1
|
Xie Z, Ma XH, Bai QF, Tang J, Sun JH, Jiang F, Guo W, Wang CM, Yang R, Wen YC, Wang FY, Chen YX, Zhang H, He DZ, Kelley MW, Yang S, Zhang WJ. ZBTB20 is essential for cochlear maturation and hearing in mice. Proc Natl Acad Sci U S A 2023; 120:e2220867120. [PMID: 37279265 PMCID: PMC10268240 DOI: 10.1073/pnas.2220867120] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 04/25/2023] [Indexed: 06/08/2023] Open
Abstract
The mammalian cochlear epithelium undergoes substantial remodeling and maturation before the onset of hearing. However, very little is known about the transcriptional network governing cochlear late-stage maturation and particularly the differentiation of its lateral nonsensory region. Here, we establish ZBTB20 as an essential transcription factor required for cochlear terminal differentiation and maturation and hearing. ZBTB20 is abundantly expressed in the developing and mature cochlear nonsensory epithelial cells, with transient expression in immature hair cells and spiral ganglion neurons. Otocyst-specific deletion of Zbtb20 causes profound deafness with reduced endolymph potential in mice. The subtypes of cochlear epithelial cells are normally generated, but their postnatal development is arrested in the absence of ZBTB20, as manifested by an immature appearance of the organ of Corti, malformation of tectorial membrane (TM), a flattened spiral prominence (SP), and a lack of identifiable Boettcher cells. Furthermore, these defects are related with a failure in the terminal differentiation of the nonsensory epithelium covering the outer border Claudius cells, outer sulcus root cells, and SP epithelial cells. Transcriptome analysis shows that ZBTB20 regulates genes encoding for TM proteins in the greater epithelial ridge, and those preferentially expressed in root cells and SP epithelium. Our results point to ZBTB20 as an essential regulator for postnatal cochlear maturation and particularly for the terminal differentiation of cochlear lateral nonsensory domain.
Collapse
Affiliation(s)
- Zhifang Xie
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Institute of Early Life Health, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai200092, China
- Department of Pathophysiology, Naval Medical University, Shanghai200433, China
| | - Xian-Hua Ma
- Department of Pathophysiology, Naval Medical University, Shanghai200433, China
| | - Qiu-Fang Bai
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin300134, China
| | - Jie Tang
- Department of Physiology, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Jian-He Sun
- Senior Department of Otolaryngology-Head and Neck Surgery, National Clinical Research Center for Otolaryngologic Diseases, the Sixth Medical Center of PLA General Hospital, Beijing100141, China
| | - Fei Jiang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Institute of Early Life Health, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai200092, China
| | - Wei Guo
- Senior Department of Otolaryngology-Head and Neck Surgery, National Clinical Research Center for Otolaryngologic Diseases, the Sixth Medical Center of PLA General Hospital, Beijing100141, China
| | - Chen-Ma Wang
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin300134, China
| | - Rui Yang
- Department of Pathophysiology, Naval Medical University, Shanghai200433, China
| | - Yin-Chuan Wen
- Department of Physiology, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Fang-Yuan Wang
- Senior Department of Otolaryngology-Head and Neck Surgery, National Clinical Research Center for Otolaryngologic Diseases, the Sixth Medical Center of PLA General Hospital, Beijing100141, China
| | - Yu-Xia Chen
- Department of Pathophysiology, Naval Medical University, Shanghai200433, China
| | - Hai Zhang
- Department of Pathophysiology, Naval Medical University, Shanghai200433, China
| | - David Z. He
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE68178
| | | | - Shiming Yang
- Senior Department of Otolaryngology-Head and Neck Surgery, National Clinical Research Center for Otolaryngologic Diseases, the Sixth Medical Center of PLA General Hospital, Beijing100141, China
| | - Weiping J. Zhang
- Department of Pathophysiology, Naval Medical University, Shanghai200433, China
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin300134, China
| |
Collapse
|
2
|
Sato S, Furuta Y, Kawakami K. Regulation of continuous but complex expression pattern of Six1 during early sensory development. Dev Dyn 2017; 247:250-261. [PMID: 29106072 DOI: 10.1002/dvdy.24603] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 10/17/2017] [Accepted: 10/31/2017] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND In vertebrates, cranial sensory placodes give rise to neurosensory and endocrine structures, such as the olfactory epithelium, inner ear, and anterior pituitary. We report here the establishment of a transgenic mouse line that expresses Cre recombinase under the control of Six1-21, a major placodal enhancer of the homeobox gene Six1. RESULTS In the new Cre-expressing line, mSix1-21-NLSCre, the earliest Cre-mediated recombination was induced at embryonic day 8.5 in the region overlapping with the otic-epibranchial progenitor domain (OEPD), a transient, common precursor domain for the otic and epibranchial placodes. Recombination was later observed in the OEPD-derived structures (the entire inner ear and the VIIth-Xth cranial sensory ganglia), olfactory epithelium, anterior pituitary, pharyngeal ectoderm and pouches. Other Six1-positive structures, such as salivary/lacrimal glands and limb buds, were also positive for recombination. Moreover, comparison with another mouse line expressing Cre under the control of the sensory neuron enhancer, Six1-8, indicated that the continuous and complex expression pattern of Six1 during sensory organ formation is pieced together by separate enhancers. CONCLUSIONS mSix1-21-NLSCre has several unique characteristics to make it suitable for analysis of cell lineage and gene function in sensory placodes as well as nonplacodal Six1-positive structures. Developmental Dynamics 247:250-261, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Shigeru Sato
- Division of Biology, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Yasuhide Furuta
- Animal Resource Development Unit and Genetic Engineering Team, Division of Bio-function Dynamics Imaging, RIKEN Center for Life Science Technologies (CLST), Kobe, Hyogo, Japan
| | - Kiyoshi Kawakami
- Division of Biology, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| |
Collapse
|
3
|
Cheng J, Fang Z, Yang H, Li Y, Tian H, Gong W, Chen T, Liu M, Li X, Jiang C. High-yield of biologically active recombinant human fibroblast growth factor-16 in E. coli and its mechanism of proliferation in NCL-H460 cells. Prep Biochem Biotechnol 2017; 47:720-729. [PMID: 28409700 DOI: 10.1080/10826068.2017.1315599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Fibroblast growth factor-16 (FGF16) is a member of FGF9 subfamily, which plays key role in promoting mitosis and cell survival, and also involved in embryonic development, cell growth, tissue repair, morphogenesis, tumor growth, and invasion. However, the successful high-yield purification of recombinant human fibroblast growth factor-16 (rhFGF16) protein has not been reported. In addition, lung cancer is a major cause of cancer-related deaths, which threats people's lives and its incidence has continued to rise. Learning pathways or proteins, which involved in lung tumor progression will contribute to the development of early diagnosis and targeted therapy. FGF16 promoted proliferation and invasion behavior of SKOV-3 ovarian cancer cells, whose function may be similar in lung cancer. The hFGF16 was cloned into pET-3d and expressed in Escherichia coli BL21 (DE3) pLysS. Finally, obtained two forms of FGF16 that exhibited remarkable biological activity and the purity is over 95%, meanwhile, the yield of soluble 130 mg/100 g and insoluble 240 mg/100 g. Experiments demonstrated FGF16 could promote proliferation of NCL-H460 cells by activating Akt, Erk1/2, and p38 MAPK signaling, whereas JNK had no significant effect. In total, this optimized expression strategy enables significant quantity and activity of rhFGF16, thereby meeting its further pharmacological and clinical usages.
Collapse
Affiliation(s)
- Jiliang Cheng
- a School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou , China
| | - Zhaoxiang Fang
- a School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou , China
| | - Huanhuan Yang
- a School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou , China
| | - Yong Li
- b College of Life and Environmental Science , Wenzhou University , Wenzhou , Zhejiang , China
| | - Haishan Tian
- a School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou , China
| | - Weiyue Gong
- a School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou , China
| | - Taotao Chen
- a School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou , China
| | - Min Liu
- a School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou , China
| | - Xiaokun Li
- a School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou , China.,c Biomedicine Collaborative Innovation Center , Wenzhou University , Wenzhou , Zhejiang , China
| | - Chao Jiang
- a School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou , China.,b College of Life and Environmental Science , Wenzhou University , Wenzhou , Zhejiang , China.,c Biomedicine Collaborative Innovation Center , Wenzhou University , Wenzhou , Zhejiang , China
| |
Collapse
|
4
|
Olaya-Sánchez D, Sánchez-Guardado LÓ, Ohta S, Chapman SC, Schoenwolf GC, Puelles L, Hidalgo-Sánchez M. Fgf3 and Fgf16 expression patterns define spatial and temporal domains in the developing chick inner ear. Brain Struct Funct 2016; 222:131-149. [PMID: 26995070 DOI: 10.1007/s00429-016-1205-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 02/19/2016] [Indexed: 11/26/2022]
Abstract
The inner ear is a morphologically complex sensory structure with auditory and vestibular functions. The developing otic epithelium gives rise to neurosensory and non-sensory elements of the adult membranous labyrinth. Extrinsic and intrinsic signals manage the patterning and cell specification of the developing otic epithelium by establishing lineage-restricted compartments defined in turn by differential expression of regulatory genes. FGF3 and FGF16 are excellent candidates to govern these developmental events. Using the chick inner ear, we show that Fgf3 expression is present in the borders of all developing cristae. Strong Fgf16 expression was detected in a portion of the developing vertical and horizontal pouches, whereas the cristae show weaker or undetected Fgf16 expression at different developmental stages. Concerning the rest of the vestibular sensory elements, both the utricular and saccular maculae were Fgf3 positive. Interestingly, strong Fgf16 expression delimited these Fgf16-negative sensory patches. The Fgf3-negative macula neglecta and the Fgf3-positive macula lagena were included within weakly Fgf16-expressing areas. Therefore, different FGF-mediated mechanisms might regulate the specification of the anterior (utricular and saccular) and posterior (neglecta and lagena) maculae. In the developing cochlear duct, dynamic Fgf3 and Fgf16 expression suggests their cooperation in the early specification and later cell differentiation in the hearing system. The requirement of Fgf3 and Fgf16 genes in endolymphatic apparatus development and neurogenesis are discussed. Based on these observations, FGF3 and FGF16 seem to be key signaling pathways that control the inner ear plan by defining epithelial identities within the developing otic epithelium.
Collapse
Affiliation(s)
- Daniel Olaya-Sánchez
- Department of Cell Biology, School of Science, University of Extremadura, Avda. de Elvas s/n, 06071, Badajoz, Spain
| | - Luis Óscar Sánchez-Guardado
- Department of Cell Biology, School of Science, University of Extremadura, Avda. de Elvas s/n, 06071, Badajoz, Spain
| | - Sho Ohta
- Department of Neurobiology and Anatomy, University of Utah, 2R066 School of Medicine, 30 N. 1900 E., Salt Lake City, UT, 84132-3401, USA
| | - Susan C Chapman
- Department of Biological Sciences, Clemson University, 340 Long Hall, Clemson, SC, 29634, USA
| | - Gary C Schoenwolf
- Department of Neurobiology and Anatomy, University of Utah, 2R066 School of Medicine, 30 N. 1900 E., Salt Lake City, UT, 84132-3401, USA
| | - Luis Puelles
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia, 30100, Murcia, Spain
| | - Matías Hidalgo-Sánchez
- Department of Cell Biology, School of Science, University of Extremadura, Avda. de Elvas s/n, 06071, Badajoz, Spain.
| |
Collapse
|
5
|
Miyake A, Chitose T, Kamei E, Murakami A, Nakayama Y, Konishi M, Itoh N. Fgf16 is required for specification of GABAergic neurons and oligodendrocytes in the zebrafish forebrain. PLoS One 2014; 9:e110836. [PMID: 25357195 PMCID: PMC4214708 DOI: 10.1371/journal.pone.0110836] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 09/24/2014] [Indexed: 11/18/2022] Open
Abstract
Fibroblast growth factor (Fgf) signaling plays crucial roles in various developmental processes including those in the brain. We examined the role of Fgf16 in the formation of the zebrafish brain. The knockdown of fgf16 decreased cell proliferation in the forebrain and midbrain. fgf16 was also essential for development of the ventral telencephalon and diencephalon, whereas fgf16 was not required for dorsoventral patterning in the midbrain. fgf16 was additionally required for the specification and differentiation of γ-aminobutyric acid (GABA)ergic interneurons and oligodendrocytes, but not for those of glutamatergic neurons in the forebrain. Cross talk between Fgf and Hedgehog (Hh) signaling was critical for the specification of GABAergic interneurons and oligodendrocytes. The expression of fgf16 in the forebrain was down-regulated by the inhibition of Hh and Fgf19 signaling, but not by that of Fgf3/Fgf8 signaling. The fgf16 morphant phenotype was similar to that of the fgf19 morphant and embryos blocked Hh signaling. The results of the present study indicate that Fgf16 signaling, which is regulated by the downstream pathways of Hh-Fgf19 in the forebrain, is involved in forebrain development.
Collapse
Affiliation(s)
- Ayumi Miyake
- Department of Genetic Biochemistry, Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto, Japan
- * E-mail:
| | - Tatsuya Chitose
- Department of Genetic Biochemistry, Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto, Japan
| | - Eriko Kamei
- Department of Genetic Biochemistry, Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto, Japan
| | - Atsuko Murakami
- Department of Genetic Biochemistry, Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto, Japan
| | - Yoshiaki Nakayama
- Department of Genetic Biochemistry, Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto, Japan
| | - Morichika Konishi
- Department of Genetic Biochemistry, Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto, Japan
| | - Nobuyuki Itoh
- Department of Genetic Biochemistry, Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto, Japan
| |
Collapse
|
6
|
Matsumoto E, Sasaki S, Kinoshita H, Kito T, Ohta H, Konishi M, Kuwahara K, Nakao K, Itoh N. Angiotensin II-induced cardiac hypertrophy and fibrosis are promoted in mice lacking Fgf16. Genes Cells 2013; 18:544-53. [PMID: 23600527 PMCID: PMC3738920 DOI: 10.1111/gtc.12055] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 03/10/2013] [Indexed: 11/30/2022]
Abstract
Fibroblast growth factors (Fgfs) are pleiotropic proteins involved in development, repair and metabolism. Fgf16 is predominantly expressed in the heart. However, as the heart function is essentially normal in Fgf16 knockout mice, its role has remained unclear. To elucidate the pathophysiological role of Fgf16 in the heart, we examined angiotensin II-induced cardiac hypertrophy and fibrosis in Fgf16 knockout mice. Angiotensin II-induced cardiac hypertrophy and fibrosis were significantly promoted by enhancing Tgf-β1 expression in Fgf16 knockout mice. Unexpectedly, the response to cardiac remodeling was apparently opposite to that in Fgf2 knockout mice. These results indicate that Fgf16 probably prevents cardiac remodeling, although Fgf2 promotes it. Cardiac Fgf16 expression was induced after the induction of Fgf2 expression by angiotensin II. In cultured cardiomyocytes, Fgf16 expression was promoted by Fgf2. In addition, Fgf16 antagonized Fgf2-induced Tgf-β1 expression in cultured cardiomyocytes and noncardiomyocytes. These results suggest a possible mechanism whereby Fgf16 prevents angiotensin II-induced cardiac hypertrophy and fibrosis by antagonizing Fgf2. The present findings should provide new insights into the roles of Fgf signaling in cardiac remodeling.
Collapse
Affiliation(s)
- Emi Matsumoto
- Department of Genetic Biochemistry, Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto 606-8501, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
Hearing loss is becoming an increasingly prevalent problem affecting more than 250 million people worldwide. During development, fibroblast growth factors (FGFs) are required for inner ear development as well as hair cell formation in the mammalian cochlea and thus make attractive therapeutic candidates for the regeneration of sensory cells. Previous findings showed that Fgfr1 conditional knock out mice exhibited hair cell and support cell formation defects. Immunoblocking with Fgf20 antibody in vitro produced a similar phenotype. While hair cell differentiation in mice starts at embryonic day (E)14.5, beginning with the inner hair cells, Fgf20 expression precedes hair cell differentiation at E13.5 in the cochlea. This suggests a potential role for Fgf20 in priming the sensory epithelium for hair cell formation. Treatment of explants with a gamma-secretase inhibitor, DAPT, decreased Fgf20 mRNA, suggesting that Notch is upstream of Fgf20. Notch signaling also plays an early role in prosensory formation during cochlear development. In this report we show that during development, Notch-mediated regulation of prosensory formation in the cochlea occurs via Fgf20. Addition of exogenous FGF20 compensated for the block in Notch signaling and rescued Sox2, a prosensory marker, and Gfi1, an early hair cell marker in explant cultures. We hypothesized that Fgf20 plays a role in specification, amplification, or maintenance of Sox2 expression in prosensory progenitors of the developing mammalian cochlea.
Collapse
|
8
|
Cox BC, Liu Z, Lagarde MMM, Zuo J. Conditional gene expression in the mouse inner ear using Cre-loxP. J Assoc Res Otolaryngol 2012; 13:295-322. [PMID: 22526732 PMCID: PMC3346893 DOI: 10.1007/s10162-012-0324-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 03/19/2012] [Indexed: 10/28/2022] Open
Abstract
In recent years, there has been significant progress in the use of Cre-loxP technology for conditional gene expression in the inner ear. Here, we introduce the basic concepts of this powerful technology, emphasizing the differences between Cre and CreER. We describe the creation and Cre expression pattern of each Cre and CreER mouse line that has been reported to have expression in auditory and vestibular organs. We compare the Cre expression patterns between Atoh1-CreER(TM) and Atoh1-CreER(T2) and report a new line, Fgfr3-iCreER(T2), which displays inducible Cre activity in cochlear supporting cells. We also explain how results can vary when transgenic vs. knock-in Cre/CreER alleles are used to alter gene expression. We discuss practical issues that arise when using the Cre-loxP system, such as the use of proper controls, Cre efficiency, reporter expression efficiency, and Cre leakiness. Finally, we introduce other methods for conditional gene expression, including Flp recombinase and the tetracycline-inducible system, which can be combined with Cre-loxP mouse models to investigate conditional expression of more than one gene.
Collapse
Affiliation(s)
- Brandon C. Cox
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105 USA
| | - Zhiyong Liu
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105 USA
| | - Marcia M. Mellado Lagarde
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105 USA
| | - Jian Zuo
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105 USA
| |
Collapse
|
9
|
Liu Z, Owen T, Zhang L, Zuo J. Dynamic expression pattern of Sonic hedgehog in developing cochlear spiral ganglion neurons. Dev Dyn 2010; 239:1674-83. [PMID: 20503364 DOI: 10.1002/dvdy.22302] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Sonic hedgehog (Shh) signaling plays important roles in the formation of the auditory epithelium. However, little is known about the detailed expression pattern of Shh and the cell sources from which Shh is secreted. By analyzing Shh(CreEGFP/+) mice, we found that Shh was first expressed in all cochlear spiral ganglion neurons by embryonic day 13.5, after which its expression gradually decreased from base to apex. By postnatal day 0, it was not detected in any spiral ganglion neurons. Genetic cell fate mapping results also confirmed that Shh was exclusively expressed in all spiral ganglion neurons and not in surrounding glia cells. The basal-to-apical wave of Shh decline strongly resembles that of hair cell differentiation, supporting the idea that Shh signaling inhibits hair cell differentiation. Furthermore, this Shh(CreEGFP/+) mouse is a useful Cre line in which to delete floxed genes specifically in spiral ganglion neurons of the developing cochlea.
Collapse
Affiliation(s)
- Zhiyong Liu
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | | | |
Collapse
|
10
|
Lu SY, Jin Y, Li X, Sheppard P, Bock ME, Sheikh F, Duckworth ML, Cattini PA. Embryonic survival and severity of cardiac and craniofacial defects are affected by genetic background in fibroblast growth factor-16 null mice. DNA Cell Biol 2010; 29:407-15. [PMID: 20618076 DOI: 10.1089/dna.2010.1024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Disruption of the X-chromosome fibroblast growth factor 16 (Fgf-16) gene, a member of the FGF-9 subfamily with FGF-20, was linked with an effect on cardiac development in two independent studies. However, poor trabeculation with lethality by embryonic day (E) 11.5 was associated with only one, involving maintenance in Black Swiss (Bsw) versus C57BL/6 mice. The aim of this study was to examine the potential influence of genetic background through breeding the null mutation onto an alternate (C57BL/6) background. After three generations, 25% of Fgf-16(-/Y) mice survived to adulthood, which could be reversed by reducing the contribution of the C57BL/6 genetic background by back crossing to another strain. There was no significant difference between FGF-9 and FGF-20 RNA levels in Fgf-16 null versus wild-type mice regardless of strain. However, FGF-8 RNA levels were reduced significantly in Bsw but not C57BL/6 mice. FGF-8 is linked to anterior heart development and like the FGF-9 subfamily is reportedly expressed at E10.5. Like FGF-16, neuregulin as well as signaling via ErbB2 and ErbB4 receptors have been linked to trabeculae formation and cardiac development around E10.5. Basal neuregulin, ErbB2, and ErbB4 as well as FGF-8, FGF-9, and FGF-16 RNA levels varied in Bsw versus C57BL/6 mice. These data are consistent with the ability of genetic background to modify the phenotype and affect embryonic survival in Fgf-16 null mice.
Collapse
Affiliation(s)
- Shun Yan Lu
- Ontario Cancer Institute/Princess Margaret Hospital, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Hayashi T, Ray CA, Younkins C, Bermingham-McDonogh O. Expression patterns of FGF receptors in the developing mammalian cochlea. Dev Dyn 2010; 239:1019-26. [PMID: 20131355 PMCID: PMC2933402 DOI: 10.1002/dvdy.22236] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Many studies have shown the importance of the fibroblast growth factor (FGF) family of factors in the development of the mammalian cochlea. There are four fibroblast growth factor receptors (FGFR1-4) and all four are expressed in the cochlea during development. While there are examples in the literature of expression patterns of some of the receptors at specific stages of cochlear development there has been no systematic study. We have assembled a full analysis of the patterns of receptor expression during cochlear development for all four Fgfrs using in situ hybridization. We have analyzed the expression patterns from embryonic day 13.5 through postnatal ages. We find that Fgfr1, 2, and 3 are expressed in the epithelium of the cochlear duct and Fgfr4 is limited in its expression to the mesenchyme surrounding the duct. We compare the receptor expression pattern to markers of the sensory domain (p27kip1) and the early hair cells (math1).
Collapse
Affiliation(s)
- Toshinori Hayashi
- Department of Biological Structure, Institute for Stem Cell and Regenerative Medicine, Box 358056, University of Washington, 815 Mercer Street, Seattle, WA 98109
| | - Catherine A. Ray
- Department of Biological Structure, Institute for Stem Cell and Regenerative Medicine, Box 358056, University of Washington, 815 Mercer Street, Seattle, WA 98109
| | - Christa Younkins
- Department of Biological Structure, Institute for Stem Cell and Regenerative Medicine, Box 358056, University of Washington, 815 Mercer Street, Seattle, WA 98109
| | - Olivia Bermingham-McDonogh
- Department of Biological Structure, Institute for Stem Cell and Regenerative Medicine, Box 358056, University of Washington, 815 Mercer Street, Seattle, WA 98109
| |
Collapse
|
12
|
Mansour SL, Twigg SRF, Freeland RM, Wall SA, Li C, Wilkie AOM. Hearing loss in a mouse model of Muenke syndrome. Hum Mol Genet 2008; 18:43-50. [PMID: 18818193 PMCID: PMC2644644 DOI: 10.1093/hmg/ddn311] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The heterozygous Pro250Arg substitution mutation in fibroblast growth factor receptor 3 (FGFR3), which increases ligand-dependent signalling, is the most common genetic cause of craniosynostosis in humans and defines Muenke syndrome. Since FGF signalling plays dosage-sensitive roles in the differentiation of the auditory sensory epithelium, we evaluated hearing in a large group of Muenke syndrome subjects, as well as in the corresponding mouse model (Fgfr3P244R). The Muenke syndrome cohort showed significant, but incompletely penetrant, predominantly low-frequency sensorineural hearing loss, and the Fgfr3P244R mice showed dominant, fully penetrant hearing loss that was more severe than that in Muenke syndrome individuals, but had the same pattern of relative high-frequency sparing. The mouse hearing loss correlated with an alteration in the fate of supporting cells (Deiters'-to-pillar cells) along the entire length of the cochlear duct, with the most extreme abnormalities found at the apical or low-frequency end. In addition, there was excess outer hair cell development in the apical region. We conclude that low-frequency sensorineural hearing loss is a characteristic feature of Muenke syndrome and that the genetically equivalent mouse provides an excellent model that could be useful in testing hearing loss therapies aimed at manipulating the levels of FGF signalling in the inner ear.
Collapse
Affiliation(s)
- Suzanne L Mansour
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112-5330, USA.
| | | | | | | | | | | |
Collapse
|