1
|
Yu D, Iwamura Y, Satou Y, Oda-Ishii I. Tbx15/18/22 shares a binding site with Tbx6-r.b to maintain expression of a muscle structural gene in ascidian late embryos. Dev Biol 2021; 483:1-12. [PMID: 34963554 DOI: 10.1016/j.ydbio.2021.12.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 12/10/2021] [Accepted: 12/23/2021] [Indexed: 12/25/2022]
Abstract
The ascidian larval tail contains muscle cells for swimming. Most of these muscle cells differentiate autonomously. The genetic program behind this autonomy has been studied extensively and the genetic cascade from maternal factors to initiation of expression of a muscle structural gene, Myl.c, has been uncovered; Myl.c expression is directed initially by transcription factor Tbx6-r.b at the 64-cell stage and then by the combined actions of Tbx6-r.b and Mrf from the gastrula to early tailbud stages. In the present study, we showed that transcription of Myl.c continued in late tailbud embryos and larvae, although a fusion protein of Tbx6-r.b and GFP was hardly detectable in late tailbud embryos. A knockdown experiment, reporter assay, and in vitro binding assay indicated that an essential cis-regulatory element of Myl.c that bound Tbx6-r.b in early embryos bound Tbx15/18/22 in late embryos to maintain expression of Myl.c. We also found that Tbx15/18/22 was controlled by Mrf, which constitutes a regulatory loop with Tbx6-r.b. Therefore, our data indicated that Tbx15/18/22 was activated initially under control of this regulatory loop as in the case of Myl.c, and then Tbx15/18/22 maintained the expression of Myl.c after Tbx6-r.b had disappeared. RNA-sequencing of Tbx15/18/22 morphant embryos revealed that many muscle structural genes were regulated similarly by Tbx15/18/22. Thus, the present study revealed the mechanisms of maintenance of transcription of muscle structural genes in late embryos in which Tbx15/18/22 takes the place of Tbx6-r.b.
Collapse
Affiliation(s)
- Deli Yu
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto, 606-8502, Japan
| | - Yuri Iwamura
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto, 606-8502, Japan
| | - Yutaka Satou
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto, 606-8502, Japan.
| | - Izumi Oda-Ishii
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto, 606-8502, Japan
| |
Collapse
|
2
|
Lebedeva T, Aman AJ, Graf T, Niedermoser I, Zimmermann B, Kraus Y, Schatka M, Demilly A, Technau U, Genikhovich G. Cnidarian-bilaterian comparison reveals the ancestral regulatory logic of the β-catenin dependent axial patterning. Nat Commun 2021; 12:4032. [PMID: 34188050 PMCID: PMC8241978 DOI: 10.1038/s41467-021-24346-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 05/30/2021] [Indexed: 11/09/2022] Open
Abstract
In animals, body axis patterning is based on the concentration-dependent interpretation of graded morphogen signals, which enables correct positioning of the anatomical structures. The most ancient axis patterning system acting across animal phyla relies on β-catenin signaling, which directs gastrulation, and patterns the main body axis. However, within Bilateria, the patterning logic varies significantly between protostomes and deuterostomes. To deduce the ancestral principles of β-catenin-dependent axial patterning, we investigate the oral–aboral axis patterning in the sea anemone Nematostella—a member of the bilaterian sister group Cnidaria. Here we elucidate the regulatory logic by which more orally expressed β-catenin targets repress more aborally expressed β-catenin targets, and progressively restrict the initially global, maternally provided aboral identity. Similar regulatory logic of β-catenin-dependent patterning in Nematostella and deuterostomes suggests a common evolutionary origin of these processes and the equivalence of the cnidarian oral–aboral and the bilaterian posterior–anterior body axes. The authors show in Nematostella that the more orally expressed β-catenin targets repress the more aborally expressed β-catenin targets, thus patterning the oral-aboral axis. This likely represents the common mechanism of β-catenin-dependent axial patterning shared by Cnidaria and Bilateria.
Collapse
Affiliation(s)
- Tatiana Lebedeva
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, Vienna, Austria
| | - Andrew J Aman
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, Vienna, Austria
| | - Thomas Graf
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, Vienna, Austria
| | - Isabell Niedermoser
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, Vienna, Austria
| | - Bob Zimmermann
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, Vienna, Austria
| | - Yulia Kraus
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, Vienna, Austria.,Department of Evolutionary Biology, Faculty of Biology, Lomonosov Moscow State University, Leninskiye gory 1/12, Moscow, Russia
| | - Magdalena Schatka
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, Vienna, Austria
| | - Adrien Demilly
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, Vienna, Austria
| | - Ulrich Technau
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, Vienna, Austria
| | - Grigory Genikhovich
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, Vienna, Austria.
| |
Collapse
|
3
|
Hashimoto H, Munro E. Differential Expression of a Classic Cadherin Directs Tissue-Level Contractile Asymmetry during Neural Tube Closure. Dev Cell 2020; 51:158-172.e4. [PMID: 31639367 DOI: 10.1016/j.devcel.2019.10.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 04/23/2019] [Accepted: 09/30/2019] [Indexed: 11/28/2022]
Abstract
Embryos control force generation at tissue boundaries, but how they do so remains poorly understood. Here we show how tissue-specific expression of the type II cadherin, Cadherin2, patterns actomyosin contractility along tissue boundaries to control zippering and neural tube closure in the basal chordate, Ciona robusta. Cadherin2 is differentially expressed and homotypically enriched in neural cells along the neural/epidermal (Ne/Epi) boundary, where RhoA and myosin are activated during zipper progression. Homotypically enriched Cadherin2 sequesters the Rho GTPase-activating protein, Gap21/23, to homotypic junctions. Gap21/23 in turn redirects RhoA/myosin activity to heterotypic Ne/Epi junctions. By activating myosin II along Ne/Epi junctions ahead of the zipper and inhibiting myosin II along newly formed Ne/Ne junctions behind the zipper, Cadherin2 promotes tissue-level contractile asymmetry to drive zipper progression. We propose that dynamic coupling of junction exchange to local changes in contractility may control fusion and separation of epithelia in many other contexts.
Collapse
Affiliation(s)
- Hidehiko Hashimoto
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA.
| | - Edwin Munro
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA; Committee on Development, Regeneration, and Stem Cell Biology, University of Chicago, Chicago, IL 60637, USA; Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
4
|
Satou Y. A gene regulatory network for cell fate specification in Ciona embryos. Curr Top Dev Biol 2020; 139:1-33. [DOI: 10.1016/bs.ctdb.2020.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
5
|
Initiation of the zygotic genetic program in the ascidian embryo. Semin Cell Dev Biol 2018; 84:111-117. [DOI: 10.1016/j.semcdb.2018.02.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 02/08/2018] [Accepted: 02/08/2018] [Indexed: 12/26/2022]
|
6
|
Oda-Ishii I, Abe T, Satou Y. Dynamics of two key maternal factors that initiate zygotic regulatory programs in ascidian embryos. Dev Biol 2018; 437:50-59. [PMID: 29550363 DOI: 10.1016/j.ydbio.2018.03.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/12/2018] [Accepted: 03/12/2018] [Indexed: 12/21/2022]
Abstract
In animal embryos, transcription is repressed for a definite period of time after fertilization. In the embryo of the ascidian, Ciona intestinalis (type A; or Ciona robusta), transcription of regulatory genes is repressed before the 8- or 16-cell stages. This initial transcriptional quiescence is important to enable the establishment of initial differential gene expression patterns along the animal-vegetal axis by maternal factors, because the third cell division separates the animal and vegetal hemispheres into distinct blastomeres. Indeed, maternal transcription factors directly activate zygotic gene expression by the 16-cell stage; Tcf7/β-catenin activates genes in the vegetal hemisphere, and Gata.a activates genes in the animal hemisphere. In the present study, we revealed the dynamics of Gata.a and β-catenin, and expression profiles of their target genes precisely. β-catenin began to translocate into the nuclei at the 16-cell stage, and thus expression of β-catenin targets began at the 16-cell stage. Although Gata.a is abundantly present before the 8-cell stage, transcription of Gata.a targets was repressed at and before the 4-cell stage, and their expression began at the 8-cell stage. Transcription of the β-catenin targets may be repressed by the same mechanism in early embryos, because β-catenin targets were not expressed in 4-cell embryos treated with a GSK inhibitor, in which β-catenin translocated to the nuclei. Thus, these two maternal factors have different dynamics, which establish the pre-pattern for zygotic genetic programs in 16-cell embryos.
Collapse
Affiliation(s)
- Izumi Oda-Ishii
- Department of Zoology, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Tetsuya Abe
- Department of Zoology, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Yutaka Satou
- Department of Zoology, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
7
|
DNA interference-mediated screening of maternal factors in the chordate Oikopleura dioica. Sci Rep 2017; 7:44226. [PMID: 28281645 PMCID: PMC5345011 DOI: 10.1038/srep44226] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 02/06/2017] [Indexed: 01/26/2023] Open
Abstract
The maternal contribution to the oocyte cytoplasm plays an important role during embryogenesis because it is involved in early cell fate specification and embryonic axis establishment. However, screening projects targeting maternal factors have only been conducted in a limited number of animal models, such as nematodes, fruit flies, and zebrafish, while few maternal genes have been analysed because of difficulties encountered in inhibiting gene products already expressed in the ovaries. Therefore, simple and efficient methods for large-scale maternal screening are necessary. The appendicularian Oikopleura dioica is a planktonic tunicate member of the chordates. Gonadal microinjection and a novel gene knockdown method, DNA interference (DNAi), have been developed for use in this animal with the aim of inhibiting gene functions during oogenesis within the gonad. In this study, we adapted these methods for large-scale maternal factor screening, and observed malformation phenotypes related to some maternal factors. Approximately 2000 (56.9%) ovary-enriched gene products were screened, of which the knockdown of seven encoding genes resulted in various abnormalities during embryonic development. Most of these were related to microtubules and cell adhesion-related proteins. We conclude that DNAi is a potentially powerful screening tool for the identification of novel maternal factors in chordates.
Collapse
|
8
|
Dumollard R, Minc N, Salez G, Aicha SB, Bekkouche F, Hebras C, Besnardeau L, McDougall A. The invariant cleavage pattern displayed by ascidian embryos depends on spindle positioning along the cell's longest axis in the apical plane and relies on asynchronous cell divisions. eLife 2017; 6. [PMID: 28121291 PMCID: PMC5319837 DOI: 10.7554/elife.19290] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 01/24/2017] [Indexed: 12/24/2022] Open
Abstract
The ascidian embryo is an ideal system to investigate how cell position is determined during embryogenesis. Using 3D timelapse imaging and computational methods we analyzed the planar cell divisions in ascidian early embryos and found that spindles in every cell tend to align at metaphase in the long length of the apical surface except in cells undergoing unequal cleavage. Furthermore, the invariant and conserved cleavage pattern of ascidian embryos was found to consist in alternate planar cell divisions between ectoderm and endomesoderm. In order to test the importance of alternate cell divisions we manipulated zygotic transcription induced by β-catenin or downregulated wee1 activity, both of which abolish this cell cycle asynchrony. Crucially, abolishing cell cycle asynchrony consistently disrupted the spindle orienting mechanism underpinning the invariant cleavage pattern. Our results demonstrate how an evolutionary conserved cell cycle asynchrony maintains the invariant cleavage pattern driving morphogenesis of the ascidian blastula. DOI:http://dx.doi.org/10.7554/eLife.19290.001 The position of cells within an embryo early in development determines what type of cells they will become in the fully formed embryo. The embryos of ascidians, commonly known as sea squirts, are ideal for studying what influences cell positioning. These embryos consist of a small number of cells that divide according to an “invariant cleavage pattern”, which means that the positioning and timing of the cell divisions is identical between different individuals of the same species. The pattern of cell division is also largely the same across different ascidian species, which raises questions about how it is controlled. When a cell divides, a structure called the spindle forms inside it to distribute copies of the cell’s genetic material between the new cells. The orientation of the spindle determines the direction in which the cell will divide. Now, by combining 3D imaging of living ascidian embryos with computational modeling, Dumollard et al. show that the spindles in every equally dividing cell tend to all align in the long length of the cell’s “apical” surface. Such alignment allows the cells to be on the outside of the embryo and implements the ascidian invariant cleavage pattern. The cells in the embryo do not all divide at the same time. Indeed, the shape of the cells (and especially their apical surface) depends on two layers of cells in the embryo not dividing at the same time; instead, periods of cell division alternate between the layers. A network of genes in the embryo regulates the timing of these cell divisions and makes it possible for the cells to divide according to an invariant cleavage pattern. However, this network of genes is not the only control mechanism that shapes the early embryo. A structure found in egg cells (and hence produced by the embryo’s mother) causes cells at the rear of the embryo to divide unequally, and this influences the shape of all the cells in the embryo. Thus it appears that maternal mechanisms work alongside the embryo’s gene network to shape the early embryo. The next step will be to determine how physical forces – for example, from the cells pressing against each other – influence the position of the embryo’s cells. How do gene networks relay the biomechanical properties of the embryo to help it take shape? DOI:http://dx.doi.org/10.7554/eLife.19290.002
Collapse
Affiliation(s)
- Rémi Dumollard
- Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV) UMR7009, Sorbonne Universités, Université Pierre-et-Marie-Curie, CNRS, Villefranche sur mer, France
| | - Nicolas Minc
- Institut Jacques Monod, UMR7592 CNRS, Paris, France
| | - Gregory Salez
- Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV) UMR7009, Sorbonne Universités, Université Pierre-et-Marie-Curie, CNRS, Villefranche sur mer, France
| | - Sameh Ben Aicha
- Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV) UMR7009, Sorbonne Universités, Université Pierre-et-Marie-Curie, CNRS, Villefranche sur mer, France
| | - Faisal Bekkouche
- Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV) UMR7009, Sorbonne Universités, Université Pierre-et-Marie-Curie, CNRS, Villefranche sur mer, France
| | - Céline Hebras
- Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV) UMR7009, Sorbonne Universités, Université Pierre-et-Marie-Curie, CNRS, Villefranche sur mer, France
| | - Lydia Besnardeau
- Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV) UMR7009, Sorbonne Universités, Université Pierre-et-Marie-Curie, CNRS, Villefranche sur mer, France
| | - Alex McDougall
- Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV) UMR7009, Sorbonne Universités, Université Pierre-et-Marie-Curie, CNRS, Villefranche sur mer, France
| |
Collapse
|
9
|
Abstract
Asymmetric cell division during embryogenesis contributes to cell diversity by generating daughter cells that adopt distinct developmental fates. In this chapter, we summarize current knowledge of three examples of asymmetric cell division occurring in ascidian early embryos: (1) Three successive cell divisions that are asymmetric in terms of cell fate and unequal in cell size in the germline lineage at the embryo posterior pole. A subcellular structure, the centrosome-attracting body (CAB), and maternal PEM mRNAs localized within it control both the positioning of the cell division planes and segregation of the germ cell fates. (2) Asymmetric cell divisions involving endoderm and mesoderm germ layer separation. Asymmetric partitioning of zygotically expressed mRNA for Not, a homeodomain transcription factor, promotes the mesoderm fate and suppresses the endoderm fate. This asymmetric partitioning is mediated by transient nuclear migration toward the mesodermal pole of the mother cell, where the mRNA is delivered. In this case, there is no special regulation of cleavage plane orientation. (3) Asymmetric cell divisions in the marginal region of the vegetal hemisphere. The directed extracellular FGF and ephrin signals polarize the mother cells, inducing distinct fates in a pair of daughter cells (nerve versus notochord and mesenchyme versus muscle). The directions of cell division are regulated and oriented but independently of FGF and ephrin signaling. In these examples, polarization of the mother cells is facilitated by localized maternal factors, by delivery of transcripts from the nucleus to one pole of each cell, and by directed extracellular signals. Two cellular processes-asymmetric fate allocation and orientation of the cell division plane-are coupled by a single factor in the first example, but these processes are regulated independently in the third example. Thus, various modes of asymmetric cell division operate even at the early developmental stages in this single type of organism.
Collapse
Affiliation(s)
- Takefumi Negishi
- Division of Morphogenesis, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Hiroki Nishida
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-Cho, Toyonaka, Osaka, 560-0043, Japan.
| |
Collapse
|
10
|
Perry KJ, Lyons DC, Truchado-Garcia M, Fischer AHL, Helfrich LW, Johansson KB, Diamond JC, Grande C, Henry JQ. Deployment of regulatory genes during gastrulation and germ layer specification in a model spiralian mollusc Crepidula. Dev Dyn 2016. [PMID: 26197970 DOI: 10.1002/dvdy.24308] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND During gastrulation, endoderm and mesoderm are specified from a bipotential precursor (endomesoderm) that is argued to be homologous across bilaterians. Spiralians also generate mesoderm from ectodermal precursors (ectomesoderm), which arises near the blastopore. While a conserved gene regulatory network controls specification of endomesoderm in deuterostomes and ecdysozoans, little is known about genes controlling specification or behavior of either source of spiralian mesoderm or the digestive tract. RESULTS Using the mollusc Crepidula, we examined conserved regulatory factors and compared their expression to fate maps to score expression in the germ layers, blastopore lip, and digestive tract. Many genes were expressed in both ecto- and endomesoderm, but only five were expressed in ectomesoderm exclusively. The latter may contribute to epithelial-to-mesenchymal transition seen in ectomesoderm. CONCLUSIONS We present the first comparison of genes expressed during spiralian gastrulation in the context of high-resolution fate maps. We found variation of genes expressed in the blastopore lip, mouth, and cells that will form the anus. Shared expression of many genes in both mesodermal sources suggests that components of the conserved endomesoderm program were either co-opted for ectomesoderm formation or that ecto- and endomesoderm are derived from a common mesodermal precursor that became subdivided into distinct domains during evolution.
Collapse
Affiliation(s)
- Kimberly J Perry
- University of Illinois, Department of Cell and Developmental Biology, Urbana, Illinois
| | | | - Marta Truchado-Garcia
- Departamento de Biología Molecular and Centro de Biología Molecular, "Severo Ochoa" (CSIC, Universidad Autónoma de Madrid), Madrid, Spain
| | - Antje H L Fischer
- Department of Metabolic Biochemistry, Ludwig-Maximilians-University, Munich, Germany.,Marine Biological Laboratory, Woods Hole, Massachusetts
| | | | - Kimberly B Johansson
- Marine Biological Laboratory, Woods Hole, Massachusetts.,Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts
| | | | - Cristina Grande
- Departamento de Biología Molecular and Centro de Biología Molecular, "Severo Ochoa" (CSIC, Universidad Autónoma de Madrid), Madrid, Spain
| | - Jonathan Q Henry
- University of Illinois, Department of Cell and Developmental Biology, Urbana, Illinois
| |
Collapse
|
11
|
Song JL, Nigam P, Tektas SS, Selva E. microRNA regulation of Wnt signaling pathways in development and disease. Cell Signal 2015; 27:1380-91. [PMID: 25843779 PMCID: PMC4437805 DOI: 10.1016/j.cellsig.2015.03.018] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 03/24/2015] [Accepted: 03/24/2015] [Indexed: 12/19/2022]
Abstract
Wnt signaling pathways and microRNAs (miRNAs) are critical regulators of development. Aberrant Wnt signaling pathways and miRNA levels lead to developmental defects and diverse human pathologies including but not limited to cancer. Wnt signaling pathways regulate a plethora of cellular processes during embryonic development and maintain homeostasis of adult tissues. A majority of Wnt signaling components are regulated by miRNAs which are small noncoding RNAs that are expressed in both animals and plants. In animal cells, miRNAs fine tune gene expression by pairing primarily to the 3'untranslated region of protein coding mRNAs to repress target mRNA translation and/or induce target degradation. miRNA-mediated regulation of signaling transduction pathways is important in modulating dose-sensitive response of cells to signaling molecules. This review discusses components of the Wnt signaling pathways that are regulated by miRNAs in the context of development and diseases. A fundamental understanding of miRNA functions in Wnt signaling transduction pathways may yield new insight into crosstalks of regulatory mechanisms essential for development and disease pathophysiology leading to novel therapeutics.
Collapse
Affiliation(s)
- Jia L Song
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA.
| | - Priya Nigam
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Senel S Tektas
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Erica Selva
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
12
|
Di Maio A, Setar L, Tiozzo S, De Tomaso AW. Wnt affects symmetry and morphogenesis during post-embryonic development in colonial chordates. EvoDevo 2015; 6:17. [PMID: 26171140 PMCID: PMC4499891 DOI: 10.1186/s13227-015-0009-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 04/09/2015] [Indexed: 12/26/2022] Open
Abstract
Background Wnt signaling is one of the earliest and most highly conserved regulatory pathways for the establishment of the body axes during regeneration and early development. In regeneration, body axes determination occurs independently of tissue rearrangement and early developmental cues. Modulation of the Wnt signaling in either process has shown to result in unusual body axis phenotypes. Botryllus schlosseri is a colonial ascidian that can regenerate its entire body through asexual budding. This processes leads to an adult body via a stereotypical developmental pathway (called blastogenesis), without proceeding through any embryonic developmental stages. Results In this study, we describe the role of the canonical Wnt pathway during the early stages of asexual development. We characterized expression of three Wnt ligands (Wnt2B, Wnt5A, and Wnt9A) by in situ hybridization and qRT-PCR. Chemical manipulation of the pathway resulted in atypical budding due to the duplication of the A/P axes, supernumerary budding, and loss of the overall cell apical-basal polarity. Conclusions Our results suggest that Wnt signaling is used for equivalent developmental processes both during embryogenesis and asexual development in an adult organism, suggesting that patterning mechanisms driving morphogenesis are conserved, independent of embryonic, or regenerative development. Electronic supplementary material The online version of this article (doi:10.1186/s13227-015-0009-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alessandro Di Maio
- School of Bioscience, University of Birmingham, Edgbaston, Birmingham, B19 2TT UK.,Molecular Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA 93106 USA
| | - Leah Setar
- Molecular Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA 93106 USA
| | - Stefano Tiozzo
- CNRS, Sorbonne Universités, UPMC Univ Paris 06, Laboratoire de Biologie du Développement de Villefranche-sur-mer, Observatoire Océanographique, 06230 Villefranche-sur-mer, France
| | - Anthony W De Tomaso
- Molecular Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA 93106 USA
| |
Collapse
|
13
|
Satou Y, Imai KS. Gene regulatory systems that control gene expression in the Ciona embryo. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2015; 91:33-51. [PMID: 25748582 PMCID: PMC4406867 DOI: 10.2183/pjab.91.33] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 11/05/2014] [Indexed: 06/04/2023]
Abstract
Transcriptional control of gene expression is one of the most important regulatory systems in animal development. Specific gene expression is basically determined by combinatorial regulation mediated by multiple sequence-specific transcription factors. The decoding of animal genomes has provided an opportunity for us to systematically examine gene regulatory networks consisting of successive layers of control of gene expression. It remains to be determined to what extent combinatorial regulation encoded in gene regulatory networks can explain spatial and temporal gene-expression patterns. The ascidian Ciona intestinalis is one of the animals in which the gene regulatory network has been most extensively studied. In this species, most specific gene expression patterns in the embryo can be explained by combinations of upstream regulatory genes encoding transcription factors and signaling molecules. Systematic scrutiny of gene expression patterns and regulatory interactions at the cellular resolution have revealed incomplete parts of the network elucidated so far, and have identified novel regulatory genes and novel regulatory mechanisms.
Collapse
Affiliation(s)
- Yutaka Satou
- Department of Zoology, Graduate School of Science, Kyoto University; CREST, JST, Saitama, Japan.
| | | |
Collapse
|
14
|
Byrum CA, Wikramanayake AH. Nuclearization of β-catenin in ectodermal precursors confers organizer-like ability to induce endomesoderm and pattern a pluteus larva. EvoDevo 2013; 4:31. [PMID: 24180614 PMCID: PMC3835408 DOI: 10.1186/2041-9139-4-31] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 09/26/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND In many bilaterians, asymmetric activation of canonical Wnt (cWnt) signaling at the posterior pole is critical for anterior-posterior (AP) body axis formation. In 16-cell stage sea urchins, nuclearization of β-catenin in micromeres activates a gene regulatory network that defines body axes and induces endomesoderm. Transplanting micromeres to the animal pole of a host embryo induces ectopic endomesoderm in the mesomeres (ectoderm precursors) whereas inhibiting cWnt signaling blocks their endomesoderm-inducing activity and the micromeres become ectoderm-like. We have tested whether ectopic activation of cWnt signaling in mesomeres is sufficient to impart the cells with organizer-like abilities, allowing them to pattern normal embryonic body axes when recombined with a field of mesomeres. RESULTS Fertilized eggs were microinjected with constitutively active Xenopus β-catenin (actβ-cat) mRNA and allowed to develop until the 16-cell stage. Two mesomeres from injected embryos were then recombined with isolated animal halves (AH) from uninjected 16-cell stage embryos. Control chimeras produced animalized phenotypes (hollow balls of ectoderm) and rarely formed skeletogenic mesoderm (SM)-derived spicules, endoderm or pigment cells, a type of non-skeletogenic mesoderm (NSM). In contrast, over half of the 0.5 pg/pL actβ-cat mesomere/AH chimeras formed a partial or complete gut (exhibiting AP polarity), contained mesenchyme-like cells similar to SM, and produced pigment cells. At three days, chimeras formed plutei with normal embryonic body axes. When fates of the actβ-cat mRNA-injected mesomeres were tracked, we found that injected mesomeres formed mesenchyme-like and pigment cells, but endoderm was induced. Higher concentrations of actβ-cat mRNA were less likely to induce endoderm or pigment cells, but had similar mesenchyme-like cell production to 0.5 pg/pL actβ-cat mesomere/AH chimeras. CONCLUSIONS Our results show that nuclear β-catenin is sufficient to endow naïve cells with the ability to act as an organizing center and that β-catenin has both cell-autonomous and non-autonomous effects on cell fate specification in a concentration-dependent manner. These results are consistent with the hypothesis that a shift in the site of early cWnt signaling in cleaving embryos could have modified polarity of the main body axes during metazoan evolution.
Collapse
Affiliation(s)
- Christine A Byrum
- Department of Biology, College of Charleston, 58 Coming Street, Room 214, Charleston, SC 29401, USA
- Department of Biology, 2538 The Mall, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Athula H Wikramanayake
- Department of Biology, The University of Miami, 1301 Memorial Drive, Coral Gables, FL 33146, USA
- Department of Biology, 2538 The Mall, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| |
Collapse
|
15
|
β-Catenin-Driven Binary Fate Specification Segregates Germ Layers in Ascidian Embryos. Curr Biol 2013; 23:491-5. [DOI: 10.1016/j.cub.2013.02.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 01/18/2013] [Accepted: 02/01/2013] [Indexed: 11/18/2022]
|
16
|
Lhomond G, McClay DR, Gache C, Croce JC. Frizzled1/2/7 signaling directs β-catenin nuclearisation and initiates endoderm specification in macromeres during sea urchin embryogenesis. Development 2012; 139:816-25. [PMID: 22274701 DOI: 10.1242/dev.072215] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In sea urchins, the nuclear accumulation of β-catenin in micromeres and macromeres at 4th and 5th cleavage activates the developmental gene regulatory circuits that specify all of the vegetal tissues (i.e. skeletogenic mesoderm, endoderm and non-skeletogenic mesoderm). Here, through the analysis of maternal Frizzled receptors as potential contributors to these processes, we found that, in Paracentrotus lividus, the receptor Frizzled1/2/7 is required by 5th cleavage for β-catenin nuclearisation selectively in macromere daughter cells. Perturbation analyses established further that Frizzled1/2/7 signaling is required subsequently for the specification of the endomesoderm and then the endoderm but not for that of the non-skeletogenic mesoderm, even though this cell type also originates from the endomesoderm lineage. Complementary analyses on Wnt6 showed that this maternal ligand is similarly required at 5th cleavage for the nuclear accumulation of β-catenin exclusively in the macromeres and for endoderm but not for non-skeletogenic mesoderm specification. In addition, Wnt6 misexpression reverses Frizzled1/2/7 downregulation-induced phenotypes. Thus, the results indicate that Wnt6 and Frizzled1/2/7 are likely to behave as the ligand-receptor pair responsible for initiating β-catenin nuclearisation in macromeres at 5th cleavage and that event is necessary for endoderm specification. They show also that β-catenin nuclearisation in micromeres and macromeres takes place through a different mechanism, and that non-skeletogenic mesoderm specification occurs independently of the nuclear accumulation of β-catenin in macromeres at the 5th cleavage. Evolutionarily, this analysis outlines further the conserved involvement of the Frizzled1/2/7 subfamily, but not of specific Wnts, in the activation of canonical Wnt signaling during early animal development.
Collapse
Affiliation(s)
- Guy Lhomond
- UPMC Université Paris 06, UMR7009, CNRS, Biologie du Développement, Observatoire Océanologique de Villefranche-sur-Mer, Villefranche-sur-Mer, France
| | | | | | | |
Collapse
|
17
|
Shirae-Kurabayashi M, Matsuda K, Nakamura A. Ci-Pem-1 localizes to the nucleus and represses somatic gene transcription in the germline of Ciona intestinalis embryos. Development 2011; 138:2871-81. [PMID: 21693510 DOI: 10.1242/dev.058131] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In many animal embryos, germ-cell formation depends on maternal factors located in the germ plasm. To ensure the development of germ cells, germline progenitors must be prevented from differentiating inappropriately into somatic cells. A common mechanism for this appears to be the active repression of somatic gene transcription. Species-specific germ-plasm components, such as Pgc in Drosophila and PIE-1 in C. elegans, establish germline transcriptional quiescence by inhibiting general transcriptional machineries. In the ascidian Ciona intestinalis, although transcriptional repression in the germline has been proposed, the factors and mechanisms involved have been unknown. We found that the protein products of Ci-pem-1 RNA, which is an ascidian-specific component of the postplasm (the germ plasm equivalent in ascidians), localized to the nucleus of germline blastomeres, as well as to the postplasm. Morpholino oligonucleotide-mediated Ci-pem-1 knockdown resulted in the ectopic expression of several somatic genes that are usually silent in the germline. In the Ci-pem-1 knockdown embryos, the expression of both β-catenin- and GATAa-dependent genes was derepressed in the germline blastomeres, suggesting that Ci-Pem-1 broadly represses germline mRNA transcription. Immunoprecipitation assays showed that Ci-Pem-1 could interact with two C. intestinalis homologs of Groucho, which is a general co-repressor of mRNA transcription. These results suggest that Ci-pem-1 is the C. intestinalis version of a germ-plasm RNA whose protein product represses the transcription of somatic genes during specification of the germ-cell fate, and that this repression may be operated through interactions between Ci-Pem-1 and Groucho co-repressors.
Collapse
Affiliation(s)
- Maki Shirae-Kurabayashi
- Laboratory for Germline Development, RIKEN Center for Developmental Biology, Kobe, Hyogo, Japan.
| | | | | |
Collapse
|
18
|
Darras S, Gerhart J, Terasaki M, Kirschner M, Lowe CJ. β-catenin specifies the endomesoderm and defines the posterior organizer of the hemichordate Saccoglossus kowalevskii. Development 2011; 138:959-70. [PMID: 21303849 DOI: 10.1242/dev.059493] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The canonical Wnt/β-catenin pathway is a key regulator of body plan organization and axis formation in metazoans, being involved in germ layer specification, posterior growth and patterning of the anteroposterior axis. Results from animals spanning a wide phylogenetic range suggest that a unifying function of β-catenin in metazoans is to define the posterior/vegetal part of the embryo. Although the specification of vegetal territories (endoderm) by β-catenin has been demonstrated in distantly related animals (cnidarians, a protostome, echinoderms and ascidians), the definition of the posterior part of the embryo is well supported only for vertebrates and planarians. To gain insights into β-catenin functions during deuterostome evolution, we have studied the early development of the direct developing hemichordate Saccoglossus kowalevskii. We show that the zygote is polarized after fertilization along the animal-vegetal axis by cytoplasmic rearrangements resembling the ascidian vegetal contraction. This early asymmetry is translated into nuclear accumulation of β-catenin at the vegetal pole, which is necessary and sufficient to specify endomesoderm. We show that endomesoderm specification is crucial for anteroposterior axis establishment in the ectoderm. The endomesoderm secretes as yet unidentified signals that posteriorize the ectoderm, which would otherwise adopt an anterior fate. Our results point to a conserved function at the base of deuterostomes for β-catenin in germ layer specification and to a causal link in the definition of the posterior part of the embryonic ectoderm by way of activating posteriorizing endomesodermal factors. Consequently, the definition of the vegetal and the posterior regions of the embryo by β-catenin should be distinguished and carefully re-examined.
Collapse
Affiliation(s)
- Sébastien Darras
- Institut de Biologie du Développement de Marseille-Luminy, UMR 6216, CNRS, Université de la Méditerranée, Campus de Luminy, Marseille Cedex 09, France.
| | | | | | | | | |
Collapse
|
19
|
Negishi T, Kumano G, Nishida H. Polo-like kinase 1 is required for localization of Posterior End Mark protein to the centrosome-attracting body and unequal cleavages in ascidian embryos. Dev Growth Differ 2011; 53:76-87. [PMID: 21261613 DOI: 10.1111/j.1440-169x.2010.01231.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In ascidian embryos, the posterior-localized maternal factor Posterior End Mark (PEM) is responsible for patterning embryos along the anterior-posterior axis with regard to both cleavage pattern involving unequal cell divisions and gene expression. Although PEM plays important roles in embryogenesis, its mechanism of action is still unclear because PEM has no known functional domain. In the present study, we explored the candidate of PEM partner proteins in Halocynthia roretzi using yeast two-hybrid screening. We isolated a homologue of Polo-like kinase 1 (Plk1), a key regulator of cell division and highly conserved in eukaryotes, as the first potential binding partner of PEM. We biochemically confirmed that interaction occurred between the Plk1 and PEM proteins. Immunostaining showed that Plk1 protein concentrates in the centrosome-attracting body (CAB) at the posterior pole, where PEM protein is also localized. The CAB is a subcellular structure that plays an important role in generating the posterior cleavage pattern. Plk1 localization to the CAB was dependent on the cell cycle phases during unequal cleavage. Inhibition of Plk1 with specific drugs resulted in failure of the nucleus to migrate towards the posterior pole and formation of a microtubule bundle between the CAB and a centrosome, similarly to inhibition of PEM function, suggesting that both proteins are involved in the same process of unequal cleavages. This interrupted nuclear migration was rescued by overexpression of PEM. In Plk1-inhibited embryos, the localization of PEM protein to the CAB was impaired, indicating that Plk1 is required for appropriate localization of PEM.
Collapse
Affiliation(s)
- Takefumi Negishi
- Department of Biological Sciences, Osaka University, Toyonaka, Japan.
| | | | | |
Collapse
|
20
|
Kumano G, Kawai N, Nishida H. Macho-1 regulates unequal cell divisions independently of its function as a muscle determinant. Dev Biol 2010; 344:284-92. [PMID: 20478299 DOI: 10.1016/j.ydbio.2010.05.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Revised: 03/30/2010] [Accepted: 05/08/2010] [Indexed: 02/05/2023]
Abstract
The anterior-posterior (A-P) axis in ascidian embryos is established through the posteriorizing activities of a localized egg region known as the posterior vegetal cortex/cytoplasm (PVC). Here we describe a novel function of macho-1, a maternally-localized muscle determinant, in establishment of the A-P axis in the Halocynthia roretzi embryo. Macho-1, in addition to its known function in the formation of posterior tissue such as muscle and mesenchyme, and suppression of the anterior-derived notochord fate, acts independently of its transcriptional activity as a regulator of posterior-specific unequal cell divisions, in cooperation with beta-catenin. Our results suggest that macho-1 and beta-catenin regulate the formation of a microtubule bundle that shortens and pulls the centrosome toward a sub-cellular cortical structure known as centrosome-attracting body (CAB), which is located at the posterior pole of the embryo during unequal cell divisions, and act upstream of PEM, a recently-identified regulator of unequal cell divisions. We also present data that suggest that PEM localization to the CAB may not be required for unequal cleavage regulation. The present study provides an important and novel insight into the role of the zinc-finger-containing transcription factor and indicates that it constitutes a major part of the PVC activity.
Collapse
Affiliation(s)
- Gaku Kumano
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan.
| | | | | |
Collapse
|
21
|
Duboc V, Lapraz F, Saudemont A, Bessodes N, Mekpoh F, Haillot E, Quirin M, Lepage T. Nodal and BMP2/4 pattern the mesoderm and endoderm during development of the sea urchin embryo. Development 2010; 137:223-35. [PMID: 20040489 DOI: 10.1242/dev.042531] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nodal factors play fundamental roles in induction and patterning of the mesoderm and endoderm in vertebrates, but whether this reflects an ancient role or one that evolved recently in vertebrates is not known. Here, we report that in addition to its primary role in patterning the ectoderm, sea urchin Nodal is crucial for patterning of the endoderm and skeletogenic mesoderm through the regulation of the expression of key transcription factors and signalling molecules, including BMP2/4 and FGFA. In addition, we uncovered an essential role for Nodal and BMP2/4 in the formation and patterning of the non-skeletogenic mesoderm. By comparing the effects of misexpressing Nodal or an activated Nodal receptor in clones of cells, we provide evidence that Nodal acts over a long range in the endomesoderm and that its effects on the blastocoelar cell precursors are likely to be direct. The activity of Nodal and BMP2/4 are antagonistic, and although bmp2/4 is transcribed in the ventral ectoderm downstream of Nodal, the BMP2/4 ligand is translocated to the dorsal side, where it activates signalling in the dorsal primary mesenchyme cells, the dorsal endoderm and in pigment cell precursors. Therefore, correct patterning of the endomesoderm depends on a balance between ventralising Nodal signals and dorsalising BMP2/4 signals. These experiments confirm that Nodal is a key regulator of dorsal-ventral polarity in the sea urchin and support the idea that the ventral ectoderm, like the Spemann organiser in vertebrates, is an organising centre that is required for patterning all three germ layers of the embryo.
Collapse
Affiliation(s)
- Véronique Duboc
- UPMC Univ Paris 06-CNRS, UMR 7009 Biologie du Développement Observatoire Océanologique, 06230 Villefranche-sur-mer, France
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
BACKGROUND INFORMATION In the embryos of various animals, the body elongates after gastrulation by morphogenetic movements involving convergent extension. The Wnt/PCP (planar cell polarity) pathway plays roles in this process, particularly mediolateral polarization and intercalation of the embryonic cells. In ascidians, several factors in this pathway, including Wnt5, have been identified and found to be involved in the intercalation process of notochord cells. RESULTS In the present study, the role of the Wnt5 genes, Hr-Wnt5alpha (Halocynthia roretzi Wnt5alpha) and Hr-Wnt5beta, in convergent extension was investigated in the ascidian H. roretzi by injecting antisense oligonucleotides and mRNAs into single precursor blastomeres of various tissues, including notochord, at the 64-cell stage. Hr-Wnt5alpha is expressed in developing notochord and was essential for notochord morphogenesis. Precise quantitative control of its expression level was crucial for proper cell intercalation. Overexpression of Wnt5 proteins in notochord and other tissues that surround the notochord indicated that Wnt5alpha plays a role within the notochord, and is unlikely to be the source of polarizing cues arising outside the notochord. Detailed mosaic analysis of the behaviour of individual notochord cells overexpressing Wnt5alpha indicated that a Wnt5alpha-manipulated cell does not affect the behaviour of neighbouring notochord cells, suggesting that Wnt5alpha works in a cell-autonomous manner. This is further supported by comparison of the results of Wnt5alpha and Dsh (Dishevelled) knockdown experiments. In addition, our results suggest that the Wnt/PCP pathway is also involved in mediolateral intercalation of cells of the ventral row of the nerve cord (floor plate) and the endodermal strand. CONCLUSION The present study highlights the role of the Wnt5alpha signal in notochord convergent extension movements in ascidian embryos. Our results raise the novel possibility that Wnt5alpha functions in a cell-autonomous manner in activation of the Wnt/PCP pathway to polarize the protrusive activity that drives convergent extension.
Collapse
|
23
|
Unfolding a chordate developmental program, one cell at a time: Invariant cell lineages, short-range inductions and evolutionary plasticity in ascidians. Dev Biol 2009; 332:48-60. [DOI: 10.1016/j.ydbio.2009.05.540] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Revised: 04/27/2009] [Accepted: 05/03/2009] [Indexed: 12/25/2022]
|
24
|
Patterning of an ascidian embryo along the anterior–posterior axis through spatial regulation of competence and induction ability by maternally localized PEM. Dev Biol 2009; 331:78-88. [DOI: 10.1016/j.ydbio.2009.04.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Revised: 04/02/2009] [Accepted: 04/22/2009] [Indexed: 11/21/2022]
|
25
|
Momose T, Derelle R, Houliston E. A maternally localised Wnt ligand required for axial patterning in the cnidarian Clytia hemisphaerica. Development 2008; 135:2105-13. [PMID: 18480163 DOI: 10.1242/dev.021543] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Regionalised activation of canonical Wnt signalling via beta-catenin stabilisation is a key early step in embryonic patterning in many metazoans, including the basally diverging cnidarians, but the upstream maternal cues appear surprisingly variable. In Clytia, regionalised beta-catenin stabilisation defining a presumptive 'oral' territory is determined by two maternally coded Frizzled family Wnt receptors of opposite localisation and function. We have identified a maternally coded ligand, CheWnt3, the RNA of which is localised to the animal cortex (future oral side) of the egg. Antisense morpholino oligonucleotide experiments showed that CheWnt3 is required maternally for regionalised oral beta-catenin stabilisation in the early embryo, being only the second clear example of a maternally required Wnt ligand after Xenopus Xwnt11. In line with the determinant role of the maternally localised Frizzleds, CheWnt3 overexpression by RNA injection initially had little effect on establishing the oral domain. Subsequently, however, overexpression had dramatic consequences for axis development, causing progressive expansion of beta-catenin stabilisation to yield spherical 'oralised' larvae. Upregulation of both CheFz1 and CheFz3 RNAs in CheWnt3 morpholino embryos indicated that CheWnt3 participates in an active axial patterning system involving reciprocal downregulation of the receptors to maintain oral and aboral territories. Localised introduction of CheWnt3 RNA induced ectopic oral poles in CheWnt3 morpholino embryos, demonstrating its importance in directing oral fate. These findings suggest that the complete ligand-dependent Wnt signalling cascade is involved in axial patterning in ancestral eumetazoans. In Clytia, two variant Frizzled receptors and one Wnt ligand produced from localised RNAs cooperate to initiate regionalised Wnt pathway activation.
Collapse
Affiliation(s)
- Tsuyoshi Momose
- UMR7009 Laboratory of Developmental Biology, CNRS and Université Pierre et Marie Curie (Paris 6), Observatoire Océanologique, Villefranche-sur-mer, France.
| | | | | |
Collapse
|
26
|
Tokuoka M, Kumano G, Nishida H. FGF9/16/20 and Wnt-5α signals are involved in specification of secondary muscle fate in embryos of the ascidian, Halocynthia roretzi. Dev Genes Evol 2007; 217:515-27. [PMID: 17534657 DOI: 10.1007/s00427-007-0160-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2006] [Accepted: 04/25/2007] [Indexed: 10/23/2022]
Abstract
The tail muscle cells of the ascidian tadpole larva originate from two different lineages, the B- (primary) and A- and b- (secondary) line blastomeres of the eight-cell stage embryo. The primary muscle cells assume muscle fate cell-autonomously with the involvement of a localized muscle determinant, macho-1. On the other hand, fate determination of secondary muscle cells is a non-cell-autonomous process that depends on cellular interactions. In this paper, we investigated the mechanisms underlying fate specification of secondary muscle cells in Halocynthia roretzi. We found that FGF and Wnt5 signals were required. In contrast, the Nodal signal, which is required for specification of A-line muscle cells in another ascidian, Ciona intestinalis, was not necessary for the formation of any secondary muscle cells in Halocynthia embryo. Therefore, Halocynthia and Ciona show distinctly different mechanisms for generation of the secondary lineages, despite the fact that embryogenesis appears very similar between these species. We also found that the mechanisms involved in specification of A- and b-line muscle cells were distinct in that the required timing of the FGF signal for the A-line muscle cells preceded that for the b-line. Moreover, the inducer blastomeres for specification of these two lineages were different.
Collapse
Affiliation(s)
- Miki Tokuoka
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan.
| | | | | |
Collapse
|