1
|
Rekad Z, Izzi V, Lamba R, Ciais D, Van Obberghen-Schilling E. The Alternative Matrisome: alternative splicing of ECM proteins in development, homeostasis and tumor progression. Matrix Biol 2022; 111:26-52. [DOI: 10.1016/j.matbio.2022.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/19/2022] [Accepted: 05/04/2022] [Indexed: 12/14/2022]
|
2
|
Harikrishnan K, Joshi O, Madangirikar S, Balasubramanian N. Cell Derived Matrix Fibulin-1 Associates With Epidermal Growth Factor Receptor to Inhibit Its Activation, Localization and Function in Lung Cancer Calu-1 Cells. Front Cell Dev Biol 2020; 8:522. [PMID: 32719793 PMCID: PMC7348071 DOI: 10.3389/fcell.2020.00522] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/02/2020] [Indexed: 12/11/2022] Open
Abstract
Epidermal Growth Factor Receptor (EGFR) is a known promoter of tumor progression and is overexpressed in lung cancers. Growth factor receptors (including EGFR) are known to interact with extracellular matrix (ECM) proteins, which regulate their activation and function. Fibulin-1 (FBLN1) is a major component of the ECM in lung tissue, and its levels are known to be downregulated in non-small cell lung cancers (NSCLC). To test the possible role FBLN1 isoforms could have in regulating EGFR signaling and function in lung cancer, we performed siRNA mediated knockdown of FBLN1C and FBLN1D in NSCLC Calu-1 cells. Their loss significantly increased basal (with serum) and EGF (Epidermal Growth Factor) mediated EGFR activation without affecting net EGFR levels. Overexpression of FBLN1C and FBLN1D also inhibits EGFR activation confirming their regulatory crosstalk. Loss of FBLN1C and FBLN1D promotes EGFR-dependent cell migration, inhibited upon Erlotinib treatment. Mechanistically, both FBLN1 isoforms interact with EGFR, their association not dependent on its activation. Notably, cell-derived matrix (CDM) enriched FBLN1 binds EGFR. Calu-1 cells plated on CDM derived from FBLN1C and FBLN1D knockdown cells show a significant increase in EGF mediated EGFR activation. This promotes cell adhesion and spreading with active EGFR enriched at membrane ruffles. Both adhesion and spreading on CDMs is significantly reduced by Erlotinib treatment. Together, these findings show FBLN1C/1D, as part of the ECM, can bind and regulate EGFR activation and function in NSCLC Calu-1 cells. They further highlight the role tumor ECM composition could have in influencing EGFR dependent lung cancers.
Collapse
Affiliation(s)
| | - Omkar Joshi
- Indian Institute of Science Education and Research, Pune, India
| | | | | |
Collapse
|
3
|
LIN ZHONGWEI, WANG ZHUO, LI GUOBIAO, LI BOWEI, XIE WENLIN, XIANG DINGCHENG. Fibulin-3 may improve vascular health through inhibition of MMP-2/9 and oxidative stress in spontaneously hypertensive rats. Mol Med Rep 2016; 13:3805-12. [PMID: 27035767 PMCID: PMC4838143 DOI: 10.3892/mmr.2016.5036] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 03/01/2016] [Indexed: 11/11/2022] Open
Abstract
Fibulin-3 has been suggested to function in the remodeling of the extracellular matrix, however its role remains unclear in hypertensive vascular remodeling. In the current study, 10 Wistar-Kyoto (WKY) rats (control group) and 30 spontaneously hypertensive rats (SHRs) were used. SHRs were randomized into three groups: The placebo group, intravenous (I.V.) physiological saline; the FBLN‑1 group, low‑dose fibulin‑3 protein (I.V.; 120 ng/kg); and the FBLN-2 group, high-dose fibulin-3 protein (I.V.; 240 ng/kg). Histological analysis was used to analyze vascular remodeling. The expression of fibulin‑3, matrix metalloproteinase (MMP)‑2, MMP‑9 and tissue inhibitor of metalloproteinase (TIMP)‑3 were detected by immunohistochemistry, western blotting and reverse transcription‑quantitative polymerase chain reaction. Oxidative stress was detected by dihydroethidium staining. The systolic blood pressure (SBP) of SHRs was observed to be significantly greater than that of WKY rats (P<0.05). SBP in the FBLN‑2 group was significantly reduced compared with the placebo group (182±12 mmHg vs. 224±14 mmHg; P<0.05). The thoracic aortic wall thickness in the SHR groups (placebo group, FBLN‑1 group and FBLN‑2 group) was observed to tbe significantly thicker than in the control group (P<0.01). The wall thickness of the FBLN‑2 group was significantly greater than that of the placebo and FBLN-1 groups (124.2±11.8 µm vs. 106.9±9.5 µm and 96.8±10.2 µm; P<0.05). The wall‑to‑lumen ratios of the placebo, FBLN‑1 and FBLN-2 groups were significantly greater than that of the control group (P<0.05). In addition, the expression levels of fibulin‑3 and MMP‑2/9 at protein and mRNA levels were significantly increased in the thoracic aorta of the placebo group compared with the control group (P<0.05). The levels of MMP‑2/9 were significantly reduced in the FBLN‑2 group compared with the placebo group (P<0.05). Levels of TIMP‑3 however, exhibited no significant differences in the four groups (P>0.05). Reactive oxygen species (ROS) were increased in the placebo group vs. the control group. Fibulin‑3 was able to alleviate the levels of ROS in the FBLN groups. It is suggested that fibulin‑3 may act as a growth factor in the arteries. In addition, the results indicated that fibulin‑3 may reduce the levels of MMP‑2 and ‑9 and oxidative stress in hypertensive vascular remodeling. Upregulating fibulin-3 may be beneficial for improving vascular health and offsetting certain cardiovascular risk factors of hypertension.
Collapse
Affiliation(s)
- ZHONGWEI LIN
- Department of Cardiology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510000, P.R. China
- Correspondence to: Dr Zhongwei Lin, Department of Cardiology, The First Affiliated Hospital of Guangdong Pharmaceutical University, 19 Nonglinxia Road, Guangzhou, Guangdong 510000, P.R. China, E-mail:
| | - ZHUO WANG
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - GUOBIAO LI
- Department of Cardiology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510000, P.R. China
| | - BOWEI LI
- Department of Cardiology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510000, P.R. China
| | - WENLIN XIE
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - DINGCHENG XIANG
- Department of Cardiology, Guangzhou General Hospital of Guangzhou Military Command, Southern Medical University, Guangzhou, Guangdong 510110, P.R. China
| |
Collapse
|
4
|
Basement Membranes in the Worm: A Dynamic Scaffolding that Instructs Cellular Behaviors and Shapes Tissues. CURRENT TOPICS IN MEMBRANES 2015; 76:337-71. [PMID: 26610919 DOI: 10.1016/bs.ctm.2015.08.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The nematode worm Caenorhabditis elegans has all the major basement membrane proteins found in vertebrates, usually with a smaller gene family encoding each component. With its powerful forward genetics, optical clarity, simple tissue organization, and the capability to functionally tag most basement membrane components with fluorescent proteins, C. elegans has facilitated novel insights into the assembly and function of basement membranes. Although basement membranes are generally thought of as static structures, studies in C. elegans have revealed their active properties and essential functions in tissue formation and maintenance. Here, we review discoveries from C. elegans development that highlight dynamic aspects of basement membrane assembly, function, and regulation during organ growth, tissue polarity, cell migration, cell invasion, and tissue attachment. These studies have helped transform our view of basement membranes from static support structures to dynamic scaffoldings that play broad roles in regulating tissue organization and cellular behavior that are essential for development and have important implications in human diseases.
Collapse
|
5
|
Calumenin and fibulin-1 on tumor metastasis: Implications for pharmacology. Pharmacol Res 2015; 99:11-5. [PMID: 25976680 DOI: 10.1016/j.phrs.2015.05.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 05/01/2015] [Accepted: 05/01/2015] [Indexed: 01/08/2023]
Abstract
Tumor metastasis is a key cause of cancer mortality, and inhibiting migration of cancer cells is one of the major directions of anti-metastatic drug development. Calumenin and fibulin-1 are two extracellular proteins that synergistically inhibit cell migration and tumor metastasis, and could potentially be served as targets for pharmacological research of anti-metastatic drugs. This review briefly introduces the multi-function of these two proteins, and discusses the mechanism of how they regulate cell migration and tumor metastasis.
Collapse
|
6
|
Abstract
The sense of touch informs us of the physical properties of our surroundings and is a critical aspect of communication. Before touches are perceived, mechanical signals are transmitted quickly and reliably from the skin's surface to mechano-electrical transduction channels embedded within specialized sensory neurons. We are just beginning to understand how soft tissues participate in force transmission and how they are deformed. Here, we review empirical and theoretical studies of single molecules and molecular ensembles thought to be involved in mechanotransmission and apply the concepts emerging from this work to the sense of touch. We focus on the nematode Caenorhabditis elegans as a well-studied model for touch sensation in which mechanics can be studied on the molecular, cellular, and systems level. Finally, we conclude that force transmission is an emergent property of macromolecular cellular structures that mutually stabilize one another.
Collapse
Affiliation(s)
- Michael Krieg
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Alex Dunn
- Department of Chemical Engineering, Stanford University School of Engineering, Stanford, CA, USA
| | - Miriam B. Goodman
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
7
|
Jensen LT, Møller TH, Larsen SA, Jakobsen H, Olsen A. A new role for laminins as modulators of protein toxicity in Caenorhabditis elegans. Aging Cell 2012; 11:82-92. [PMID: 22051349 DOI: 10.1111/j.1474-9726.2011.00767.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Protein misfolding is a common theme in aging and several age-related diseases such as Alzheimer's and Parkinson's disease. The processes involved in the development of these diseases are many and complex. Here, we show that components of the basement membrane (BM), particularly laminin, affect protein integrity of the muscle cells they support. We knocked down gene expression of epi-1, a laminin α-chain, and found that this resulted in increased proteotoxicity in different Caenorhabditis elegans transgenic models, expressing aggregating proteins in the body wall muscle. The effect could partially be rescued by decreased insulin-like signaling, known to slow the aging process and the onset of various age-related diseases. Our data points to an underlying molecular mechanism involving proteasomal degradation and HSP-16 chaperone activity. Furthermore, epi-1-depleted animals had altered synaptic function and displayed hypersensitivity to both levamisole and aldicarb, an acetylcholine receptor agonist and an acetylcholinesterase inhibitor, respectively. Our results implicate the BM as an extracellular modulator of protein homeostasis in the adjacent muscle cells. This is in agreement with previous research showing that imbalance in neuromuscular signaling disturbs protein homeostasis in the postsynaptic cell. In our study, proteotoxicity may indeed be mediated by the neuromuscular junction which is part of the BM, where laminins are present in high concentration, ensuring the proper microenvironment for neuromuscular signaling. Laminins are evolutionarily conserved, and thus the BM may play a much more causal role in protein misfolding diseases than currently recognized.
Collapse
Affiliation(s)
- Louise T Jensen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | | | | | | | | |
Collapse
|
8
|
Segade F. Molecular evolution of the fibulins: Implications on the functionality of the elastic fibulins. Gene 2010; 464:17-31. [DOI: 10.1016/j.gene.2010.05.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 05/18/2010] [Accepted: 05/19/2010] [Indexed: 12/21/2022]
|
9
|
Cooley MA, Kern CB, Fresco VM, Wessels A, Thompson RP, McQuinn TC, Twal WO, Mjaatvedt CH, Drake CJ, Argraves WS. Fibulin-1 is required for morphogenesis of neural crest-derived structures. Dev Biol 2008; 319:336-45. [PMID: 18538758 DOI: 10.1016/j.ydbio.2008.04.029] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Revised: 04/22/2008] [Accepted: 04/24/2008] [Indexed: 11/24/2022]
Abstract
Here we report that mouse embryos homozygous for a gene trap insertion in the fibulin-1 (Fbln1) gene are deficient in Fbln1 and exhibit cardiac ventricular wall thinning and ventricular septal defects with double outlet right ventricle or overriding aorta. Fbln1 nulls also display anomalies of aortic arch arteries, hypoplasia of the thymus and thyroid, underdeveloped skull bones, malformations of cranial nerves and hemorrhagic blood vessels in the head and neck. The spectrum of malformations is consistent with Fbln1 influencing neural crest cell (NCC)-dependent development of these tissues. This is supported by evidence that Fbln1 expression is associated with streams of cranial NCCs migrating adjacent to rhombomeres 2-7 and that Fbln1-deficient embryos display patterning anomalies of NCCs forming cranial nerves IX and X, which derive from rhombomeres 6 and 7. Additionally, Fbln1-deficient embryos show increased apoptosis in areas populated by NCCs derived from rhombomeres 4, 6 and 7. Based on these findings, it is concluded that Fbln1 is required for the directed migration and survival of cranial NCCs contributing to the development of pharyngeal glands, craniofacial skeleton, cranial nerves, aortic arch arteries, cardiac outflow tract and cephalic blood vessels.
Collapse
Affiliation(s)
- Marion A Cooley
- Department of Cell Biology and Anatomy, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Wlazlinski A, Engers R, Hoffmann MJ, Hader C, Jung V, Müller M, Schulz WA. Downregulation of several fibulin genes in prostate cancer. Prostate 2007; 67:1770-80. [PMID: 17929269 DOI: 10.1002/pros.20667] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Fibulins, encoded by FBLN genes, are extracellular matrix proteins influencing cell adhesion and migration. Altered expression of fibulins is associated with progression of several cancer types, but has not been studied in prostate cancer. METHODS Expression of FBLN1 (major splice forms C and D), FBLN4, FBLN5, SPOCK1, and TENC was compared between 47 prostate cancer samples and 13 benign prostatic tissues by quantitative RT-PCR. Fibulin-1 and fibulin-5 expression was studied by immunohistochemistry. Effects of androgens and the DNA methylation inhibitor 5-aza-2'-deoxycytidine on fibulin expression were investigated in different prostate cancer cell lines. RESULTS Our recent microarray analysis suggested downregulation of three fibulins, FBLN1, FBLN4, and FBLN5, in prostate cancer, while two further ECM genes, SPOCK1 (testican) and TENC (tenascin C), appeared upregulated or unchanged. These observations were corroborated by quantitative RT-PCR. Accordingly, FBLN1 and FBLN4 were weakly expressed in carcinoma lines compared to normal prostate epithelial cells (PrECs). Only FBLN4 was induced by 5-aza-2'-deoxycytidine, but its promoter was unmethylated. Androgen did not affect expression of FBLN genes. The FBLN1C and FBLN1D splice forms were coordinately expressed. Fibulin-1 protein was weakly detectable in benign PrECs, but tended to accumulate in cancer cells. Fibulin-5 was predominantly located in the stroma with a strong gradient from the periurethral to the peripheral zone, and lost in cancers. CONCLUSIONS Three FBLN genes are significantly downregulated in prostate cancer, whereas SPOCK1 is often upregulated. FBLN5 downregulation fits its postulated anticancerous function, whereas FBLN1 and FBLN4 behave different than in certain other cancers.
Collapse
Affiliation(s)
- Agnes Wlazlinski
- Department of Urology, Heinrich Heine University, Duesseldorf, Germany
| | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
Fibulin is a broadly conserved component of the extracellular matrix (ECM). Previous studies have shown that Caenorhabditis elegans FIBULIN-1 (FBL-1) controls the width of the gonad (Hesselson, D., C. Newman, K.W. Kim, and J. Kimble. 2004.Curr. Biol. 14:2005–2010; Kubota, Y., R. Kuroki, and K. Nishiwaki. 2004.Curr. Biol. 14:2011–2018; Muriel, J.M., C. Dong, H. Hutter, and B.E. Vogel. 2005.Development. 132: 4223–4234). In this study, we report that FBL-1 also controls developmental growth and that one isoform of fibulin-1, called FBL-1C, controls both functions by distinct mechanisms. A large FBL-1C fragment, including both epidermal growth factor (EGF) and fibulin-type C domains, is responsible for constraining gonadal width, but a much smaller fragment containing only two complete EGF repeats (EGF1-2C+) is critical for developmental growth. We suggest that the larger fragment serves a scaffolding function to stabilize the basement membrane and that the smaller fragment provides a regulatory function at the cell surface or within the ECM to control growth.
Collapse
Affiliation(s)
- Daniel Hesselson
- Department of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | |
Collapse
|