1
|
Huang EN, Quach H, Lee JA, Dierolf J, Moraes TJ, Wong AP. A Developmental Role of the Cystic Fibrosis Transmembrane Conductance Regulator in Cystic Fibrosis Lung Disease Pathogenesis. Front Cell Dev Biol 2021; 9:742891. [PMID: 34708042 PMCID: PMC8542926 DOI: 10.3389/fcell.2021.742891] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/21/2021] [Indexed: 12/23/2022] Open
Abstract
The cystic fibrosis (CF) transmembrane conductance regulator (CFTR) protein is a cAMP-activated anion channel that is critical for regulating fluid and ion transport across the epithelium. This process is disrupted in CF epithelia, and patients harbouring CF-causing mutations experience reduced lung function as a result, associated with the increased rate of mortality. Much progress has been made in CF research leading to treatments that improve CFTR function, including small molecule modulators. However, clinical outcomes are not necessarily mutation-specific as individuals harboring the same genetic mutation may present with varying disease manifestations and responses to therapy. This suggests that the CFTR protein may have alternative functions that remain under-appreciated and yet can impact disease. In this mini review, we highlight some notable research implicating an important role of CFTR protein during early lung development and how mutant CFTR proteins may impact CF airway disease pathogenesis. We also discuss recent novel cell and animal models that can now be used to identify a developmental cause of CF lung disease.
Collapse
Affiliation(s)
- Elena N Huang
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON, Canada.,Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Henry Quach
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON, Canada.,Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Jin-A Lee
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON, Canada
| | - Joshua Dierolf
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON, Canada
| | - Theo J Moraes
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada.,Program in Translational Medicine, Hospital for Sick Children, Toronto, ON, Canada
| | - Amy P Wong
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON, Canada.,Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
2
|
Cao H, Ouyang H, Laselva O, Bartlett C, Zhou ZP, Duan C, Gunawardena T, Avolio J, Bear CE, Gonska T, Hu J, Moraes TJ. A helper-dependent adenoviral vector rescues CFTR to wild-type functional levels in cystic fibrosis epithelial cells harbouring class I mutations. Eur Respir J 2020; 56:13993003.00205-2020. [PMID: 32457197 DOI: 10.1183/13993003.00205-2020] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 05/18/2020] [Indexed: 12/15/2022]
Abstract
Cystic fibrosis (CF) is a genetic disorder affecting multiple organs, including the pancreas, hepatobiliary system and reproductive organs; however, lung disease is responsible for the majority of morbidity and mortality. Management of CF involves CF transmembrane conductance regulator (CFTR) modulator agents including corrector drugs to augment cellular trafficking of mutant CFTR as well as potentiators that open defective CFTR channels. These therapies are poised to help most individuals with CF, with the notable exception of individuals with class I mutations where full-length CFTR protein is not produced. For these mutations, gene replacement has been suggested as a potential solution.In this work, we used a helper-dependent adenoviral vector (HD-CFTR) to express CFTR in nasal epithelial cell cultures derived from CF subjects with class I CFTR mutations.CFTR function was significantly restored in CF cells by HD-CFTR and reached healthy control functional levels as detected by Ussing chamber and membrane potential (FLIPR) assay. A dose-response relationship was observed between the amount of vector used and subsequent functional outcomes; small amounts of HD-CFTR were sufficient to correct CFTR function. At higher doses, HD-CFTR did not increase CFTR function in healthy control cells above baseline values. This latter observation allowed us to use this vector to benchmark in vitro efficacy testing of CFTR-modulator drugs.In summary, we demonstrate the potential for HD-CFTR to inform in vitro testing and to restore CFTR function to healthy control levels in airway cells with class I or CFTR nonsense mutations.
Collapse
Affiliation(s)
- Huibi Cao
- Programmes in Translational Medicine, Research Institute, Hospital for Sick Children, Toronto, ON, Canada.,Both authors contributed equally to this work
| | - Hong Ouyang
- Programmes in Translational Medicine, Research Institute, Hospital for Sick Children, Toronto, ON, Canada.,Both authors contributed equally to this work
| | - Onofrio Laselva
- Molecular Medicine, Research Institute, Hospital for Sick Children, Toronto, ON, Canada.,Dept of Physiology, University of Toronto, Toronto, ON, Canada
| | - Claire Bartlett
- Programmes in Translational Medicine, Research Institute, Hospital for Sick Children, Toronto, ON, Canada
| | - Zhichang Peter Zhou
- Programmes in Translational Medicine, Research Institute, Hospital for Sick Children, Toronto, ON, Canada
| | - Cathleen Duan
- Programmes in Translational Medicine, Research Institute, Hospital for Sick Children, Toronto, ON, Canada
| | - Tarini Gunawardena
- Programmes in Translational Medicine, Research Institute, Hospital for Sick Children, Toronto, ON, Canada
| | - Julie Avolio
- Programmes in Translational Medicine, Research Institute, Hospital for Sick Children, Toronto, ON, Canada
| | - Christine E Bear
- Molecular Medicine, Research Institute, Hospital for Sick Children, Toronto, ON, Canada.,Dept of Physiology, University of Toronto, Toronto, ON, Canada.,Dept of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Tanja Gonska
- Programmes in Translational Medicine, Research Institute, Hospital for Sick Children, Toronto, ON, Canada.,Dept of Paediatrics, University of Toronto, Toronto, ON, Canada
| | - Jim Hu
- Programmes in Translational Medicine, Research Institute, Hospital for Sick Children, Toronto, ON, Canada.,Both senior authors contributed equally to this article as lead authors and jointly supervised the work
| | - Theo J Moraes
- Programmes in Translational Medicine, Research Institute, Hospital for Sick Children, Toronto, ON, Canada .,Dept of Paediatrics, University of Toronto, Toronto, ON, Canada.,Dept of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Both senior authors contributed equally to this article as lead authors and jointly supervised the work
| |
Collapse
|
3
|
What Role Does CFTR Play in Development, Differentiation, Regeneration and Cancer? Int J Mol Sci 2020; 21:ijms21093133. [PMID: 32365523 PMCID: PMC7246864 DOI: 10.3390/ijms21093133] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/21/2020] [Accepted: 04/27/2020] [Indexed: 02/08/2023] Open
Abstract
One of the key features associated with the substantial increase in life expectancy for individuals with CF is an elevated predisposition to cancer, firmly established by recent studies involving large cohorts. With the recent advances in cystic fibrosis transmembrane conductance regulator (CFTR) modulator therapies and the increased long-term survival rate of individuals with cystic fibrosis (CF), this is a novel challenge emerging at the forefront of this disease. However, the mechanisms linking dysfunctional CFTR to carcinogenesis have yet to be unravelled. Clues to this challenging open question emerge from key findings in an increasing number of studies showing that CFTR plays a role in fundamental cellular processes such as foetal development, epithelial differentiation/polarization, and regeneration, as well as in epithelial–mesenchymal transition (EMT). Here, we provide state-of-the-art descriptions on the moonlight roles of CFTR in these processes, highlighting how they can contribute to novel therapeutic strategies. However, such roles are still largely unknown, so we need rapid progress in the elucidation of the underlying mechanisms to find the answers and thus tailor the most appropriate therapeutic approaches.
Collapse
|
4
|
Nelson CM, Gleghorn JP, Pang MF, Jaslove JM, Goodwin K, Varner VD, Miller E, Radisky DC, Stone HA. Microfluidic chest cavities reveal that transmural pressure controls the rate of lung development. Development 2017; 144:4328-4335. [PMID: 29084801 DOI: 10.1242/dev.154823] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 10/24/2017] [Indexed: 12/30/2022]
Abstract
Mechanical forces are increasingly recognized to regulate morphogenesis, but how this is accomplished in the context of the multiple tissue types present within a developing organ remains unclear. Here, we use bioengineered 'microfluidic chest cavities' to precisely control the mechanical environment of the fetal lung. We show that transmural pressure controls airway branching morphogenesis, the frequency of airway smooth muscle contraction, and the rate of developmental maturation of the lungs, as assessed by transcriptional analyses. Time-lapse imaging reveals that branching events are synchronized across distant locations within the lung, and are preceded by long-duration waves of airway smooth muscle contraction. Higher transmural pressure decreases the interval between systemic smooth muscle contractions and increases the rate of morphogenesis of the airway epithelium. These data reveal that the mechanical properties of the microenvironment instruct crosstalk between different tissues to control the development of the embryonic lung.
Collapse
Affiliation(s)
- Celeste M Nelson
- Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, USA .,Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Jason P Gleghorn
- Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Mei-Fong Pang
- Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Jacob M Jaslove
- Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Katharine Goodwin
- Quantitative and Computational Biology, Princeton University, Princeton, NJ 08544, USA
| | - Victor D Varner
- Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Erin Miller
- Department of Cancer Biology, Mayo Clinic Cancer Center, Jacksonville, FL 32224, USA
| | - Derek C Radisky
- Department of Cancer Biology, Mayo Clinic Cancer Center, Jacksonville, FL 32224, USA
| | - Howard A Stone
- Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
5
|
Holló G. Demystification of animal symmetry: symmetry is a response to mechanical forces. Biol Direct 2017; 12:11. [PMID: 28514948 PMCID: PMC5436448 DOI: 10.1186/s13062-017-0182-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 05/09/2017] [Indexed: 12/21/2022] Open
Abstract
ᅟ Symmetry is an eye-catching feature of animal body plans, yet its causes are not well enough understood. The evolution of animal form is mainly due to changes in gene regulatory networks (GRNs). Based on theoretical considerations regarding fundamental GRN properties, it has recently been proposed that the animal genome, on large time scales, should be regarded as a system which can construct both the main symmetries – radial and bilateral – simultaneously; and that the expression of any of these depends on functional constraints. Current theories explain biological symmetry as a pattern mostly determined by phylogenetic constraints, and more by chance than by necessity. In contrast to this conception, I suggest that physical effects, which in many cases act as proximate, direct, tissue-shaping factors during ontogenesis, are also the ultimate causes – i.e. the indirect factors which provide a selective advantage – of animal symmetry, from organs to body plan level patterns. In this respect, animal symmetry is a necessary product of evolution. This proposition offers a parsimonious view of symmetry as a basic feature of the animal body plan, suggesting that molecules and physical forces act in a beautiful harmony to create symmetrical structures, but that the concert itself is directed by the latter. Reviewers This article was reviewed by Eugene Koonin, Zoltán Varga and Michaël Manuel.
Collapse
Affiliation(s)
- Gábor Holló
- Institute of Psychology, University of Debrecen, H-4002, Debrecen, P.O. Box 400, Hungary.
| |
Collapse
|
6
|
The extracellular calcium-sensing receptor regulates human fetal lung development via CFTR. Sci Rep 2016; 6:21975. [PMID: 26911344 PMCID: PMC4766410 DOI: 10.1038/srep21975] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 02/02/2016] [Indexed: 11/24/2022] Open
Abstract
Optimal fetal lung growth requires anion-driven fluid secretion into the lumen of the developing organ. The fetus is hypercalcemic compared to the mother and here we show that in the developing human lung this hypercalcaemia acts on the extracellular calcium-sensing receptor, CaSR, to promote fluid-driven lung expansion through activation of the cystic fibrosis transmembrane conductance regulator, CFTR. Several chloride channels including TMEM16, bestrophin, CFTR, CLCN2 and CLCA1, are also expressed in the developing human fetal lung at gestational stages when CaSR expression is maximal. Measurements of Cl−-driven fluid secretion in organ explant cultures show that pharmacological CaSR activation by calcimimetics stimulates lung fluid secretion through CFTR, an effect which in humans, but not mice, was also mimicked by fetal hypercalcemic conditions, demonstrating that the physiological relevance of such a mechanism appears to be species-specific. Calcimimetics promote CFTR opening by activating adenylate cyclase and we show that Ca2+-stimulated type I adenylate cyclase is expressed in the developing human lung. Together, these observations suggest that physiological fetal hypercalcemia, acting on the CaSR, promotes human fetal lung development via cAMP-dependent opening of CFTR. Disturbances in this process would be expected to permanently impact lung structure and might predispose to certain postnatal respiratory diseases.
Collapse
|
7
|
Handorf AM, Zhou Y, Halanski MA, Li WJ. Tissue stiffness dictates development, homeostasis, and disease progression. Organogenesis 2016; 11:1-15. [PMID: 25915734 DOI: 10.1080/15476278.2015.1019687] [Citation(s) in RCA: 398] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Tissue development is orchestrated by the coordinated activities of both chemical and physical regulators. While much attention has been given to the role that chemical regulators play in driving development, researchers have recently begun to elucidate the important role that the mechanical properties of the extracellular environment play. For instance, the stiffness of the extracellular environment has a role in orienting cell division, maintaining tissue boundaries, directing cell migration, and driving differentiation. In addition, extracellular matrix stiffness is important for maintaining normal tissue homeostasis, and when matrix mechanics become imbalanced, disease progression may ensue. In this article, we will review the important role that matrix stiffness plays in dictating cell behavior during development, tissue homeostasis, and disease progression.
Collapse
Key Words
- ECM, Extracellular matrix
- EPC, Endothelial progenitor cell
- FA, Focal adhesion
- FAK, Focal adhesion kinase
- LOX, Lysyl oxidase
- MKL1, Megakaryoblastic leukemia factor-1
- MMP, Matrix metalloproteinase
- MSC, Mesenchymal stem cell
- ROCK, Rho-associated protein kinase
- VSMC, Vascular smooth muscle cell.
- cancer
- extracellular matrix
- fibrosis
- stiffness
- tissue development
- tissue homeostasis
Collapse
Affiliation(s)
- Andrew M Handorf
- a Department of Orthopedics and Rehabilitation; University of Wisconsin-Madison ; Madison , WI , USA
| | | | | | | |
Collapse
|
8
|
Laube M, Bossmann M, Thome UH. Glucocorticoids Distinctively Modulate the CFTR Channel with Possible Implications in Lung Development and Transition into Extrauterine Life. PLoS One 2015; 10:e0124833. [PMID: 25910246 PMCID: PMC4409322 DOI: 10.1371/journal.pone.0124833] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 03/20/2015] [Indexed: 11/18/2022] Open
Abstract
During fetal development, the lung is filled with fluid that is secreted by an active Cl- transport promoting lung growth. The basolateral Na+,K+,2Cl- cotransporter (NKCC1) participates in Cl- secretion. The apical Cl- channels responsible for secretion are unknown but studies suggest an involvement of the cystic fibrosis transmembrane conductance regulator (CFTR). CFTR is developmentally regulated with a high expression in early fetal development and a decline in late gestation. Perinatal lung transition is triggered by hormones that stimulate alveolar Na+ channels resulting in fluid absorption. Little is known on how hormones affect pulmonary Cl- channels. Since the rise of fetal cortisol levels correlates with the decrease in fetal CFTR expression, a causal relation may be assumed. The aim of this study was to analyze the influence of glucocorticoids on pulmonary Cl- channels. Alveolar cells from fetal and adult rats, A549 cells, bronchial Calu-3 and 16HBE14o- cells, and primary rat airway cells were studied with real-time quantitative PCR and Ussing chambers. In fetal and adult alveolar cells, glucocorticoids strongly reduced Cftr expression and channel activity, which was prevented by mifepristone. In bronchial and primary airway cells CFTR mRNA expression was also reduced, whereas channel activity was increased which was prevented by LY-294002 in Calu-3 cells. Therefore, glucocorticoids strongly reduce CFTR expression while their effect on CFTR activity depends on the physiological function of the cells. Another apical Cl- channel, anoctamin 1 showed a glucocorticoid-induced reduction of mRNA expression in alveolar cells and an increase in bronchial cells. Furthermore, voltage-gated chloride channel 5 and anoctamine 6 mRNA expression were increased in alveolar cells. NKCC1 expression was reduced by glucocorticoids in alveolar and bronchial cells alike. The results demonstrate that glucocorticoids differentially modulate pulmonary Cl- channels and are likely causing the decline of CFTR during late gestation in preparation for perinatal lung transition.
Collapse
Affiliation(s)
- Mandy Laube
- Center for Pediatric Research Leipzig, Hospital for Children & Adolescents, Division of Neonatology, University of Leipzig, Leipzig, Germany
- * E-mail:
| | - Miriam Bossmann
- Center for Pediatric Research Leipzig, Hospital for Children & Adolescents, Division of Neonatology, University of Leipzig, Leipzig, Germany
| | - Ulrich H. Thome
- Center for Pediatric Research Leipzig, Hospital for Children & Adolescents, Division of Neonatology, University of Leipzig, Leipzig, Germany
| |
Collapse
|
9
|
Zana-Taieb E, Pham H, Franco-Montoya ML, Jacques S, Letourneur F, Baud O, Jarreau PH, Vaiman D. Impaired alveolarization and intra-uterine growth restriction in rats: a postnatal genome-wide analysis. J Pathol 2015; 235:420-30. [DOI: 10.1002/path.4470] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 09/17/2014] [Accepted: 10/13/2014] [Indexed: 02/06/2023]
Affiliation(s)
- E Zana-Taieb
- Université Paris Descartes; Paris France
- Fondation PremUp, 53 avenue de l'Observatoire, 75014 Paris; France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1141; Paris France
- Assistance Publique - Hôpitaux de Paris, Service de Médecine et Réanimation Néonatales de Port-Royal, Groupe Hospitalier Cochin, Broca, Hôtel-Dieu, 53 Avenue de l'Observatoire, 75014 Paris; France
| | - H Pham
- Fondation PremUp, 53 avenue de l'Observatoire, 75014 Paris; France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1141; Paris France
| | - ML Franco-Montoya
- Institut National de la Santé et de la Recherche Médicale (INSERM) U955 IMRB Equipe 04, Faculté de Médecine de Créteil, 94010 Créteil; France
| | - S Jacques
- Genom'ic, INSERM U1016, CNRS UMR8104, Paris; France
| | - F Letourneur
- Genom'ic, INSERM U1016, CNRS UMR8104, Paris; France
| | - O Baud
- Fondation PremUp, 53 avenue de l'Observatoire, 75014 Paris; France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1141; Paris France
- Assistance Publique - Hôpitaux de Paris, Service de Réanimation et Pédiatrie Néonatales, Hôpital Robert Debré, Paris; France
- Université Paris Diderot; Paris France
| | - PH Jarreau
- Université Paris Descartes; Paris France
- Fondation PremUp, 53 avenue de l'Observatoire, 75014 Paris; France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1141; Paris France
- Assistance Publique - Hôpitaux de Paris, Service de Médecine et Réanimation Néonatales de Port-Royal, Groupe Hospitalier Cochin, Broca, Hôtel-Dieu, 53 Avenue de l'Observatoire, 75014 Paris; France
| | - D Vaiman
- Institut Cochin, INSERM U1016-CNRS, UMRS 104; Paris France
| |
Collapse
|
10
|
Abstract
Morphogenesis is the remarkable process by which cells self-assemble into complex tissues and organs that exhibit specialized form and function during embryological development. Many of the genes and chemical cues that mediate tissue and organ formation have been identified; however, these signals alone are not sufficient to explain how tissues and organs are constructed that exhibit their unique material properties and three-dimensional forms. Here, we review work that has revealed the central role that physical forces and extracellular matrix mechanics play in the control of cell fate switching, pattern formation, and tissue development in the embryo and how these same mechanical signals contribute to tissue homeostasis and developmental control throughout adult life.
Collapse
Affiliation(s)
- Tadanori Mammoto
- Vascular Biology Program, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115;
| | | | | |
Collapse
|
11
|
Shwartz Y, Blitz E, Zelzer E. One load to rule them all: Mechanical control of the musculoskeletal system in development and aging. Differentiation 2013; 86:104-11. [DOI: 10.1016/j.diff.2013.07.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 07/01/2013] [Accepted: 07/12/2013] [Indexed: 12/24/2022]
|
12
|
Risse PA, Kachmar L, Matusovsky OS, Novali M, Gil FR, Javeshghani S, Keary R, Haston CK, Michoud MC, Martin JG, Lauzon AM. Ileal smooth muscle dysfunction and remodeling in cystic fibrosis. Am J Physiol Gastrointest Liver Physiol 2012; 303:G1-8. [PMID: 22538405 DOI: 10.1152/ajpgi.00356.2011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Patients with cystic fibrosis (CF) often suffer from gastrointestinal cramps and intestinal obstruction. The CF transmembrane conductance regulator (CFTR) channel has been shown to be expressed in vascular and airway smooth muscle (SM). We hypothesized that the absence of CFTR expression alters the gastrointestinal SM function and that these alterations may show strain-related differences in the mouse. The aim of this study was to measure the contractile properties of the ileal SM in two CF mouse models. CFTR(-/-) and CFTR(+/+) mice were studied on BALB/cJ and C57BL/6J backgrounds. Responsiveness of ileal strips to electrical field stimulation (EFS), methacholine (MCh), and isoproterenol was measured. The mass and the cell density of SM layers were measured morphometrically. Finally, the maximal velocity of shortening (Vmax) and the expression of the fast (+)insert myosin isoform were measured in the C57BL/6J ileum. Ileal hyperreactivity was observed in response to EFS and MCh in CFTR(-/-) compared with CFTR(+/+) mice in C57BL/6J background. This latter observation was not reproduced by acute inhibition of CFTR with CFTR(inh)172. BALB/cJ CFTR(-/-) mice exhibited a significant increase of SM mass with a lower density of cells compared with CFTR(+/+), whereas no difference was observed in the C57BL/6J background. In addition, in this latter strain, ileal strips from CFTR(-/-) exhibited a significant increase in Vmax compared with control and expressed a greater proportion of the fast (+)insert SM myosin isoform with respect to total myosin. BALB/cJ CFTR(-/-) ilium had a greater relaxation to isoproterenol than the CFTR(+/+) mice when precontracted with EFS, but no difference was observed in response to exogeneous MCh. In vivo, the lack of CFTR expression induces a different SM ileal phenotype in different mouse strains, supporting the importance of modifier genes in determining intestinal SM properties.
Collapse
Affiliation(s)
- P-A Risse
- Meakins-Christie Laboratories, McGill University, 3626 St.-Urbain St., Montréal, Québec, Canada.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Ayers S, Muller I, Mahoney L, Seddon P. Understanding needle-related distress in children with cystic fibrosis. Br J Health Psychol 2011; 16:329-43. [PMID: 21489060 DOI: 10.1348/135910710x506895] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE To explore the nature and management of needle-related distress in children and adolescents with cystic fibrosis (CF). DESIGN Qualitative study using semi-structured interviews. METHODS Fourteen child-parent dyads took part. Children (5 male; 9 female) had a mean age of 12.4 years (range 7-17) and were mostly diagnosed with CF at birth (N= 11). Frequency of needle procedures ranged from once to six times a year. Parents (3 male; 11 female) had a mean age of 41.5 years and were from a variety of socio-economic backgrounds. Interviews were transcribed and analysed using thematic analysis. RESULTS Most participants identified previous needle experiences and pain as related to their needle anxiety. Over half of parents and children considered 'taking control' to be the optimum coping strategy. The majority of parents and children thought inhaled nitrous oxide gas during needle procedures was helpful in managing needle-related distress. Parent and staff influences on needle-related distress are also examined. CONCLUSIONS Needle-related distress in children with CF has a substantial impact on children and their parents, and may lead to management problems and treatment refusal. Psychological and pharmacological interventions could reduce distress and aid management.
Collapse
Affiliation(s)
- Susan Ayers
- School of Psychology, University of Sussex, Falmer, Brighton, Sussex, UK.
| | | | | | | |
Collapse
|
14
|
Cloutier M, Tremblay M, Piedboeuf B. ROCK2 is involved in accelerated fetal lung development induced by in vivo lung distension. Pediatr Pulmonol 2010; 45:966-76. [PMID: 20648664 DOI: 10.1002/ppul.21266] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Lung development is strongly influenced by its state of distension. For instance, increasing distension induced by fetal tracheal occlusion (TO) stimulates lung development. In contrast, oligohydramnios (OH) reduces lung distending forces and results in lung hypoplasia. We hypothesize that Rho/Rho-associated kinase (ROCK) pathway plays an important role as mechanosensor in vivo acting either directly or indirectly in the translation of increased distension into acceleration of lung growth. TO was done in fetal mice sacrificed either 3 or 24 hr later; in a subset of dam, fasudil, a specific ROCK inhibitor, or vehicle was injected intra-peritoneally. OH was done by puncture of the amniotic sac. ROCK2 protein levels were assessed by Western blot and immunohistochemistry (IHC); lung development was assessed by measuring the generation of distal respiratory airway. Significant differences were found in ROCK2 protein levels between TO and Sham-TO at 3 and 24 hr, but not for ROCK1. Indeed, IHC revealed that ROCK2 staining was sparse and restricted to a few mesenchymal cells in Sham-TO, whereas it was strong in acini of TO lungs. OH lungs expressed lower levels of ROCK2 in the acini when compared to untouched controls. In fasudil-treated animals, the degree of lung development following TO was significantly lower than in the group injected with vehicle. At the dose regimen used, fasudil did not affect normal lung development, as observed in the untouched animals. In summary, ROCK2 protein levels was affected by the degree of lung expansion and blunting ROCK activity abolished the response to increased lung distension, suggesting that ROCK is a key regulator in TO-induced accelerated lung development.
Collapse
Affiliation(s)
- Marc Cloutier
- Unité de Recherche en Pédiatrie, Centre de Recherche du Centre Hospitalier de l'Université Laval, Québec, QC, Canada
| | | | | |
Collapse
|
15
|
Abstract
Many genes and molecules that drive tissue patterning during organogenesis and tissue regeneration have been discovered. Yet, we still lack a full understanding of how these chemical cues induce the formation of living tissues with their unique shapes and material properties. Here, we review work based on the convergence of physics, engineering and biology that suggests that mechanical forces generated by living cells are as crucial as genes and chemical signals for the control of embryological development, morphogenesis and tissue patterning.
Collapse
Affiliation(s)
- Tadanori Mammoto
- Vascular Biology Program, Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
16
|
Hudak JJ, Killeen E, Chandran A, Cohen JC, Larson JE. Adult onset lung disease following transient disruption of fetal stretch-induced differentiation. Respir Res 2009; 10:34. [PMID: 19419569 PMCID: PMC2685416 DOI: 10.1186/1465-9921-10-34] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Accepted: 05/06/2009] [Indexed: 12/23/2022] Open
Abstract
One of the mechanisms by which adult disease can arise from a fetal origin is by in utero disruption of organogenesis. These studies were designed to examine respiratory function changes in aging rats following transient disruption of lung growth at 16 days gestation. Fetuses were treated in utero with a replication deficient adenovirus containing the cystic fibrosis conductance transmembrane regulator (CFTR) gene fragment cloned in the anti-sense direction. The in utero-treated rats demonstrated abnormal lung function beginning as early as 30 days of age and the pathology progressed as the animals aged. The pulmonary function abnormalities included decreased static compliance as well as increased conducting airway resistance, tissue damping, and elastance. Pressure volume (PV) curves demonstrated a slower early rise to volume and air trapping at end-expiration. The alterations of pulmonary function correlated with lung structural changes determined by morphometric analysis. These studies demonstrate how transient disruption of lung organogensis by single gene interference can result in progressive change in lung function and structure. They illustrate how an adult onset disease can arise from subtle changes in gene expression during fetal development.
Collapse
Affiliation(s)
- Joseph J Hudak
- The Brady Laboratory, Section of Neonatology, Department of Pediatrics, Stony Brook University, School of Medicine, Stony Brook, New York, 11794, USA.
| | | | | | | | | |
Collapse
|
17
|
Gad A, Callender DL, Killeen E, Hudak J, Dlugosz MA, Larson JE, Cohen JC, Chander A. Transient in utero disruption of cystic fibrosis transmembrane conductance regulator causes phenotypic changes in alveolar type II cells in adult rats. BMC Cell Biol 2009; 10:24. [PMID: 19335897 PMCID: PMC2675516 DOI: 10.1186/1471-2121-10-24] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Accepted: 03/31/2009] [Indexed: 11/11/2022] Open
Abstract
Background Mechanicosensory mechanisms regulate cell differentiation during lung organogenesis. We have previously demonstrated that cystic fibrosis transmembrane conductance regulator (CFTR) was integral to stretch-induced growth and development and that transient expression of antisense-CFTR (ASCFTR) had negative effects on lung structure and function. In this study, we examined adult alveolar type II (ATII) cell phenotype after transient knock down of CFTR by adenovirus-directed in utero expression of ASCFTR in the fetal lung. Results In comparison to (reporter gene-treated) Controls, ASCFTR-treated adult rat lungs showed elevated phosphatidylcholine (PC) levels in the large but not in the small aggregates of alveolar surfactant. The lung mRNA levels for SP-A and SP-B were lower in the ASCFTR rats. The basal PC secretion in ATII cells was similar in the two groups. However, compared to Control ATII cells, the cells in ASCFTR group showed higher PC secretion with ATP or phorbol myristate acetate. The cell PC pool was also larger in the ASCFTR group. Thus, the increased surfactant secretion in ATII cells could cause higher PC levels in large aggregates of surfactant. In freshly isolated ATII cells, the expression of surfactant proteins was unchanged, suggesting that the lungs of ASCFTR rats contained fewer ATII cells. Gene array analysis of RNA of freshly isolated ATII cells from these lungs showed altered expression of several genes including elevated expression of two calcium-related genes, Ca2+-ATPase and calcium-calmodulin kinase kinase1 (CaMkk1), which was confirmed by real-time PCR. Western blot analysis showed increased expression of calmodulin kinase I, which is activated following phosphorylation by CaMkk1. Although increased expression of calcium regulating genes would argue in favor of Ca2+-dependent mechanisms increasing surfactant secretion, we cannot exclude contribution of alternate mechanisms because of other phenotypic changes in ATII cells of the ASCFTR group. Conclusion Developmental changes due to transient disruption of CFTR in fetal lung reflect in altered ATII cell phenotype in the adult life.
Collapse
Affiliation(s)
- Ashraf Gad
- The Brady Laboratory, Department of Pediatrics, Division of Neonatology, Stony Brook University Medical Center, Stony Brook, NY 11794, USA.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Wallace HL, Connell MG, Losty PD, Jesudason EC, Southern KW. Embryonic lung growth is normal in a cftr-knockout mouse model. Exp Lung Res 2009; 34:717-27. [PMID: 19085568 DOI: 10.1080/01902140802389719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The role of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel in embryonic lung growth remains uncertain. The authors used an established embryonic lung culture model to investigate the impact of cftr knockout on lung growth, airway peristalsis, and airway smooth muscle (ASM) distribution. Lung area, perimeter, lung bud count, and frequency of contraction were similar in wild-type (cftr +/+) and cftr knockout mice (cftr -/-). The percentage of mitotic cells was also consistent between genotypes in mesenchyme and epithelium. Smooth muscle distribution surrounding the airway appeared normally distributed in all genotypes. These data suggest that normal embryonic lung growth, ASM differentiation and airway peristalsis are CFTR independent.
Collapse
Affiliation(s)
- Helen L Wallace
- Department of Physiology, University of Liverpool, Liverpool, United Kingdom.
| | | | | | | | | |
Collapse
|
19
|
Cohen JC, Killeen E, Chander A, Takemaru KI, Larson JE, Treharne KJ, Mehta A. Small interfering peptide (siP) for in vivo examination of the developing lung interactonome. Dev Dyn 2009; 238:386-93. [PMID: 19161244 PMCID: PMC2808203 DOI: 10.1002/dvdy.21834] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
To understand the role of reactive oxygen species in mechanosensory control of lung development a new approach to interfere with protein-protein interactions by means of a short interacting peptide was developed. This technology was used in the developing rodent lung to examine the role of NADPH oxidase (NOX), casein kinase 2 (CK2), and the cystic fibrosis transmembrane conductance regulator (CFTR) in stretch-induced differentiation. Interactions between these molecules was targeted in an in utero system with recombinant adeno-associated virus (rAAV) containing inserted DNA sequences that express a control peptide or small interfering peptides (siPs) specific for subunit interaction or phosphorylation predicted to be necessary for multimeric enzyme formation. In all cases only siPs with sequences necessary for a predicted normal function were found to interfere with assembly of the multimeric enzyme. A noninterfering control siP to nonessential regions or reporter genes alone had no effect. Physiologically, it was shown that siPs that interfered with the NOX-CFTR-CK2 complex that we call an "interactonome" affected markers of stretch-induced lung organogenesis including Wnt/beta-catenin signaling.
Collapse
Affiliation(s)
- J Craig Cohen
- The Brady Laboratory, Section of Neonatology, Department of Pediatrics, Stony Brook University, School of Medicine, Stony Brook, New York 11794, USA.
| | | | | | | | | | | | | |
Collapse
|
20
|
Moreno R, Rosal M, Martinez I, Vilardell F, Gonzalez JR, Petriz J, Hernandez-Andrade E, Gratacós E, Aran JM. Restricted transgene persistence after lentiviral vector-mediated fetal gene transfer in the pregnant rabbit model. J Gene Med 2008; 10:951-64. [DOI: 10.1002/jgm.1227] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
21
|
Cohen JC, Larson JE, Killeen E, Love D, Takemaru KI. CFTR and Wnt/beta-catenin signaling in lung development. BMC DEVELOPMENTAL BIOLOGY 2008; 8:70. [PMID: 18601749 PMCID: PMC2464600 DOI: 10.1186/1471-213x-8-70] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Accepted: 07/06/2008] [Indexed: 01/16/2023]
Abstract
BACKGROUND Cystic fibrosis transmembrane conductance regulator (CFTR) was shown previously to modify stretch induced differentiation in the lung. The mechanism for CFTR modulation of lung development was examined by in utero gene transfer of either a sense or antisense construct to alter CFTR expression levels. The BAT-gal transgenic reporter mouse line, expressing beta-galactosidase under a canonical Wnt/beta-catenin-responsive promoter, was used to assess the relative roles of CFTR, Wnt, and parathyroid hormone-related peptide (PTHrP) in lung organogenesis. Adenoviruses containing full-length CFTR, a short anti-sense CFTR gene fragment, or a reporter gene as control were used in an intra-amniotic gene therapy procedure to transiently modify CFTR expression in the fetal lung. RESULTS A direct correlation between CFTR expression levels and PTHrP levels was found. An inverse correlation between CFTR and Wnt signaling activities was demonstrated. CONCLUSION These data are consistent with CFTR participating in the mechanicosensory process essential to regulate Wnt/beta-Catenin signaling required for lung organogenesis.
Collapse
Affiliation(s)
- J Craig Cohen
- The Brady Laboratory, Section of Neonatology, Department of Pediatrics, Stony Brook University, School of Medicine, Stony Brook, New York, USA.
| | | | | | | | | |
Collapse
|
22
|
|
23
|
Abstract
Genetic and environmental agents that disrupt organogenesis are numerous and well described. Less well established, however, is the role of delay in the developmental processes that yield functionally immature tissues at birth. Evidence is mounting that organs do not continue to develop postnatally in the context of these organogenesis insults, condemning the patient to utilize under-developed tissues for adult processes. These poorly differentiated organs may appear histologically normal at birth but with age may deteriorate revealing progressive or adult-onset pathology. The genetic and molecular underpinning of the proposed paradigm reveals the need for a comprehensive systems biology approach to evaluate the role of maternal-fetal environment on organogenesis."You may delay, but time will not" Benjamin Franklin, USA Founding Father.
Collapse
Affiliation(s)
- J Craig Cohen
- The Brady Laboratory, Section of Neonatology, Department of Pediatrics, Stony Brook University Medical Center, Stony Brook, NY 11794, USA.
| | | |
Collapse
|
24
|
Cohen JC, Hudak J. Lung impedance measurements are/are not more useful than simpler measurements of lung function in animal models of pulmonary disease. J Appl Physiol (1985) 2007; 103:1907-8; author reply 1909-10. [DOI: 10.1152/japplphysiol.00759.2007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|