4,500 atoms of iron, so its potential as an iron donor is advantageous to heme iron, present in animal meats and inorganic iron of mineral or vegetal origin. In intestinal cells, ferritin internalization by endocytosis results in the release of its iron into the cytosolic labile iron pool. The aim of this study was to characterize the endocytic pathway of exogenous ferritin absorbed from the apical membrane of intestinal epithelium Caco-2 cells, using both transmission electron microscopy and fluorescence confocal microscopy. Confocal microscopy revealed that endocytosis of exogenous AlexaFluor 488-labeled ferritin was initiated by its engulfment by clathrin-coated pits and internalization into early endosomes, as determined by codistribution with clathrin and early endosome antigen 1 (EEA1). AlexaFluor 488-labeled ferritin also codistributed with the autophagosome marker microtubule-associated protein 1 light chain 3 (LC3) and the lysosome marker lysosomal-associated membrane protein 2 (LAMP2). Transmission electron microscopy revealed that exogenously added ferritin was captured in plasmalemmal pits, double-membrane compartments, and multivesicular bodies considered as autophagosomes and lysosomes. Biochemical experiments revealed that the lysosome inhibitor chloroquine and the autophagosome inhibitor 3-methyladenine (3-MA) inhibited degradation of exogenously added (131)I-labeled ferritin. This evidence is consistent with a model in which exogenous ferritin is internalized from the apical membrane through clathrin-coated pits, and then follows a degradation pathway consisting of the passage through early endosomes, autophagosomes, and autolysosomes.
Collapse
Affiliation(s)
- Elmer Antileo
- Facultad de Ciencias, Departamento de Biología, Universidad de Chile, Santiago, Chile
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Fernández J, Fuentes R. Fixation/permeabilization: new alternative procedure for immunofluorescence and mRNA in situ hybridization of vertebrate and invertebrate embryos. Dev Dyn 2013; 242:503-17. [PMID: 23389988 DOI: 10.1002/dvdy.23943] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2013] [Indexed: 11/10/2022] Open
Abstract
A new procedure is described to visualize the spatial pattern of expression of proteins and mRNAs in cryosections or whole-mounted leech, Drosophila, zebrafish, and chick embryos. Our principal contribution is in the use of a nonconventional fixation/permeabilization procedure based on the use of formaldehyde or paraformaldehyde combined with a short C-chain carboxylic acid. Detergents, methanol, and proteinases were omitted. Hybridization procedures were modified from those of routinely used protocols developed for the same embryos. Results showed that cytoskeletal and other cytoplasmic proteins, as well as different mRNAs, were clearly visualized in the expected regions of the embryos. Our procedure has several advantages over currently used protocols: is simpler, produces better general preservation of cells, yields reliable results, and can be used for embryos of different taxa at different developmental stages. It is hypothesized that short C-chain aliphatic carboxylic acids modulate the cross-linking effect of aldehyde fixatives on cell proteins.
Collapse
Affiliation(s)
- Juan Fernández
- Department of Biology, Faculty of Sciences, University of Chile, Santiago, Chile.
| | | |
Collapse
|
20
|
Salinas-Saavedra M, Vargas AO. Cortical cytasters: a highly conserved developmental trait of Bilateria with similarities to Ctenophora. EvoDevo 2011; 2:23. [PMID: 22133482 PMCID: PMC3248832 DOI: 10.1186/2041-9139-2-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 12/01/2011] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Cytasters (cytoplasmic asters) are centriole-based nucleation centers of microtubule polymerization that are observable in large numbers in the cortical cytoplasm of the egg and zygote of bilaterian organisms. In both protostome and deuterostome taxa, cytasters have been described to develop during oogenesis from vesicles of nuclear membrane that move to the cortical cytoplasm. They become associated with several cytoplasmic components, and participate in the reorganization of cortical cytoplasm after fertilization, patterning the antero-posterior and dorso-ventral body axes. PRESENTATION OF THE HYPOTHESIS The specific resemblances in the development of cytasters in both protostome and deuterostome taxa suggest that an independent evolutionary origin is unlikely. An assessment of published data confirms that cytasters are present in several protostome and deuterostome phyla, but are absent in the non-bilaterian phyla Cnidaria and Ctenophora. We hypothesize that cytasters evolved in the lineage leading to Bilateria and were already present in the most recent common ancestor shared by protostomes and deuterostomes. Thus, cytasters would be an ancient and highly conserved trait that is homologous across the different bilaterian phyla. The alternative possibility is homoplasy, that is cytasters have evolved independently in different lineages of Bilateria. TESTING THE HYPOTHESIS So far, available published information shows that appropriate observations have been made in eight different bilaterian phyla. All of them present cytasters. This is consistent with the hypothesis of homology and conservation. However, there are several important groups for which there are no currently available data. The hypothesis of homology predicts that cytasters should be present in these groups. Increasing the taxonomic sample using modern techniques uniformly will test for evolutionary patterns supporting homology, homoplasy, or secondary loss of cytasters. IMPLICATIONS OF THE HYPOTHESIS If cytasters are homologous and highly conserved across bilateria, their potential developmental and evolutionary relevance has been underestimated. The deep evolutionary origin of cytasters also becomes a legitimate topic of research. In Ctenophora, polyspermic fertilization occurs, with numerous sperm entering the egg. The centrosomes of sperm pronuclei associate with cytoplasmic components of the egg and reorganize the cortical cytoplasm, defining the oral-aboral axis. These resemblances lead us to suggest the possibility of a polyspermic ancestor in the lineage leading to Bilateria.
Collapse
Affiliation(s)
- Miguel Salinas-Saavedra
- Laboratory of Ontogeny and Phylogeny, Department of Biology, Faculty of Science, University of Chile. Las Palmeras, Ñuñoa, Casilla 653, Santiago, Chile
| | - Alexander O Vargas
- Laboratory of Ontogeny and Phylogeny, Department of Biology, Faculty of Science, University of Chile. Las Palmeras, Ñuñoa, Casilla 653, Santiago, Chile
| |
Collapse
|
21
|
Fuentes R, Fernández J. Ooplasmic segregation in the zebrafish zygote and early embryo: Pattern of ooplasmic movements and transport pathways. Dev Dyn 2010; 239:2172-89. [DOI: 10.1002/dvdy.22349] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
22
|
Bail PYL, Depince A, Chenais N, Mahe S, Maisse G, Labbe C. Optimization of somatic cell injection in the perspective of nuclear transfer in goldfish. BMC DEVELOPMENTAL BIOLOGY 2010; 10:64. [PMID: 20529309 PMCID: PMC2889862 DOI: 10.1186/1471-213x-10-64] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 06/08/2010] [Indexed: 12/31/2022]
Abstract
Background Nuclear transfer has the potential to become one strategy for fish genetic resources management, by allowing fish reconstruction from cryopreserved somatic cells. Survival rates after nuclear transfer are still low however. The part played by unsuitable handling conditions is often questioned, but the different steps in the procedure are difficult to address separately. In this work led on goldfish (Carassius auratus), the step of somatic cells injection was explored. Non-enucleated metaphase II oocytes were used as a template to explore the toxicity of the injection medium, to estimate the best location where the cell should be injected, and to assess the delay necessary between cell injection and oocyte activation. Results Trout coelomic fluid was the most suitable medium to maintain freshly spawned oocytes at the metaphase II stage during oocyte manipulation. Oocytes were then injected with several media to test their toxicity on embryo development after fertilization. Trout coelomic fluid was the least toxic medium after injection, and the smallest injected volume (10 pL) allowed the same hatching rates as the non injected controls (84.8% ± 23). In somatic cell transfer experiments using non enucleated metaphase II oocytes as recipient, cell plasma membrane was ruptured within one minute after injection. Cell injection at the top of the animal pole in the oocyte allowed higher development rates than cell injection deeper within the oocyte (respectively 59% and 23% at mid-blastula stage). Embryo development rates were also higher when oocyte activation was delayed for 30 min after cell injection than when activation was induced without delay (respectively 72% and 48% at mid-blastula stage). Conclusions The best ability of goldfish oocytes to sustain embryo development was obtained when the carrier medium was trout coelomic fluid, when the cell was injected close to the animal pole, and when oocyte activation was induced 30 min after somatic cell injection. Although the experiments were not designed to produce characterized clones, application of these parameters to somatic cell nuclear transfer experiments in enucleated metaphase II oocytes is expected to improve the quality of the reconstructed embryos.
Collapse
Affiliation(s)
- Pierre-Yves Le Bail
- INRA, Cryopreservation and Regeneration of Fish, UR1037 SCRIBE, Campus de Beaulieu, F-35 000 Rennes, France
| | | | | | | | | | | |
Collapse
|
23
|
Lindeman RE, Pelegri F. Vertebrate maternal-effect genes: Insights into fertilization, early cleavage divisions, and germ cell determinant localization from studies in the zebrafish. Mol Reprod Dev 2010; 77:299-313. [PMID: 19908256 PMCID: PMC4276564 DOI: 10.1002/mrd.21128] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In the earliest stages of animal development prior to the commencement of zygotic transcription, all critical cellular processes are carried out by maternally-provided molecular products accumulated in the egg during oogenesis. Disruption of these maternal products can lead to defective embryogenesis. In this review, we focus on maternal genes with roles in the fundamental processes of fertilization, cell division, centrosome regulation, and germ cell development with emphasis on findings from the zebrafish, as this is a unique and valuable model system for vertebrate reproduction.
Collapse
Affiliation(s)
- Robin E. Lindeman
- Laboratory of Genetics, University of Wisconsin – Madison, Madison, Wisconsin
| | - Francisco Pelegri
- Laboratory of Genetics, University of Wisconsin – Madison, Madison, Wisconsin
| |
Collapse
|
24
|
|
25
|
McNally KL, Martin JL, Ellefson M, McNally FJ. Kinesin-dependent transport results in polarized migration of the nucleus in oocytes and inward movement of yolk granules in meiotic embryos. Dev Biol 2009; 339:126-40. [PMID: 20036653 DOI: 10.1016/j.ydbio.2009.12.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Revised: 12/11/2009] [Accepted: 12/16/2009] [Indexed: 01/28/2023]
Abstract
During female meiosis, meiotic spindles are positioned at the oocyte cortex to allow expulsion of chromosomes into polar bodies. In C. elegans, kinesin-dependent translocation of the entire spindle to the cortex precedes dynein-dependent rotation of one spindle pole toward the cortex. To elucidate the role of kinesin-1 in spindle translocation, we examined the localization of kinesin subunits in meiotic embryos. Surprisingly, kinesin-1 was not associated with the spindle and instead was restricted to the cytoplasm in the middle of the embryo. Yolk granules moved on linear tracks, in a kinesin-dependent manner, away from the cortex, resulting in their concentration in the middle of the embryo where the kinesin was concentrated. These results suggest that cytoplasmic microtubules might be arranged with plus ends extending inward, away from the cortex. This microtubule arrangement would not be consistent with direct transport of the meiotic spindle toward the cortex by kinesin-1. In maturing oocytes, the nucleus underwent kinesin-dependent migration to the future site of spindle attachment at the anterior cortex. Thus the spindle translocation defect observed in kinesin-1 mutants may be a result of failed nuclear migration, which places the spindle too far from the cortex for the spindle translocation mechanism to function.
Collapse
Affiliation(s)
- Karen L McNally
- Section of Molecular and Cellular Biology, 149 Briggs Hall, University of California, Davis, Davis, CA 95616, USA
| | | | | | | |
Collapse
|
26
|
Mei W, Lee KW, Marlow FL, Miller AL, Mullins MC. hnRNP I is required to generate the Ca2+ signal that causes egg activation in zebrafish. Development 2009; 136:3007-17. [PMID: 19666827 DOI: 10.1242/dev.037879] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Egg activation is an important cellular event required to prevent polyspermy and initiate development of the zygote. Egg activation in all animals examined is elicited by a rise in free Ca(2+) in the egg cytosol at fertilization. This Ca(2+) rise is crucial for all subsequent egg activation steps, such as cortical granule exocytosis, which modifies the vitelline membrane to prevent polyspermy. The cytosolic Ca(2+) rise is primarily initiated by inositol 1,4,5-trisphosphate (IP(3))-mediated Ca(2+) release from the endoplasmic reticulum. The genes involved in regulating the IP(3)-mediated Ca(2+) release during egg activation remain largely unknown. Here we report on a zebrafish maternal-effect mutant, brom bones, which is defective in the cytosolic Ca(2+) rise and subsequent egg activation events, including cortical granule exocytosis and cytoplasmic segregation. We show that the egg activation defects in brom bones can be rescued by providing Ca(2+) or the Ca(2+)-release messenger IP(3), suggesting that brom bones is a regulator of IP(3)-mediated Ca(2+) release at fertilization. Interestingly, brom bones mutant embryos also display defects in dorsoventral axis formation accompanied by a disorganized cortical microtubule network, which is known to be crucial for dorsal axis formation. We provide evidence that the impaired microtubule organization is associated with non-exocytosed cortical granules from the earlier egg activation defect. Positional cloning of the brom bones gene reveals that a premature stop codon in the gene encoding hnRNP I (referred to here as hnrnp I) underlies the abnormalities. Our studies therefore reveal an important new role of hnrnp I in regulating the fundamental process of IP(3)-mediated Ca(2+) release at egg activation.
Collapse
Affiliation(s)
- Wenyan Mei
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
27
|
Lessman CA. Oocyte maturation: converting the zebrafish oocyte to the fertilizable egg. Gen Comp Endocrinol 2009; 161:53-7. [PMID: 19027744 DOI: 10.1016/j.ygcen.2008.11.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Revised: 10/17/2008] [Accepted: 11/01/2008] [Indexed: 01/02/2023]
Abstract
The process of oogenesis culminates in steroid-induced oocyte maturation to produce the fertilizable egg. A quintessential biological entity, the egg is central to the production of new individuals. The result of egg fertilization by a sperm cell is the production of the mother of all stem cells (i.e. the zygote). Furthermore, the egg cytoplasm is the only one known to support reprogramming a transplanted nucleus to give rise to an individual (i.e. animal cloning). Zebrafish oocyte maturation is a complex event encompassing a number of cellular changes including germinal vesicle migration (GVM) and dissolution or breakdown (GVD), ooplasmic clearing (OC) with correlated yolk protein changes (YP), development of osmoregulation (OR) in fresh water, the formation of the future embryonic pole, the blastodisc (BF) and activatibility (AC) or cortical maturation. In zebrafish, and many other teleosts, 17alpha, 20beta-dihydroxy-4-pregnen-3-one (17alpha, 20beta-DP) has been shown to be the normal inducer of oocyte maturation. A 17alpha, 20beta-DP membrane-resident receptor mediates oocyte maturation via non-genomic mechanisms that are beginning to be understood. This paper will highlight some of the cellular markers resulting from the signaling initiated by 17alpha, 20beta-DP. By describing these markers, it is hoped that workers in the field will have additional tools to help further elucidate the signaling events of oocyte maturation.
Collapse
Affiliation(s)
- Charles A Lessman
- Department of Biology, The University of Memphis, 3774 Walker Ave., Room 223 Life Science Bldg., Memphis, TN 38152, USA.
| |
Collapse
|
28
|
Hogan BM, Verkade H, Lieschke GJ, Heath JK. Manipulation of gene expression during zebrafish embryonic development using transient approaches. Methods Mol Biol 2008; 469:273-300. [PMID: 19109716 DOI: 10.1007/978-1-60327-469-2_19] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The rapid embryonic development and high fecundity of zebrafish contribute to the great advantages of this model for the study of developmental genetics. Transient disruption of the normal function of a gene during development can be achieved by microinjecting mRNA, DNA or short chemically stabilized anti-sense oligomers, called morpholinos (MOs), into early zebrafish embryos. The ensuing develop ment of the microinjected embryos is observed over the following hours and days to analyze the impact of the microinjected products on embryogenesis. Compared to stable reverse genetic approaches (sta ble transgenesis, targeted mutants recovered by TILLING), these transient reverse genetic approaches are vastly quicker, relatively affordable, and require little animal facility space. Common applications of these methodologies allow analysis of gain-of-function (gene overexpression or dominant active), loss-of-function (gene knock down or dominant negative), mosaic analysis, lineage-restricted studies and cell tracing experiments. The use of these transient approaches for the manipulation of gene expression has improved our understanding of many key developmental pathways including both the Wnt/beta-catenin and Wnt/PCP pathways, as covered in some detail in Chapter 17 of this book. This chapter describes the most common and versatile approaches: gain of function and loss of function using DNA and mRNA injections and loss of function using MOs.
Collapse
Affiliation(s)
- Benjamin M Hogan
- Hubrecht Institute for Developmental Biology and Stem Cell Research, Uppsalalaan 8, 3584, CT Utrecht, The Netherlands
| | | | | | | |
Collapse
|