Xu S, Cheng F, Liang J, Wu W, Zhang J. Maternal xNorrin, a canonical Wnt signaling agonist and TGF-β antagonist, controls early neuroectoderm specification in Xenopus.
PLoS Biol 2012;
10:e1001286. [PMID:
22448144 PMCID:
PMC3308935 DOI:
10.1371/journal.pbio.1001286]
[Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 02/06/2012] [Indexed: 12/28/2022] Open
Abstract
Xenopus maternal Norrin, which activates Wnt signaling but inhibits TGF-β family molecules, is essential for neuroectoderm formation. Loss of TGF-β inhibition in Norrin may contribute to the development of Norrie disease.
Dorsal–ventral specification in the amphibian embryo is controlled by β-catenin, whose activation in all dorsal cells is dependent on maternal Wnt11. However, it remains unknown whether other maternally secreted factors contribute to β-catenin activation in the dorsal ectoderm. Here, we show that maternal Xenopus Norrin (xNorrin) promotes anterior neural tissue formation in ventralized embryos. Conversely, when xNorrin function is inhibited, early canonical Wnt signaling in the dorsal ectoderm and the early expression of the zygotic neural inducers Chordin, Noggin, and Xnr3 are severely suppressed, causing the loss of anterior structures. In addition, xNorrin potently inhibits BMP- and Nodal/Activin-related functions through direct binding to the ligands. Moreover, a subset of Norrin mutants identified in humans with Norrie disease retain Wnt activation but show defective inhibition of Nodal/Activin-related signaling in mesoderm induction, suggesting that this disinhibition causes Norrie disease. Thus, xNorrin is an unusual molecule that acts on two major signaling pathways, Wnt and TGF-β, in opposite ways and is essential for early neuroectoderm specification.
A key step during early embryogenesis is the generation of neural precursors, which later form the central nervous system. In vertebrates, this process requires proper dorsal–ventral axis specification, and we know that the canonical Wnt and BMP signaling pathways help pattern the dorsal ectoderm. In this study, we examine other factors that are involved in neuroectoderm development in the frog species Xenopus laevis. We find that maternal Xenopus Norrin (xNorrin) is required for canonical Wnt signaling in the dorsal ectoderm, functions upstream of neural inducers, and is required for neural formation. We also find that xNorrin not only activates Wnt signaling, but also inhibits BMP/Nodal-related signaling. In humans, mutations in Norrin cause Norrie disease. Using Norrin mutants identified in patients with Norrie disease, we find that some Norrin mutants fail to inhibit BMP/Nodal-related signaling (specifically, TGF-β) but retain the ability to activate the Wnt pathway, suggesting that loss of TGF-β inhibition may contribute to Norrie disease development.
Collapse