1
|
Ballarin L, Peronato A, Malagoli D, Macor P, Sacchi S, Sales G, Franchi N. Evidence of a Lytic Pathway in an Invertebrate Complement System: Identification of a Terminal Complement Complex Gene in a Colonial Tunicate and Its Evolutionary Implications. Int J Mol Sci 2024; 25:11995. [PMID: 39596065 PMCID: PMC11593599 DOI: 10.3390/ijms252211995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/28/2024] Open
Abstract
The complement system is a pivotal component of innate immunity, extensively studied in vertebrates but also present in invertebrates. This study explores the existence of a terminal complement pathway in the tunicate Botryllus schlosseri, aiming to understand the evolutionary integration of innate and adaptive immunity. Through transcriptome analysis, we identified a novel transcript, BsITCCP, encoding a protein with both MACPF and LDLa domains-a structure resembling that of vertebrate C9 but with a simpler organization. Phylogenetic reconstruction positions BsITCCP between invertebrate perforins and vertebrate terminal complement proteins, suggesting an evolutionary link. Localization studies confirmed that bsitccp is transcribed in cytotoxic morula cells (MCs), which are also responsible for producing other complement components like BsC3, BsMBL, BsMASP, and BsBf. Functional assays demonstrated that bsitccp transcription is upregulated in response to nonself challenges and is dependent on BsC3 activity; inhibition of BsC3 led to a significant reduction in BsITCCP expression. Electron microscopy revealed that MCs form contact with perforated yeast cells, indicating a possible mechanism of cell lysis similar to the immunological synapse observed in vertebrates. These findings suggest that a C3-governed lytic complement pathway exists in B. schlosseri, challenging the assumption that a C5 ortholog is necessary for such a pathway. This work enhances our understanding of the evolution of the complement system and suggests that invertebrates possess a terminal complement complex capable of mediating cell lysis, regulated by C3. Future studies will focus on confirming the pore-forming ability of BsITCCP and its role in the immunological synapse.
Collapse
Affiliation(s)
- Loriano Ballarin
- Department of Biology, University of Padova, 35131 Padova, Italy; (L.B.)
| | - Anna Peronato
- Department of Biology, University of Padova, 35131 Padova, Italy; (L.B.)
| | - Davide Malagoli
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy (S.S.)
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - Paolo Macor
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Sandro Sacchi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy (S.S.)
| | - Gabriele Sales
- Department of Biology, University of Padova, 35131 Padova, Italy; (L.B.)
| | - Nicola Franchi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy (S.S.)
| |
Collapse
|
2
|
Zhou X, Lai Y, Xu X, Wang Q, Sun L, Chen L, Li J, Li R, Luo D, Lin Y, Ding X. Tetrahedral framework nucleic acids inhibit pathological neovascularization and vaso-obliteration in ischaemic retinopathy via PI3K/AKT/mTOR signalling pathway. Cell Prolif 2023; 56:e13407. [PMID: 36694349 PMCID: PMC10334269 DOI: 10.1111/cpr.13407] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 12/29/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023] Open
Abstract
This study aimed to explore the effect and the molecular mechanism of tetrahedral framework nucleic acids (tFNAs), a novel self-assembled nanomaterial with excellent biocompatibility and superior endocytosis ability, in inhibition of pathological retinal neovascularization (RNV) and more importantly, in amelioration of vaso-obliteration (VO) in ischaemic retinopathy. tFNAs were synthesized from four single-stranded DNAs (ssDNAs). Cell proliferation, wound healing and tube formation assays were performed to explore cellular angiogenic functions in vitro. The effects of tFNAs on reducing angiogenesis and inhibiting VO were explored by oxygen-induced retinopathy (OIR) model in vivo. In vitro, tFNAs were capable to enter endothelial cells (ECs), inhibit cell proliferation, tube formation and migration under hypoxic conditions. In vivo, tFNAs successfully reduce RNV and inhibit VO in OIR model via the PI3K/AKT/mTOR/S6K pathway, while vascular endothelial growth factor fusion protein, Aflibercept, could reduce RNV but not inhibit VO. This study provides a theoretical basis for the further understanding of RNV and suggests that tFNAs might be a novel promising candidate for the treatment of blind-causing RNV.
Collapse
Affiliation(s)
- Xiaodi Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Yanting Lai
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Xiaoxiao Xu
- Innovative Institute of Chinese Medicine and PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| | - Qiong Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Limei Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Limei Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Jiajie Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Department of Maxillofacial Surgery, West China Stomatological HospitalSichuan UniversityChengduChina
| | - Rong Li
- Innovative Institute of Chinese Medicine and PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| | - Delun Luo
- Innovative Institute of Chinese Medicine and PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Department of Maxillofacial Surgery, West China Stomatological HospitalSichuan UniversityChengduChina
| | - Xiaoyan Ding
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| |
Collapse
|
3
|
Searching for the Origin and the Differentiation of Haemocytes before and after Larval Settlement of the Colonial Ascidian Botryllus schlosseri: An Ultrastructural Viewpoint. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10070987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The colonial ascidian Botryllus schlosseri possesses an innate immunity, which plays fundamental roles in its survival, adaptability, worldwide spread and ecological success. Three lines of differentiation pathways of circulating haemocytes are known to be present in the haemolymph, starting from undifferentiated haemoblasts: (i) the phagocytic line (hyaline amoebocytes and macrophage-like cells), (ii) the cytotoxic line (granular amoebocytes and morula cells) and (iii) the storage cell line (pigment cells and nephrocytes). Many questions remain about their origin, and thus, observations during various stages of development were undertaken in this study. Haemocytes were detected beginning from the early tailbud embryo stage. Haemoblasts were always present and morula cells were the first differentiated haemocytes detected. In both the next stage, just before hatching, and the swimming tadpole larva stage, hyaline amoebocytes and pigment cells were also recognisable. Some morula cells containing active phenoloxidase migrated from the haemolymph into the tunic after having crossed the epidermis, and this behaviour could be related to the preparation of a defensive function for spatial competition. During larval metamorphosis, macrophage-like cells appeared with their phagosomes positive to acid phosphatase activity and containing apoptotic cells from tail tissue degeneration. After metamorphosis, in the filter-feeding oozoid stage, nephrocytes involved in nitrogen catabolism finally appeared. In both the subendostylar sinus and the peripheral blind-sac vessels (ampullae), clusters of haemoblasts were recognisable, some of which showed incipient specialisations, considering the hypothesis of the presence of putative niches of haemolymph stem cells.
Collapse
|
4
|
Ricci L, Salmon B, Olivier C, Andreoni-Pham R, Chaurasia A, Alié A, Tiozzo S. The Onset of Whole-Body Regeneration in Botryllus schlosseri: Morphological and Molecular Characterization. Front Cell Dev Biol 2022; 10:843775. [PMID: 35237607 PMCID: PMC8882763 DOI: 10.3389/fcell.2022.843775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 01/19/2022] [Indexed: 11/24/2022] Open
Abstract
Colonial tunicates are the only chordates that regularly regenerate a fully functional whole body as part of their asexual life cycle, starting from specific epithelia and/or mesenchymal cells. In addition, in some species, whole-body regeneration (WBR) can also be triggered by extensive injuries, which deplete most of their tissues and organs and leave behind only small fragments of their body. In this manuscript, we characterized the onset of WBR in Botryllus schlosseri, one colonial tunicate long used as a laboratory model. We first analyzed the transcriptomic response to a WBR-triggering injury. Then, through morphological characterization, in vivo observations via time-lapse, vital dyes, and cell transplant assays, we started to reconstruct the dynamics of the cells triggering regeneration, highlighting an interplay between mesenchymal and epithelial cells. The dynamics described here suggest that WBR in B. schlosseri is initiated by extravascular tissue fragments derived from the injured individuals rather than particular populations of blood-borne cells, as has been described in closely related species. The morphological and molecular datasets here reported provide the background for future mechanistic studies of the WBR ontogenesis in B. schlosseri and allow to compare it with other regenerative processes occurring in other tunicate species and possibly independently evolved.
Collapse
Affiliation(s)
- Lorenzo Ricci
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), CNRS, Sorbonne University, Paris, France
- Institute for Research on Cancer and Aging in Nice (IRCAN), CNRS, INSERM, Université Côte d’Azur, Nice, France
| | - Bastien Salmon
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), CNRS, Sorbonne University, Paris, France
| | - Caroline Olivier
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), CNRS, Sorbonne University, Paris, France
| | - Rita Andreoni-Pham
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), CNRS, Sorbonne University, Paris, France
- Institute for Research on Cancer and Aging in Nice (IRCAN), CNRS, INSERM, Université Côte d’Azur, Nice, France
| | - Ankita Chaurasia
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), CNRS, Sorbonne University, Paris, France
| | - Alexandre Alié
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), CNRS, Sorbonne University, Paris, France
| | - Stefano Tiozzo
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), CNRS, Sorbonne University, Paris, France
| |
Collapse
|
5
|
Rodriguez D, Taketa DA, Madhu R, Kassmer S, Loerke D, Valentine MT, Tomaso AWD. Vascular Aging in the Invertebrate Chordate, Botryllus schlosseri. Front Mol Biosci 2021; 8:626827. [PMID: 33898513 PMCID: PMC8060491 DOI: 10.3389/fmolb.2021.626827] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 03/03/2021] [Indexed: 12/13/2022] Open
Abstract
Vascular diseases affect over 1 billion people worldwide and are highly prevalent among the elderly, due to a progressive deterioration of the structure of vascular cells. Most of our understanding of these age-related cellular changes comes from in vitro studies on human cell lines. Further studies of the mechanisms underlying vascular aging in vivo are needed to provide insight into the pathobiology of age-associated vascular diseases, but are difficult to carry out on vertebrate model organisms. We are studying the effects of aging on the vasculature of the invertebrate chordate, Botryllus schlosseri. This extracorporeal vascular network of Botryllus is transparent and particularly amenable to imaging and manipulation. Here we use a combination of transcriptomics, immunostaining and live-imaging, as well as in vivo pharmacological treatments and regeneration assays to show that morphological, transcriptional, and functional age-associated changes within vascular cells are key hallmarks of aging in B. schlosseri, and occur independent of genotype. We show that age-associated changes in the cytoskeleton and the extracellular matrix reshape vascular cells into a flattened and elongated form and there are major changes in the structure of the basement membrane over time. The vessels narrow, reducing blood flow, and become less responsive to stimuli inducing vascular regression. The extracorporeal vasculature is highly regenerative following injury, and while age does not affect the regeneration potential, newly regenerated vascular cells maintain the same aged phenotype, suggesting that aging of the vasculature is a result of heritable epigenetic changes.
Collapse
Affiliation(s)
- Delany Rodriguez
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Daryl A. Taketa
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Roopa Madhu
- Department of Physics and Astronomy, University of Denver, Denver, CO, United States
| | - Susannah Kassmer
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Dinah Loerke
- Department of Physics and Astronomy, University of Denver, Denver, CO, United States
| | - Megan T. Valentine
- Department of Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Anthony W. De Tomaso
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, United States
| |
Collapse
|
6
|
Peronato A, Franchi N, Loriano B. BsTLR1: A new member of the TLR family of recognition proteins from the colonial ascidian Botryllus schlosseri. FISH & SHELLFISH IMMUNOLOGY 2020; 106:967-974. [PMID: 32919053 DOI: 10.1016/j.fsi.2020.09.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 08/11/2020] [Accepted: 09/06/2020] [Indexed: 06/11/2023]
Abstract
Toll-like receptors (TLRs) represent a well-known family of conserved pattern recognition receptors the importance of which, in non-self recognition, was demonstrated in both vertebrates and invertebrates. Tunicates represent the vertebrate sister group and, as invertebrates, they rely only on innate immunity for their defence. As regards TLRs, two transcripts have been described and characterised in the solitary species Ciona intestinalis, referred to as CiTLR1 and CiTLR2. Using the Ciona TLR nucleotide sequences, we mined our available transcriptome of the colonial ascidian Botryllus schlosseri looking for similar sequences. We were able to identify a sequence, with similarity to CiTLR2 and, through in silico transduction and subsequent sequence analysis, we studied the domain content of the putative protein. The sequence, called BsTLR1, has a TIR and a transmembrane domain, four LLR and two LRR-CT domains. It is actively transcribed by both phagocytes and morula cells, the two circulating immunocyte types. In addition, we analysed bstlr1 transcription in vivo and in vitro, in different phases of the Botryllus blastogenetic cycle and under various experimental conditions. Our data show that there is a change in gene expression and mRNA location, according to the blastogenetic phase. Furthermore, we used a commercial antibody raised against the ectodomain of hTLR5 to study the possible functional role of Botryllus TLR(s). We observed that anti-hTLR5 significantly decreased in vitro phagocytosis and morula cell degranulation, two typical responses to the recognition of nonself. Collectively, our data add new information on the mechanisms of nonself recognition in a colonial ascidian.
Collapse
|
7
|
Insights into the Complement System of Tunicates: C3a/C5aR of the Colonial Ascidian Botryllus schlosseri. BIOLOGY 2020; 9:biology9090263. [PMID: 32882947 PMCID: PMC7565592 DOI: 10.3390/biology9090263] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/20/2020] [Accepted: 08/30/2020] [Indexed: 01/15/2023]
Abstract
As an evolutionary ancient component of the metazoan immune defense toolkit, the complement system can modulate cells and humoral responses of both innate and (in jawed vertebrates) adaptive immunity. All the three known complement-activation pathways converge on the cleavage of C3 to C3a and C3b. The anaphylatoxin C3a behaves as a chemokine in inflammatory responses, whereas C3b exerts an opsonic role and, ultimately, can activate the lytic pathway. C3aR, one of the mammalian receptors for C3a, is a member of the G-protein-coupled receptor family sharing seven transmembrane alpha helixes. C3aR can act as a chemokine and recruit neutrophils, triggering degranulation and respiratory burst, which initiates an inflammatory reaction. Mining the transcriptome of the colonial ascidian Botryllus schlosseri, we identified a transcript showing homology with both mammalian C3aR and C5aR. The gene (bsc3/c5ar) is actively transcribed in morula cells, the circulating immunocyte triggering the inflammatory reactions in response to the recognition of nonself. Its transcription is modulated during the recurrent cycles of asexual reproduction known as blastogenetic cycles. Moreover, the treatment of hemocytes with C3aR agonist, induces a significant increase in the transcription of BsC3, revealing the presence of an autocrine feedback system able to modulate the expression of C3 in order to obtain a rapid clearance of potentially dangerous nonself cells or particles. The obtained results support the previously proposed role of complement as one of the main humoral components of the immune response in tunicates and stress the importance of morula cells in botryllid ascidian innate immunity.
Collapse
|
8
|
Rodriguez D, Nourizadeh S, De Tomaso AW. The biology of the extracorporeal vasculature of Botryllus schlosseri. Dev Biol 2019; 448:309-319. [PMID: 30760410 DOI: 10.1016/j.ydbio.2018.10.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 09/29/2018] [Accepted: 10/17/2018] [Indexed: 02/08/2023]
Abstract
The extracorporeal vasculature of the colonial ascidian Botryllus schlosseri plays a key role in several biological processes: transporting blood, angiogenesis, regeneration, self-nonself recognition, and parabiosis. The vasculature also interconnects all individuals in a colony and is composed of a single layer of ectodermally-derived cells. These cells form a tube with the basal lamina facing the lumen, and the apical side facing an extracellular matrix that consists of cellulose and other proteins, known as the tunic. Vascular tissue is transparent and can cover several square centimeters, which is much larger than any single individual within the colony. It forms a network that ramifies and expands to the perimeter of each colony and terminates into oval-shaped protrusions known as ampullae. Botryllus individuals replace themselves through a weekly budding cycle, and vasculature is added to ensure the interconnection of each new individual, thus there is continuous angiogenesis occurring naturally. The vascular tissue itself is highly regenerative; surgical removal of the ampullae and peripheral vasculature triggers regrowth within 24-48 h, which includes forming new ampullae. When two individuals, whether in the wild or in the lab, come into close contact and their ampullae touch, they can either undergo parabiosis through anastomosing vessels, or reject vascular fusion. The vasculature is easily manipulated by direct means such as microinjections, microsurgeries, and pharmacological reagents. Its transparent nature allows for in vivo analysis by bright field and fluorescence microscopy. Here we review the techniques and approaches developed to study the different biological processes that involve the extracorporeal vasculature.
Collapse
Affiliation(s)
- Delany Rodriguez
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA.
| | - Shane Nourizadeh
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Anthony W De Tomaso
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| |
Collapse
|
9
|
Rodriguez D, Braden BP, Boyer SW, Taketa DA, Setar L, Calhoun C, Maio AD, Langenbacher A, Valentine MT, De Tomaso AW. In vivo manipulation of the extracellular matrix induces vascular regression in a basal chordate. Mol Biol Cell 2017; 28:1883-1893. [PMID: 28615322 PMCID: PMC5541839 DOI: 10.1091/mbc.e17-01-0009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 06/05/2017] [Accepted: 06/05/2017] [Indexed: 01/07/2023] Open
Abstract
We investigated the physical role of the extracellular matrix (ECM) in vascular homeostasis in the basal chordate Botryllus schlosseri, which has a large, transparent, extracorporeal vascular network encompassing an area >100 cm2 We found that the collagen cross-linking enzyme lysyl oxidase is expressed in all vascular cells and that in vivo inhibition using β-aminopropionitrile (BAPN) caused a rapid, global regression of the entire network, with some vessels regressing >10 mm within 16 h. BAPN treatment changed the ultrastructure of collagen fibers in the vessel basement membrane, and the kinetics of regression were dose dependent. Pharmacological inhibition of both focal adhesion kinase (FAK) and Raf also induced regression, and levels of phosphorylated FAK in vascular cells decreased during BAPN treatment and FAK inhibition but not Raf inhibition, suggesting that physical changes in the vessel ECM are detected via canonical integrin signaling pathways. Regression is driven by apoptosis and extrusion of cells through the basal lamina, which are then engulfed by blood-borne phagocytes. Extrusion and regression occurred in a coordinated manner that maintained vessel integrity, with no loss of barrier function. This suggests the presence of regulatory mechanisms linking physical changes to a homeostatic, tissue-level response.
Collapse
Affiliation(s)
- Delany Rodriguez
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106
| | - Brian P Braden
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106
| | - Scott W Boyer
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106
| | - Daryl A Taketa
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106
| | - Leah Setar
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106
| | - Chris Calhoun
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106
| | - Alessandro Di Maio
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106
| | - Adam Langenbacher
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106
| | - Megan T Valentine
- Department of Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106
| | - Anthony W De Tomaso
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106
| |
Collapse
|
10
|
Cima F, Ballarin L, Caicci F, Franchi N, Gasparini F, Rigon F, Schiavon F, Manni L. Life history and ecological genetics of the colonial ascidian Botryllus schlosseri. ZOOL ANZ 2015. [DOI: 10.1016/j.jcz.2015.04.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
11
|
Kipryushina YO, Yakovlev KV, Odintsova NA. Vascular endothelial growth factors: A comparison between invertebrates and vertebrates. Cytokine Growth Factor Rev 2015; 26:687-95. [PMID: 26066416 DOI: 10.1016/j.cytogfr.2015.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 04/21/2015] [Indexed: 01/08/2023]
Abstract
This review aims to summarize recent data concerning the structure and role of the members of the vascular endothelial growth factor (VEGF) and vascular endothelial growth factor receptor (VEGFR) families in the context of early development, organogenesis and regeneration, with a particular emphasis on the role of these factors in the development of invertebrates. Homologs of VEGF and/or VEGFR have been found in all Eumetazoa, in both Radiata and Bilateria, where they are expressed in the descendants of different germ layers and play a pivotal role in the development of animals with and without a vascular system. VEGF is a well-known angiogenesis regulator, but this factor also control cell migration during neurogenesis and the development of branching organs (the trachea) in invertebrate and vertebrate species. A possible explanation for the origin of Vegf/Vegfr in the animal kingdom and a pathway of Vegf/Vegfr evolution are discussed.
Collapse
Affiliation(s)
- Yulia O Kipryushina
- Laboratory of Cytotechnology, A.V. Zhirmunsky Institute of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, Palchevsky Str. 17, 690041 Vladivostok, Russia; Far Eastern Federal University, Sukhanova Str. 8, 690950 Vladivostok, Russia.
| | - Konstantin V Yakovlev
- Laboratory of Cytotechnology, A.V. Zhirmunsky Institute of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, Palchevsky Str. 17, 690041 Vladivostok, Russia
| | - Nelly A Odintsova
- Laboratory of Cytotechnology, A.V. Zhirmunsky Institute of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, Palchevsky Str. 17, 690041 Vladivostok, Russia; Far Eastern Federal University, Sukhanova Str. 8, 690950 Vladivostok, Russia
| |
Collapse
|
12
|
Gasparini F, Caicci F, Rigon F, Zaniolo G, Manni L. Testing an unusual in vivo vessel network model: a method to study angiogenesis in the colonial tunicate Botryllus schlosseri. Sci Rep 2014; 4:6460. [PMID: 25248762 PMCID: PMC4173039 DOI: 10.1038/srep06460] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 08/28/2014] [Indexed: 12/25/2022] Open
Abstract
Tunicates are the closest relatives to vertebrates and include the only chordate species able to reproduce both sexually and asexually. The colonial tunicate Botryllus schlosseri is embedded in a transparent extracellular matrix (the tunic) containing the colonial circulatory system (CCS). The latter is a network of vessels external to zooids, limited by a simple, flat epithelium that originated from the epidermis. The CCS propagates and regenerates by remodelling and extending the vessel network through the mechanism of sprouting, which typically characterises vertebrate angiogenesis. In exploiting the characteristics of B. schlosseri as a laboratory model, we present a new experimental and analysis method based on the ability to obtain genetically identical subclones representing paired samples for the appropriate quantitative outcome statistical analysis. The method, tested using human VEGF and EGF to induce angiogenesis, shows that the CCS provides a useful in vivo vessel network model for testing the effects of specific injected solutes on vessel dynamics. These results show the potentiality of B. schlosseri CCS as an effective complementary model for in vivo studies on angiogenesis and anticancer therapy. We discuss this potentiality, taking into consideration the origin, nature, and roles of the cellular and molecular agents involved in CCS growth.
Collapse
Affiliation(s)
- Fabio Gasparini
- Dipartimento di Biologia, Università degli Studi di Padova, Via Ugo Bassi 58/B, 35131, Padova, Italy
| | - Federico Caicci
- Dipartimento di Biologia, Università degli Studi di Padova, Via Ugo Bassi 58/B, 35131, Padova, Italy
| | - Francesca Rigon
- CORIT-Consortium for Research in Organ Transplantation, Legnaro, 35020 Padova, Italy
| | - Giovanna Zaniolo
- Dipartimento di Biologia, Università degli Studi di Padova, Via Ugo Bassi 58/B, 35131, Padova, Italy
| | - Lucia Manni
- Dipartimento di Biologia, Università degli Studi di Padova, Via Ugo Bassi 58/B, 35131, Padova, Italy
| |
Collapse
|
13
|
Gasparini F, Manni L, Cima F, Zaniolo G, Burighel P, Caicci F, Franchi N, Schiavon F, Rigon F, Campagna D, Ballarin L. Sexual and asexual reproduction in the colonial ascidian Botryllus schlosseri. Genesis 2014; 53:105-20. [PMID: 25044771 DOI: 10.1002/dvg.22802] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 07/01/2014] [Accepted: 07/07/2014] [Indexed: 12/19/2022]
Abstract
The colonial tunicate Botryllus schlosseri is a widespread filter-feeding ascidian that lives in shallow waters and is easily reared in aquaria. Its peculiar blastogenetic cycle, characterized by the presence of three blastogenetic generations (filtering adults, buds, and budlets) and by recurrent generation changes, has resulted in over 60 years of studies aimed at understanding how sexual and asexual reproduction are coordinated and regulated in the colony. The possibility of using different methodological approaches, from classical genetics to cell transplantation, contributed to the development of this species as a valuable model organism for the study of a variety of biological processes. Here, we review the main studies detailing rearing, staging methods, reproduction and colony growth of this species, emphasizing the asymmetry in sexual and asexual reproduction potential, sexual reproduction in the field and the laboratory, and self- and cross-fertilization. These data, opportunely matched with recent tanscriptomic and genomic outcomes, can give a valuable help to the elucidation of some important steps in chordate evolution.
Collapse
|
14
|
Manni L, Gasparini F, Hotta K, Ishizuka KJ, Ricci L, Tiozzo S, Voskoboynik A, Dauga D. Ontology for the asexual development and anatomy of the colonial chordate Botryllus schlosseri. PLoS One 2014; 9:e96434. [PMID: 24789338 PMCID: PMC4006837 DOI: 10.1371/journal.pone.0096434] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 04/07/2014] [Indexed: 12/13/2022] Open
Abstract
Ontologies provide an important resource to integrate information. For developmental biology and comparative anatomy studies, ontologies of a species are used to formalize and annotate data that are related to anatomical structures, their lineage and timing of development. Here, we have constructed the first ontology for anatomy and asexual development (blastogenesis) of a bilaterian, the colonial tunicate Botryllus schlosseri. Tunicates, like Botryllus schlosseri, are non-vertebrates and the only chordate taxon species that reproduce both sexually and asexually. Their tadpole larval stage possesses structures characteristic of all chordates, i.e. a notochord, a dorsal neural tube, and gill slits. Larvae settle and metamorphose into individuals that are either solitary or colonial. The latter reproduce both sexually and asexually and these two reproductive modes lead to essentially the same adult body plan. The Botryllus schlosseri Ontology of Development and Anatomy (BODA) will facilitate the comparison between both types of development. BODA uses the rules defined by the Open Biomedical Ontologies Foundry. It is based on studies that investigate the anatomy, blastogenesis and regeneration of this organism. BODA features allow the users to easily search and identify anatomical structures in the colony, to define the developmental stage, and to follow the morphogenetic events of a tissue and/or organ of interest throughout asexual development. We invite the scientific community to use this resource as a reference for the anatomy and developmental ontology of B. schlosseri and encourage recommendations for updates and improvements.
Collapse
Affiliation(s)
- Lucia Manni
- Department of Biology, University of Padova, Padova, Italy
| | | | - Kohji Hotta
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Kouhoku-ku, Yokohama, Japan
| | - Katherine J. Ishizuka
- Institute for Stem Cell Biology and Regenerative Medicine, and Hopkins Marine Station, Stanford, California, United States of America
| | - Lorenzo Ricci
- Centre National de la Recherche Scientifique, Sorbonne Universités, Université Pierre et Marie Curie (University of Paris 06), Laboratoire de Biologie du Développement de Villefranche-sur-mer, Observatoire Océanographique, Villefranche-sur-mer, France
| | - Stefano Tiozzo
- Centre National de la Recherche Scientifique, Sorbonne Universités, Université Pierre et Marie Curie (University of Paris 06), Laboratoire de Biologie du Développement de Villefranche-sur-mer, Observatoire Océanographique, Villefranche-sur-mer, France
| | - Ayelet Voskoboynik
- Institute for Stem Cell Biology and Regenerative Medicine, and Hopkins Marine Station, Stanford, California, United States of America
| | | |
Collapse
|
15
|
Braden BP, Taketa DA, Pierce JD, Kassmer S, Lewis DD, De Tomaso AW. Vascular regeneration in a basal chordate is due to the presence of immobile, bi-functional cells. PLoS One 2014; 9:e95460. [PMID: 24736432 PMCID: PMC3988187 DOI: 10.1371/journal.pone.0095460] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 03/27/2014] [Indexed: 11/18/2022] Open
Abstract
The source of tissue turnover during homeostasis or following injury is usually due to proliferation of a small number of resident, lineage-restricted stem cells that have the ability to amplify and differentiate into mature cell types. We are studying vascular regeneration in a chordate model organism, Botryllus schlosseri, and have previously found that following surgical ablation of the extracorporeal vasculature, new tissue will regenerate in a VEGF-dependent process within 48 hrs. Here we use a novel vascular cell lineage tracing methodology to assess regeneration in parabiosed individuals and demonstrate that the source of regenerated vasculature is due to the proliferation of pre-existing vascular resident cells and not a mobile progenitor. We also show that these cells are bi-potential, and can reversibly adopt two fates, that of the newly forming vessels or the differentiated vascular tissue at the terminus of the vasculature, known as ampullae. In addition, we show that pre-existing vascular resident cells differentially express progenitor and differentiated cell markers including the Botryllus homologs of CD133, VEGFR-2, and Cadherin during the regenerative process.
Collapse
Affiliation(s)
- Brian P. Braden
- Department of Molecular, Cellular, Developmental Biology, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Daryl A. Taketa
- Department of Molecular, Cellular, Developmental Biology, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - James D. Pierce
- Department of Molecular, Cellular, Developmental Biology, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Susannah Kassmer
- Department of Molecular, Cellular, Developmental Biology, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Daniel D. Lewis
- Department of Molecular, Cellular, Developmental Biology, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Anthony W. De Tomaso
- Department of Molecular, Cellular, Developmental Biology, University of California Santa Barbara, Santa Barbara, California, United States of America
| |
Collapse
|
16
|
Vascular Endothelial Growth Factor Receptor Family in Ascidians, Halocynthia roretzi (Sea Squirt). Its High Expression in Circulatory System-Containing Tissues. Int J Mol Sci 2013; 14:4841-53. [PMID: 23455462 PMCID: PMC3634500 DOI: 10.3390/ijms14034841] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 02/07/2013] [Accepted: 02/15/2013] [Indexed: 11/19/2022] Open
Abstract
The vascular endothelial growth factor (VEGF)-VEGF Receptor (VEGFR) system is an important pathway for regulation of angiogenesis. However, its evolutionary development, particularly the step from invertebrates to vertebrates, is still largely unknown. Here, we molecularly cloned the VEGFR-like gene from Halocynthia roretzi, a species belonging to the Tunicata, the chordate subphylum recently considered the sister group of vertebrates. The cDNA encoded a homolog of human VEGFR, including the transmembrane domain, and the tyrosine kinase domain with a kinase-insert region, which was designated S. sq VEGFR (GenBank AB374180). Similar to Tunicates including ascidians in the phylogenetic tree, the Amphioxus, another chordate, is located close to vertebrates. However, S. sq VEGFR has a higher homology than the Amphioxus VEGFR-like molecule (GenBank AB025557) to human VEGFR in the kinase domain-2 region. The S. sq VEGFR mRNA was expressed at highest levels in circulatory system-containing tissues, suggesting that S. sq VEGFR plays an important role in the formation or maintenance of circulatory system in Tunicates, Halocynthia roretzi.
Collapse
|
17
|
Adult neurogenesis: ultrastructure of a neurogenic niche and neurovascular relationships. PLoS One 2012; 7:e39267. [PMID: 22723980 PMCID: PMC3378523 DOI: 10.1371/journal.pone.0039267] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 05/22/2012] [Indexed: 01/06/2023] Open
Abstract
The first-generation precursors producing adult-born neurons in the crayfish (Procambarus clarkii) brain reside in a specialized niche located on the ventral surface of the brain. In the present work, we have explored the organization and ultrastructure of this neurogenic niche, using light-level, confocal and electron microscopic approaches. Our goals were to define characteristics of the niche microenvironment, examine the morphological relationships between the niche and the vasculature and observe specializations at the boundary between the vascular cavity located centrally in the niche. Our results show that the niche is almost fully encapsulated by blood vessels, and that cells in the vasculature come into contact with the niche. This analysis also characterizes the ultrastructure of the cell types in the niche. The Type I niche cells are by far the most numerous, and are the only cell type present superficially in the most ventral cell layers of the niche. More dorsally, Type I cells are intermingled with Types II, III and IV cells, which are observed far less frequently. Type I cells have microvilli on their apical cell surfaces facing the vascular cavity, as well as junctional complexes between adjacent cells, suggesting a role in regulating transport from the blood into the niche cells. These studies demonstrate a close relationship between the neurogenic niche and vascular system in P. clarkii. Furthermore, the specializations of niche cells contacting the vascular cavity are also typical of the interface between the blood/cerebrospinal fluid (CSF)-brain barriers of vertebrates, including cells of the subventricular zone (SVZ) producing new olfactory interneurons in mammals. These data indicate that tissues involved in producing adult-born neurons in the crayfish brain use strategies that may reflect fundamental mechanisms preserved in an evolutionarily broad range of species, as proposed previously. The studies described here extend our understanding of neurovascular relationships in the brain of P. clarkii by characterizing the organization and ultrastructure of the neurogenic niche and associated vascular tissues.
Collapse
|
18
|
Gasparini F, Shimeld SM, Ruffoni E, Burighel P, Manni L. Expression of a Musashi-like gene in sexual and asexual development of the colonial chordate Botryllus schlosseri and phylogenetic analysis of the protein group. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2011; 316:562-73. [PMID: 21826788 DOI: 10.1002/jez.b.21431] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 06/24/2011] [Accepted: 06/29/2011] [Indexed: 12/12/2022]
Abstract
Tunicates are the unique chordates to possess species reproducing sexually and asexually. Among them, the colonial ascidian Botryllus schlosseri is a reference model for the study of similarities and differences in these two developmental pathways. We here illustrate the characterization and expression pattern during both pathways of a transcript for a gene orthologous to Dazap1. Dazap1 genes encode for RNA-binding proteins and fall into the Musashi-like (Msi-like) group. Our phylogenetic analysis shows that these are related to other RNA-binding proteins (Tardbp and several heterogeneous nuclear ribonucleoproteins types) that share the same modular domain structure of conserved tandem RNA Recognition Motifs (RRMs). We also classify the whole group as derived from a single ancient duplication of the RRM. Our results also show that Dazap1 is expressed with discrete spatiotemporal pattern during embryogenesis and blastogenesis of B. schlosseri. It is never expressed in wholly differentiated tissues, but it is located in all bud tissues and in different spatiotemporally defined territories of embryos and larva. These expression patterns could indicate different roles in the two processes, but an intriguing relationship appears if aspects of cell division dynamics are taken into account, suggesting that it is related to the proliferative phases in all tissues, and raising a similarity with known Dazap1 orthologs in other metazoans.
Collapse
Affiliation(s)
- Fabio Gasparini
- Dipartimento di Biologia, Università degli Studi di Padova, Italy.
| | | | | | | | | |
Collapse
|
19
|
Immune roles of a rhamnose-binding lectin in the colonial ascidian Botryllus schlosseri. Immunobiology 2011; 216:725-36. [DOI: 10.1016/j.imbio.2010.10.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 10/29/2010] [Indexed: 02/07/2023]
|
20
|
Kozlowski EO, Lima PC, Vicente CP, Lotufo T, Bao X, Sugahara K, Pavão MSG. Dermatan sulfate in tunicate phylogeny: order-specific sulfation pattern and the effect of [→4IdoA(2-sulfate)β-1→3GalNAc(4-sulfate)β-1→] motifs in dermatan sulfate on heparin cofactor II activity. BMC BIOCHEMISTRY 2011; 12:29. [PMID: 21619699 PMCID: PMC3127831 DOI: 10.1186/1471-2091-12-29] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 05/29/2011] [Indexed: 01/30/2023]
Abstract
Background Previously, we have reported the presence of highly sulfated dermatans in solitary ascidians from the orders Phlebobranchia (Phallusia nigra) and Stolidobranchia (Halocynthia pyriformis and Styela plicata). Despite the identical disaccharide backbone, consisting of [→4IdoA(2S)β-1→3GalNAcβ-1→], those polymers differ in the position of sulfation on the N-Acetyl galactosamine, which can occur at carbon 4 or 6. We have shown that position rather than degree of sulfation is important for heparin cofactor II activity. As a consequence, 2,4- and 2,6-sulfated dermatans have high and low heparin cofactor II activities, respectively. In the present study we extended the disaccharide analysis of ascidian dermatan sulfates to additional species of the orders Stolidobranchia (Herdmania pallida, Halocynthia roretzi) and Phlebobranchia (Ciona intestinalis), aiming to investigate how sulfation evolved within Tunicata. In addition, we analysed how heparin cofactor II activity responds to dermatan sulfates containing different proportions of 2,6- or 2,4-disulfated units. Results Disaccharide analyses indicated a high content of disulfated disaccharide units in the dermatan sulfates from both orders. However, the degree of sulfation decreased from Stolidobranchia to Phlebobranchia. While 76% of the disaccharide units in dermatan sulfates from stolidobranch ascidians are disulfated, 53% of disulfated disaccharides are found in dermatan sulfates from phlebobranch ascidians. Besides this notable difference in the sulfation degree, dermatan sulfates from phlebobranch ascidians contain mainly 2,6-sulfated disaccharides whereas dermatan sulfate from the stolidobranch ascidians contain mostly 2,4-sulfated disaccharides, suggesting that the biosynthesis of dermatan sulfates might be differently regulated during tunicates evolution. Changes in the position of sulfation on N-acetylgalactosamine in the disaccharide [→4IdoA(2-Sulfate)β-1→3GalNAcβ-1→] modulate heparin cofactor II activity of dermatan sulfate polymers. Thus, high and low heparin cofactor II stimulating activity is observed in 2,4-sulfated dermatan sulfates and 2,6-sulfated dermatan sulfates, respectively, confirming the clear correlation between the anticoagulant activities of dermatan sulfates and the presence of 2,4-sulfated units. Conclusions Our results indicate that in ascidian dermatan sulfates the position of sulfation on the GalNAc in the disaccharide [→4IdoA(2S)β-1→3GalNAcβ-1→] is directly related to the taxon and that the 6-O sulfation is a novelty apparently restricted to the Phlebobranchia. We also show that the increased content of [→4IdoA(2S)β-1→3GalNAc(4S)β-1→] disaccharide units in dermatan sulfates from Stolidobranchia accounts for the increased heparin cofactor II stimulating activity.
Collapse
Affiliation(s)
- Eliene O Kozlowski
- Laboratório de Bioquímica e Biologia Celular de Glicoconjugados, Hospital Universitário Clementino Fraga Filho and Programa de Glicobiologia, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | | | | |
Collapse
|
21
|
De Bock K, De Smet F, Leite De Oliveira R, Anthonis K, Carmeliet P. Endothelial oxygen sensors regulate tumor vessel abnormalization by instructing phalanx endothelial cells. J Mol Med (Berl) 2009; 87:561-9. [PMID: 19455291 DOI: 10.1007/s00109-009-0482-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Revised: 04/23/2009] [Accepted: 04/23/2009] [Indexed: 01/07/2023]
Abstract
An ancestral function of vessels is to conduct blood flow and supply oxygen (O(2)). In hypoxia, cells secrete angiogenic factors to initiate vessel sprouting. Angiogenic factors are balanced off by inhibitors, ensuring that vessels form optimally and supply sufficient oxygen (O(2)). By contrast, in tumors, excessive production of angiogenic factors induces vessels and their endothelial cell (EC) layer to become highly abnormal, thereby impairing tumor perfusion and oxygenation. In such pathological conditions, angiogenic factors act as "abnormalization factors" and promote the vessel "abnormalization switch." Recent genetic data indicate that ECs sense an imbalance in oxygen levels, by using the oxygen-sensing prolyl hydroxylase PHD2. In conditions of O(2) shortage, a decrease in PHD2 activity in ECs initiates a feedback that restores their shape, not their numbers. This induces ECs to align in a streamlined "phalanx" of tightly apposed, regularly ordered cobblestone ECs, which improves perfusion and oxygenation. As a result, EC normalization in PHD2 haplodeficient tumor vessels improves oxygenation and renders tumor cells less invasive and metastatic. This review discusses the role of PHD2 in the regulation of vessel (ab)normalization and the therapeutic potential of PHD2 inhibition for tumor invasiveness and metastasis.
Collapse
|
22
|
De Smet F, Segura I, De Bock K, Hohensinner PJ, Carmeliet P. Mechanisms of Vessel Branching. Arterioscler Thromb Vasc Biol 2009; 29:639-49. [DOI: 10.1161/atvbaha.109.185165] [Citation(s) in RCA: 283] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Filopodia, “the fingers that do the walking,” have been identified on endothelial cells at the tip of sprouting vessels for half a century, but the key role of the tip cell in vessel branching has been recognized only in the past few years. A model is emerging, whereby tip cells lead the way in a branching vessel, stalk cells elongate the sprout, and a very recently discovered phalanx cell ensures quiescence and perfusion of the newly formed branch. Recent genetic studies have shed light on the molecular signature of these distinct endothelial phenotypes; this provides a novel conceptual framework of how vessel morphogenesis occurs. Here, we will discuss the molecular candidates that participate in the decision of endothelial cells to adapt these distinct fates and highlight the emerging insights on how these cells send out filopodia while navigating.
Collapse
Affiliation(s)
| | | | - Katrien De Bock
- From the Vesalius Research Center, VIB, K.U. Leuven, Belgium
| | | | - Peter Carmeliet
- From the Vesalius Research Center, VIB, K.U. Leuven, Belgium
| |
Collapse
|
23
|
Tiozzo S, Voskoboynik A, Brown FD, De Tomaso AW. A conserved role of the VEGF pathway in angiogenesis of an ectodermally-derived vasculature. Dev Biol 2008; 315:243-55. [PMID: 18234178 DOI: 10.1016/j.ydbio.2007.12.035] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Revised: 12/13/2007] [Accepted: 12/22/2007] [Indexed: 10/22/2022]
Abstract
Angiogenesis, the growth and remodeling of a vascular network, is an essential process during development, growth and disease. Here we studied the role of the vascular endothelial growth factor receptor (VEGFR) in experimentally-induced angiogenesis in the colonial ascidian Botryllus schlosseri (Tunicata, Ascidiacea). The circulatory system of B. schlosseri is composed of two distinct, but interconnected regions: a plot of sinuses and lacunae which line the body, and a transparent, macroscopic extracorporeal vascular network. The vessels of the extracorporeal vasculature are morphologically inverted in comparison to the vasculature in vertebrates: they consist of a single layer of ectodermally-derived cells with the basal lamina lining the lumen of the vessel. We found that when the peripheral circulatory system of a colony is surgically removed, it can completely regenerate within 24 to 48 h and this regeneration is dependent on proper function of the VEGF pathway: siRNA-mediated knockdown of the VEGFR blocked vascular regeneration, and interfered with vascular homeostasis. In addition, a small molecule, the VEGFR kinase inhibitor PTK787/ZK222584, phenocopied the siRNA knockdown in a reversible manner. Despite the disparate germ layer origins and morphology of the vasculature, the developmental program of branching morphogenesis during angiogenesis is controlled by similar molecular mechanisms, suggesting that the function of the VEGF pathway may be co-opted during the regeneration of an ectoderm-derived tubular structure.
Collapse
Affiliation(s)
- Stefano Tiozzo
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | | | | | | |
Collapse
|