1
|
Retinal Pigment Epithelium and Neural Retinal Progenitors Interact via Semaphorin 6D to Facilitate Optic Cup Morphogenesis. eNeuro 2021; 8:ENEURO.0053-21.2021. [PMID: 33811086 PMCID: PMC8116109 DOI: 10.1523/eneuro.0053-21.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 11/21/2022] Open
Abstract
Cell movement propels embryonic tissues to acquire shapes required for mature function. The movements are driven both by acto-myosin signaling and by cells interacting with the extracellular matrix (ECM). Unknown is whether cell-cell interactions within a tissue are also required, and the molecular mechanisms by which such communication might occur. Here, we use the developing visual system of zebrafish as a model to understand the role cell-cell communication plays in tissue morphogenesis in the embryonic nervous system. We identify that cell-cell-mediated contact between two distinct cell populations, progenitors of the neural retina and retinal pigment epithelium (RPE), facilitates epithelial flow to produce the mature cupped retina. We identify for the first time the need in eye morphogenesis for distinct populations of progenitors to interact, and suggest a novel role for a member of a key developmental signaling family, the transmembrane Semaphorin6d, as mediating communication between distinct cell types to control tissue morphogenesis.
Collapse
|
2
|
Lettieri A, Oleari R, Paganoni AJJ, Gervasini C, Massa V, Fantin A, Cariboni A. Semaphorin Regulation by the Chromatin Remodeler CHD7: An Emerging Genetic Interaction Shaping Neural Cells and Neural Crest in Development and Cancer. Front Cell Dev Biol 2021; 9:638674. [PMID: 33869187 PMCID: PMC8047133 DOI: 10.3389/fcell.2021.638674] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/24/2021] [Indexed: 12/16/2022] Open
Abstract
CHD7 is a chromatin remodeler protein that controls gene expression via the formation of multi-protein complexes with specific transcription factors. During development, CHD7 controls several differentiation programs, mainly by acting on neural progenitors and neural crest (NC) cells. Thus, its roles range from the central nervous system to the peripheral nervous system and the organs colonized by NC cells, including the heart. Accordingly, mutated CHD7 is linked to CHARGE syndrome, which is characterized by several neuronal dysfunctions and by malformations of NC-derived/populated organs. Altered CHD7 has also been associated with different neoplastic transformations. Interestingly, recent evidence revealed that semaphorins, a class of molecules involved in developmental and pathological processes similar to those controlled by CHD7, are regulated by CHD7 in a context-specific manner. In this article, we will review the recent insights that support the existence of genetic interactions between these pathways, both during developmental processes and cancer progression.
Collapse
Affiliation(s)
- Antonella Lettieri
- CRC Aldo Ravelli for Neurotechnology and Experimental Brain Therapeutics, Università degli Studi di Milano, Milan, Italy.,Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Roberto Oleari
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Alyssa J J Paganoni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Cristina Gervasini
- CRC Aldo Ravelli for Neurotechnology and Experimental Brain Therapeutics, Università degli Studi di Milano, Milan, Italy.,Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Valentina Massa
- CRC Aldo Ravelli for Neurotechnology and Experimental Brain Therapeutics, Università degli Studi di Milano, Milan, Italy.,Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Alessandro Fantin
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Anna Cariboni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
3
|
Schwenty-Lara J, Pauli S, Borchers A. Using Xenopus to analyze neurocristopathies like Kabuki syndrome. Genesis 2020; 59:e23404. [PMID: 33351273 DOI: 10.1002/dvg.23404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 11/08/2022]
Abstract
Neurocristopathies are human congenital syndromes that arise from defects in neural crest (NC) development and are typically associated with malformations of the craniofacial skeleton. Genetic analyses have been very successful in identifying pathogenic mutations, however, model organisms are required to characterize how these mutations affect embryonic development thereby leading to complex clinical conditions. The African clawed frog Xenopus laevis provides a broad range of in vivo and in vitro tools allowing for a detailed characterization of NC development. Due to the conserved nature of craniofacial morphogenesis in vertebrates, Xenopus is an efficient and versatile system to dissect the morphological and cellular phenotypes as well as the signaling events leading to NC defects. Here, we review a set of techniques and resources how Xenopus can be used as a disease model to investigate the pathogenesis of Kabuki syndrome and neurocristopathies in a wider sense.
Collapse
Affiliation(s)
- Janina Schwenty-Lara
- Department of Biology, Molecular Embryology, Philipps-University Marburg, Marburg, Germany
| | - Silke Pauli
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Annette Borchers
- Department of Biology, Molecular Embryology, Philipps-University Marburg, Marburg, Germany.,DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodeling, GRK 2213, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
4
|
Martínez Anaya D, Fernández Hernández L, González Del Angel A, Alcántara Ortigoza MA, Ulloa Avilés V, Pérez Vera P. Nonmosaic Trisomy 19p13.3p13.2 Resulting from a Rare Unbalanced t(Y;19)(q12;p13.2) Translocation in a Patient with Pachygyria and Polymicrogyria. Cytogenet Genome Res 2020; 160:177-184. [PMID: 32369810 DOI: 10.1159/000507561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 03/18/2020] [Indexed: 11/19/2022] Open
Abstract
Nonmosaic trisomy involving 19p13.3p13.2 is a very uncommon abnormality. At present, only 12 cases with this genetic condition have been reported in the literature. However, the size of the trisomic fragment is heterogeneous and thus, the clinical spectrum is variable. Herein, we report the clinical and cytogenetic characterization of a 5-year-old boy with nonmosaic trisomy 19p13.3p13.2 (7.38 Mb), generated by a derivative Y chromosome resulting from a de novo unbalanced translocation t(Y;19)(q12;p13.2). We demonstrated the integrity of the euchromatic regions in the abnormal Y chromosome to confirm the pure trisomy 19p. Our patient shares some clinical features described in other reported patients with pure trisomy 19p, such as craniofacial anomalies, developmental delay, and heart defects. Different to previous reports, our case exhibits frontal pachygyria and polymicrogyria. These additional features contribute to further delineate the clinical spectrum of trisomy 19p13.3p13.2.
Collapse
|
5
|
Schwenty-Lara J, Nehl D, Borchers A. The histone methyltransferase KMT2D, mutated in Kabuki syndrome patients, is required for neural crest cell formation and migration. Hum Mol Genet 2020; 29:305-319. [PMID: 31813957 PMCID: PMC7003132 DOI: 10.1093/hmg/ddz284] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 12/30/2022] Open
Abstract
Kabuki syndrome is an autosomal dominant developmental disorder with high similarities to CHARGE syndrome. It is characterized by a typical facial gestalt in combination with short stature, intellectual disability, skeletal findings and additional features like cardiac and urogenital malformations, cleft palate, hearing loss and ophthalmological anomalies. The major cause of Kabuki syndrome are mutations in KMT2D, a gene encoding a histone H3 lysine 4 (H3K4) methyltransferase belonging to the group of chromatin modifiers. Here we provide evidence that Kabuki syndrome is a neurocrestopathy, by showing that Kmt2d loss-of-function inhibits specific steps of neural crest (NC) development. Using the Xenopus model system, we find that Kmt2d loss-of-function recapitulates major features of Kabuki syndrome including severe craniofacial malformations. A detailed marker analysis revealed defects in NC formation as well as migration. Transplantation experiments confirm that Kmt2d function is required in NC cells. Furthermore, analyzing in vivo and in vitro NC migration behavior demonstrates that Kmt2d is necessary for cell dispersion but not protrusion formation of migrating NC cells. Importantly, Kmt2d knockdown correlates with a decrease in H3K4 monomethylation and H3K27 acetylation supporting a role of Kmt2d in the transcriptional activation of target genes. Consistently, using a candidate approach, we find that Kmt2d loss-of-function inhibits Xenopus Sema3F expression, and overexpression of Sema3F can partially rescue Kmt2d loss-of-function defects. Taken together, our data reveal novel functions of Kmt2d in multiple steps of NC development and support the hypothesis that major features of Kabuki syndrome are caused by defects in NC development.
Collapse
Affiliation(s)
- Janina Schwenty-Lara
- Department of Biology, Molecular Embryology, Philipps-Universität Marburg, Marburg 35043, Germany
| | - Denise Nehl
- Department of Biology, Molecular Embryology, Philipps-Universität Marburg, Marburg 35043, Germany
| | - Annette Borchers
- Department of Biology, Molecular Embryology, Philipps-Universität Marburg, Marburg 35043, Germany
- DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodeling, GRK 2213, Philipps-Universität Marburg, Marburg 35043, Germany
| |
Collapse
|
6
|
Bajanca F, Gouignard N, Colle C, Parsons M, Mayor R, Theveneau E. In vivo topology converts competition for cell-matrix adhesion into directional migration. Nat Commun 2019; 10:1518. [PMID: 30944331 PMCID: PMC6447549 DOI: 10.1038/s41467-019-09548-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 03/11/2019] [Indexed: 12/14/2022] Open
Abstract
When migrating in vivo, cells are exposed to numerous conflicting signals: chemokines, repellents, extracellular matrix, growth factors. The roles of several of these molecules have been studied individually in vitro or in vivo, but we have yet to understand how cells integrate them. To start addressing this question, we used the cephalic neural crest as a model system and looked at the roles of its best examples of positive and negative signals: stromal-cell derived factor 1 (Sdf1/Cxcl12) and class3-Semaphorins. Here we show that Sdf1 and Sema3A antagonistically control cell-matrix adhesion via opposite effects on Rac1 activity at the single cell level. Directional migration at the population level emerges as a result of global Semaphorin-dependent confinement and broad activation of adhesion by Sdf1 in the context of a biased Fibronectin distribution. These results indicate that uneven in vivo topology renders the need for precise distribution of secreted signals mostly dispensable.
Collapse
Affiliation(s)
- Fernanda Bajanca
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 118 route de Narbonne, 31062, Toulouse, Cedex 09, France
| | - Nadège Gouignard
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 118 route de Narbonne, 31062, Toulouse, Cedex 09, France
| | - Charlotte Colle
- Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Maddy Parsons
- Kings College London, Randall Centre for Cell and Molecular Biophysics Room 3.22B, New Hunts House, Guys Campus, London, SE1 1UL, UK
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Eric Theveneau
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 118 route de Narbonne, 31062, Toulouse, Cedex 09, France.
- Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
7
|
Szabó A, Theveneau E, Turan M, Mayor R. Neural crest streaming as an emergent property of tissue interactions during morphogenesis. PLoS Comput Biol 2019; 15:e1007002. [PMID: 31009457 PMCID: PMC6497294 DOI: 10.1371/journal.pcbi.1007002] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 05/02/2019] [Accepted: 04/03/2019] [Indexed: 12/05/2022] Open
Abstract
A fundamental question in embryo morphogenesis is how a complex pattern is established in seemingly uniform tissues. During vertebrate development, neural crest cells differentiate as a continuous mass of tissue along the neural tube and subsequently split into spatially distinct migratory streams to invade the rest of the embryo. How these streams are established is not well understood. Inhibitory signals surrounding the migratory streams led to the idea that position and size of streams are determined by a pre-pattern of such signals. While clear evidence for a pre-pattern in the cranial region is still lacking, all computational models of neural crest migration published so far have assumed a pre-pattern of negative signals that channel the neural crest into streams. Here we test the hypothesis that instead of following a pre-existing pattern, the cranial neural crest creates their own migratory pathway by interacting with the surrounding tissue. By combining theoretical modeling with experimentation, we show that streams emerge from the interaction of the hindbrain neural crest and the neighboring epibranchial placodal tissues, without the need for a pre-existing guidance cue. Our model suggests that the initial collective neural crest invasion is based on short-range repulsion and asymmetric attraction between neighboring tissues. The model provides a coherent explanation for the formation of cranial neural crest streams in concert with previously reported findings and our new in vivo observations. Our results point to a general mechanism of inducing collective invasion patterns.
Collapse
Affiliation(s)
- András Szabó
- Research Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Eric Theveneau
- Research Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Melissa Turan
- Research Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Roberto Mayor
- Research Department of Cell and Developmental Biology, University College London, London, United Kingdom
| |
Collapse
|
8
|
Kratzer MC, England L, Apel D, Hassel M, Borchers A. Evolution of the Rho guanine nucleotide exchange factors Kalirin and Trio and their gene expression in Xenopus development. Gene Expr Patterns 2019; 32:18-27. [PMID: 30844509 DOI: 10.1016/j.gep.2019.02.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/26/2019] [Accepted: 02/26/2019] [Indexed: 01/23/2023]
Abstract
Guanine nucleotide exchange factors (GEFs) activate Rho GTPases by accelerating their GDP/GTP exchange. Trio and its paralog Kalirin (Kalrn) are unique members of the Rho-GEFs that harbor three catalytic domains: two functional GEF domains and a serine/threonine kinase domain. The N-terminal GEF domain activates Rac1 and RhoG GTPases, while the C-terminal GEF domain acts specifically on RhoA. Trio and Kalrn have an evolutionary conserved function in morphogenetic processes including neuronal development. De novo mutations in TRIO have lately been identified in patients with intellectual disability, suggesting that this protein family plays an important role in development and disease. Phylogenetic and domain analysis revealed that a Kalrn/Trio ancestor originated in Prebilateria and duplicated in Urbilateria to yield Kalrn and Trio. Only few taxa outside the vertebrates retained both of these highly conserved proteins. To obtain first insights into their redundant or distinct functions in a vertebrate model system, we show for the first time a detailed comparative analysis of trio and kalrn expression in Xenopus laevis development. The mRNAs are maternally transcribed and expression increases starting with neurula stages. Trio and kalrn are detected in mesoderm/somites and different neuronal populations in the neural plate/tube and later also in the brain. However, only trio is expressed in migrating neural crest cells, while kalrn expression is detected in the cranial nerves, suggesting distinct functions. Thus, our expression analysis provides a good basis for further functional studies.
Collapse
Affiliation(s)
- Marie-Claire Kratzer
- Philipps-Universität Marburg, Faculty of Biology, Molecular Embryology, Marburg, Germany; DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodeling, GRK 2213, Philipps-Universität Marburg, Marburg, Germany
| | - Laura England
- Philipps-Universität Marburg, Faculty of Biology, Molecular Embryology, Marburg, Germany
| | - David Apel
- Philipps-Universität Marburg, Faculty of Biology, Morphology and Evolution of Invertebrates, Marburg, Germany; DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodeling, GRK 2213, Philipps-Universität Marburg, Marburg, Germany
| | - Monika Hassel
- Philipps-Universität Marburg, Faculty of Biology, Morphology and Evolution of Invertebrates, Marburg, Germany; DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodeling, GRK 2213, Philipps-Universität Marburg, Marburg, Germany
| | - Annette Borchers
- Philipps-Universität Marburg, Faculty of Biology, Molecular Embryology, Marburg, Germany; DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodeling, GRK 2213, Philipps-Universität Marburg, Marburg, Germany.
| |
Collapse
|
9
|
Pendleton AL, Shen F, Taravella AM, Emery S, Veeramah KR, Boyko AR, Kidd JM. Comparison of village dog and wolf genomes highlights the role of the neural crest in dog domestication. BMC Biol 2018; 16:64. [PMID: 29950181 PMCID: PMC6022502 DOI: 10.1186/s12915-018-0535-2] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/23/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Domesticated from gray wolves between 10 and 40 kya in Eurasia, dogs display a vast array of phenotypes that differ from their ancestors, yet mirror other domesticated animal species, a phenomenon known as the domestication syndrome. Here, we use signatures persisting in dog genomes to identify genes and pathways possibly altered by the selective pressures of domestication. RESULTS Whole-genome SNP analyses of 43 globally distributed village dogs and 10 wolves differentiated signatures resulting from domestication rather than breed formation. We identified 246 candidate domestication regions containing 10.8 Mb of genome sequence and 429 genes. The regions share haplotypes with ancient dogs, suggesting that the detected signals are not the result of recent selection. Gene enrichments highlight numerous genes linked to neural crest and central nervous system development as well as neurological function. Read depth analysis suggests that copy number variation played a minor role in dog domestication. CONCLUSIONS Our results identify genes that act early in embryogenesis and can confer phenotypes distinguishing domesticated dogs from wolves, such as tameness, smaller jaws, floppy ears, and diminished craniofacial development as the targets of selection during domestication. These differences reflect the phenotypes of the domestication syndrome, which can be explained by alterations in the migration or activity of neural crest cells during development. We propose that initial selection during early dog domestication was for behavior, a trait influenced by genes which act in the neural crest, which secondarily gave rise to the phenotypes of modern dogs.
Collapse
Affiliation(s)
- Amanda L Pendleton
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Feichen Shen
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Angela M Taravella
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Sarah Emery
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Krishna R Veeramah
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Adam R Boyko
- Department of Biomedical Sciences, Cornell University, Ithaca, New York, 14853, USA
| | - Jeffrey M Kidd
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
10
|
Gallik KL, Treffy RW, Nacke LM, Ahsan K, Rocha M, Green-Saxena A, Saxena A. Neural crest and cancer: Divergent travelers on similar paths. Mech Dev 2017; 148:89-99. [PMID: 28888421 PMCID: PMC5811199 DOI: 10.1016/j.mod.2017.08.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 08/20/2017] [Accepted: 08/24/2017] [Indexed: 12/29/2022]
Abstract
Neural crest cells are multipotent progenitors that dynamically interpret diverse microenvironments to migrate significant distances as a loosely associated collective and contribute to many tissues in the developing vertebrate embryo. Uncovering details of neural crest migration has helped to inform a general understanding of collective cell migration, including that which occurs during cancer metastasis. Here, we discuss several commonalities and differences of neural crest and cancer cell migration and behavior. First, we focus on some of the molecular pathways required for the initial specification and potency of neural crest cells and the roles of many of these pathways in cancer progression. We also describe epithelial-to-mesenchymal transition, which plays a critical role in initiating both neural crest migration and cancer metastasis. Finally, we evaluate studies that demonstrate myriad forms of cell-cell and cell-environment communication during neural crest and cancer collective migration to highlight the remarkable similarities in their molecular and cell biological regulation.
Collapse
Affiliation(s)
- Kristin L Gallik
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Randall W Treffy
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Lynne M Nacke
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Kamil Ahsan
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
| | - Manuel Rocha
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
| | - Abigail Green-Saxena
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Ankur Saxena
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA.
| |
Collapse
|
11
|
Abstract
During embryonic development, tissues undergo major rearrangements that lead to germ layer positioning, patterning, and organ morphogenesis. Often these morphogenetic movements are accomplished by the coordinated and cooperative migration of the constituent cells, referred to as collective cell migration. The molecular and biomechanical mechanisms underlying collective migration of developing tissues have been investigated in a variety of models, including border cell migration, tracheal branching, blood vessel sprouting, and the migration of the lateral line primordium, neural crest cells, or head mesendoderm. Here we review recent advances in understanding collective migration in these developmental models, focusing on the interaction between cells and guidance cues presented by the microenvironment and on the role of cell–cell adhesion in mechanical and behavioral coupling of cells within the collective.
Collapse
Affiliation(s)
- Elena Scarpa
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, England, UK
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, England, UK
| |
Collapse
|
12
|
Yan B, Neilson KM, Ranganathan R, Maynard T, Streit A, Moody SA. Microarray identification of novel genes downstream of Six1, a critical factor in cranial placode, somite, and kidney development. Dev Dyn 2014; 244:181-210. [PMID: 25403746 DOI: 10.1002/dvdy.24229] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 11/03/2014] [Accepted: 11/12/2014] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Six1 plays an important role in the development of several vertebrate organs, including cranial sensory placodes, somites, and kidney. Although Six1 mutations cause one form of branchio-otic syndrome (BOS), the responsible gene in many patients has not been identified; genes that act downstream of Six1 are potential BOS candidates. RESULTS We sought to identify novel genes expressed during placode, somite and kidney development by comparing gene expression between control and Six1-expressing ectodermal explants. The expression patterns of 19 of the significantly up-regulated and 11 of the significantly down-regulated genes were assayed from cleavage to larval stages. A total of 28/30 genes are expressed in the otocyst, a structure that is functionally disrupted in BOS, and 26/30 genes are expressed in the nephric mesoderm, a structure that is functionally disrupted in the related branchio-otic-renal (BOR) syndrome. We also identified the chick homologues of five genes and show that they have conserved expression patterns. CONCLUSIONS Of the 30 genes selected for expression analyses, all are expressed at many of the developmental times and appropriate tissues to be regulated by Six1. Many have the potential to play a role in the disruption of hearing and kidney function seen in BOS/BOR patients.
Collapse
Affiliation(s)
- Bo Yan
- Department of Anatomy and Regenerative Biology, The George Washington University, School of Medicine and Health Sciences, Washington, DC
| | | | | | | | | | | |
Collapse
|
13
|
Keyte AL, Alonzo-Johnsen M, Hutson MR. Evolutionary and developmental origins of the cardiac neural crest: building a divided outflow tract. ACTA ACUST UNITED AC 2014; 102:309-23. [PMID: 25227322 DOI: 10.1002/bdrc.21076] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 08/22/2014] [Indexed: 12/14/2022]
Abstract
The cardiac neural crest cells (CNCCs) have played an important role in the evolution and development of the vertebrate cardiovascular system: from reinforcement of the developing aortic arch arteries early in vertebrate evolution, to later orchestration of aortic arch artery remodeling into the great arteries of the heart, and finally outflow tract septation in amniotes. A critical element necessary for the evolutionary advent of outflow tract septation was the co-evolution of the cardiac neural crest cells with the second heart field. This review highlights the major transitions in vertebrate circulatory evolution, explores the evolutionary developmental origins of the CNCCs from the third stream cranial neural crest, and explores candidate signaling pathways in CNCC and outflow tract evolution drawn from our knowledge of DiGeorge Syndrome.
Collapse
Affiliation(s)
- Anna L Keyte
- Brumley Neonatal Perinatal Research Institute, Department of Pediatrics, Duke University, Durham, North Carolina
| | | | | |
Collapse
|
14
|
Yajima H, Suzuki M, Ochi H, Ikeda K, Sato S, Yamamura KI, Ogino H, Ueno N, Kawakami K. Six1 is a key regulator of the developmental and evolutionary architecture of sensory neurons in craniates. BMC Biol 2014; 12:40. [PMID: 24885223 PMCID: PMC4084797 DOI: 10.1186/1741-7007-12-40] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 05/22/2014] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Various senses and sensory nerve architectures of animals have evolved during adaptation to exploit diverse environments. In craniates, the trunk sensory system has evolved from simple mechanosensory neurons inside the spinal cord (intramedullary), called Rohon-Beard (RB) cells, to multimodal sensory neurons of dorsal root ganglia (DRG) outside the spinal cord (extramedullary). The fish and amphibian trunk sensory systems switch from RB cells to DRG during development, while amniotes rely exclusively on the DRG system. The mechanisms underlying the ontogenic switching and its link to phylogenetic transition remain unknown. RESULTS In Xenopus, Six1 overexpression promoted precocious apoptosis of RB cells and emergence of extramedullary sensory neurons, whereas Six1 knockdown delayed the reduction in RB cell number. Genetic ablation of Six1 and Six4 in mice led to the appearance of intramedullary sensory neuron-like cells as a result of medial migration of neural crest cells into the spinal cord and production of immature DRG neurons and fused DRG. Restoration of SIX1 expression in the neural crest-linage partially rescued the phenotype, indicating the cell autonomous requirements of SIX1 for normal extramedullary sensory neurogenesis. Mouse Six1 enhancer that mediates the expression in DRG neurons activated transcription in Xenopus RB cells earlier than endogenous six1 expression, suggesting earlier onset of mouse SIX1 expression than Xenopus during sensory development. CONCLUSIONS The results indicated the critical role of Six1 in transition of RB cells to DRG neurons during Xenopus development and establishment of exclusive DRG system of mice. The study provided evidence that early appearance of SIX1 expression, which correlated with mouse Six1 enhancer, is essential for the formation of DRG-dominant system in mice, suggesting that heterochronic changes in Six1 enhancer sequence play an important role in alteration of trunk sensory architecture and contribute to the evolution of the trunk sensory system.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Kiyoshi Kawakami
- Division of Biology, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan.
| |
Collapse
|
15
|
CHD7, the gene mutated in CHARGE syndrome, regulates genes involved in neural crest cell guidance. Hum Genet 2014; 133:997-1009. [PMID: 24728844 DOI: 10.1007/s00439-014-1444-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 03/31/2014] [Indexed: 12/31/2022]
Abstract
Heterozygous loss of function mutations in CHD7 (chromodomain helicase DNA-binding protein 7) lead to CHARGE syndrome, a complex developmental disorder affecting craniofacial structures, cranial nerves and several organ systems. Recently, it was demonstrated that CHD7 is essential for the formation of multipotent migratory neural crest cells, which migrate from the neural tube to many regions of the embryo, where they differentiate into various tissues including craniofacial and heart structures. So far, only few CHD7 target genes involved in neural crest cell development have been identified and the role of CHD7 in neural crest cell guidance and the regulation of mesenchymal-epithelial transition are unknown. Therefore, we undertook a genome-wide microarray expression analysis on wild-type and CHD7 deficient (Chd7 (Whi/+) and Chd7 (Whi/Whi)) mouse embryos at day 9.5, a time point of neural crest cell migration. We identified 98 differentially expressed genes between wild-type and Chd7 (Whi/Whi) embryos. Interestingly, many misregulated genes are involved in neural crest cell and axon guidance such as semaphorins and ephrin receptors. By performing knockdown experiments for Chd7 in Xenopus laevis embryos, we found abnormalities in the expression pattern of Sema3a, a protein involved in the pathogenesis of Kallmann syndrome, in vivo. In addition, we detected non-synonymous SEMA3A variations in 3 out of 45 CHD7-negative CHARGE patients. In summary, we discovered for the first time that Chd7 regulates genes involved in neural crest cell guidance, demonstrating a new aspect in the pathogenesis of CHARGE syndrome. Furthermore, we showed for Sema3a a conserved regulatory mechanism across different species, highlighting its significance during development. Although we postulated that the non-synonymous SEMA3A variants which we found in CHD7-negative CHARGE patients alone are not sufficient to produce the phenotype, we suggest an important modifier role for SEMA3A in the pathogenesis of this multiple malformation syndrome.
Collapse
|
16
|
The role of the non-canonical Wnt-planar cell polarity pathway in neural crest migration. Biochem J 2014; 457:19-26. [PMID: 24325550 DOI: 10.1042/bj20131182] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The neural crest is an embryonic stem cell population whose migratory behaviour has been likened to malignant invasion. The neural crest, as does cancer, undergoes an epithelial-to-mesenchymal transition and migrates to colonize almost all the tissues of the embryo. Neural crest cells exhibit collective cell migration, moving in streams of high directionality. The migratory neural crest streams are kept in shape by the presence of negative signals in their vicinity. The directionality of the migrating neural crest is achieved by contact-dependent cell polarization, in a phenomenon called contact inhibition of locomotion. Two cells experiencing contact inhibition of locomotion move away from each other after collision. However, if the cell density is high only cells exposed to a free edge can migrate away from the cluster leading to the directional migration of the whole group. Recent work performed in chicks, zebrafish and frogs has shown that the non-canonical Wnt-PCP (planar cell polarity) pathway plays a major role in neural crest migration. PCP signalling controls contact inhibition of locomotion between neural crest cells by localizing different PCP proteins at the site of cell contact during collision and locally regulating the activity of Rho GTPases. Upon collision RhoA (ras homologue family member A) is activated, whereas Rac1 is inhibited at the contact between two migrating neural crest cells, leading to the collapse of protrusions and the migration of cells away from one another. The present review summarizes the mechanisms that control neural crest migration and focuses on the role of non-canonical Wnt or PCP signalling in this process.
Collapse
|
17
|
Kita EM, Bertolesi GE, Hehr CL, Johnston J, McFarlane S. Neuropilin-1 biases dendrite polarization in the retina. Development 2013; 140:2933-41. [PMID: 23739132 DOI: 10.1242/dev.088286] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The majority of neurons in the nervous system exhibit a polarized morphology, with multiple short dendrites and a single long axon. It is clear that multiple factors govern polarization in developing neurons, and the biased accumulation of intrinsic determinants to one side of the cell, coupled with responses to asymmetrically localized extrinsic factors, appears to be crucial. A number of intrinsic factors have been identified, but surprisingly little is known about the identity of the extrinsic signals. Here, we show in vivo that neuropilin-1 (Nrp1) and its co-receptor plexinA1 (Plxna1) are necessary to bias the extension of the dendrites of retinal ganglion cells to the apical side of the cell, and ectopically expressed class III semaphorins (Sema3s) disrupt this process. Importantly, the requirement for Nrp1 and Plxna1 in dendrite polarization occurs at a developmental time point after the cells have already extended their basally directed axon. Thus, we propose a novel mechanism whereby an extrinsic factor, probably a Sema3, acts through Nrp1 and Plxna1 to promote the asymmetric outgrowth of dendrites independently of axon polarization.
Collapse
Affiliation(s)
- Elizabeth M Kita
- Hotchkiss Brain Institute, Department of Cell Biology and Anatomy, University of Calgary, 3330 Hospital Drive, Calgary, AB T2N 4N1, Canada
| | | | | | | | | |
Collapse
|
18
|
Greenwood AK, Cech JN, Peichel CL. Molecular and developmental contributions to divergent pigment patterns in marine and freshwater sticklebacks. Evol Dev 2012; 14:351-62. [PMID: 22765206 DOI: 10.1111/j.1525-142x.2012.00553.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pigment pattern variation across species or populations offers a tractable framework in which to investigate the evolution of development. Juvenile threespine sticklebacks (Gasterosteus aculeatus) from marine and freshwater environments exhibit divergent pigment patterns that are associated with ecological differences. Juvenile marine sticklebacks have a silvery appearance, whereas sticklebacks from freshwater environments exhibit a pattern of vertical bars. We investigated both the developmental and molecular basis of this population-level variation in pigment pattern. Time course imaging during the transition from larval to juvenile stages revealed differences between marine and freshwater fish in spatial patterns of chromatophore differentiation as well as in pigment amount and dispersal. In freshwater fish, melanophores appear primarily within dark bars whereas iridophores appear within light bars. By contrast, in marine fish, these chromatophores are interspersed across the flank. In addition to spatially segregated chromatophore differentiation, pigment amount and dispersal within melanophores varies spatially across the flank of freshwater, but not marine fish. To gain insight into the molecular pathways that underlie the differences in pigment pattern development, we evaluated differential gene expression in the flanks of developing fish using high-throughput cDNA sequencing (RNA-seq) and quantitative PCR. We identified several genes that were differentially expressed across dark and light bars of freshwater fish, and between freshwater and marine fish. Together, these experiments begin to shed light on the process of pigment pattern evolution in sticklebacks.
Collapse
Affiliation(s)
- Anna K Greenwood
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| | | | | |
Collapse
|
19
|
Theveneau E, Mayor R. Neural crest delamination and migration: from epithelium-to-mesenchyme transition to collective cell migration. Dev Biol 2012; 366:34-54. [PMID: 22261150 DOI: 10.1016/j.ydbio.2011.12.041] [Citation(s) in RCA: 364] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 12/26/2011] [Indexed: 10/25/2022]
Abstract
After induction and specification in the ectoderm, at the border of the neural plate, the neural crest (NC) population leaves its original territory through a delamination process. Soon afterwards, the NC cells migrate throughout the embryo and colonize a myriad of tissues and organs where they settle and differentiate. The delamination involves a partial or complete epithelium-to-mesenchyme transition (EMT) regulated by a complex network of transcription factors including several proto-oncogenes. Studying the relationship between these genes at the time of emigration, and their individual or collective impact on cell behavior, provides valuable information about their role in EMT in other contexts such as cancer metastasis. During migration, NC cells are exposed to large number of positive and negative regulators that control where they go by generating permissive and restricted areas and by modulating their motility and directionality. In addition, as most NC cells migrate collectively, cell-cell interactions play a crucial role in polarizing the cells and interpreting external cues. Cell cooperation eventually generates an overall polarity to the population, leading to directional collective cell migration. This review will summarize our current knowledge on delamination, EMT and migration of NC cells using key examples from chicken, Xenopus, zebrafish and mouse embryos. Given the similarities between neural crest migration and cancer invasion, these cells may represent a useful model for understanding the mechanisms of metastasis.
Collapse
Affiliation(s)
- Eric Theveneau
- Department of Cell and Developmental Biology, University College London, UK
| | | |
Collapse
|
20
|
Vandenberg LN, Morrie RD, Adams DS. V-ATPase-dependent ectodermal voltage and pH regionalization are required for craniofacial morphogenesis. Dev Dyn 2011; 240:1889-904. [PMID: 21761475 DOI: 10.1002/dvdy.22685] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Using voltage and pH reporter dyes, we have discovered a never-before-seen regionalization of the Xenopus ectoderm, with cell subpopulations delimited by different membrane voltage and pH. We distinguished three courses of bioelectrical activity. Course I is a wave of hyperpolarization that travels across the gastrula. Course II comprises the appearance of patterns that match shape changes and gene expression domains of the developing face; hyperpolarization marks folding epithelium and both hyperpolarized and depolarized regions overlap domains of head patterning genes. In Course III, localized regions of hyperpolarization form at various positions, expand, and disappear. Inhibiting H(+) -transport by the H(+) -V-ATPase causes abnormalities in: (1) the morphology of craniofacial structures; (2) Course II voltage patterns; and (3) patterns of sox9, pax8, slug, mitf, xfz3, otx2, and pax6. We conclude that this bioelectric signal has a role in development of the face. Thus, it exemplifies an important, under-studied mechanism of developmental regulation.
Collapse
Affiliation(s)
- Laura N Vandenberg
- The Tufts Center for Regenerative and Developmental Biology, and Biology Department, Tufts University, Medford, Massachusetts, USA
| | | | | |
Collapse
|
21
|
Atkinson-Leadbeater K, McFarlane S. Extrinsic factors as multifunctional regulators of retinal ganglion cell morphogenesis. Dev Neurobiol 2011; 71:1170-85. [DOI: 10.1002/dneu.20924] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
22
|
Theveneau E, Mayor R. Collective cell migration of the cephalic neural crest: The art of integrating information. Genesis 2011; 49:164-76. [DOI: 10.1002/dvg.20700] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 11/30/2010] [Accepted: 12/04/2010] [Indexed: 02/03/2023]
|
23
|
Wagner G, Peradziryi H, Wehner P, Borchers A. PlexinA1 interacts with PTK7 and is required for neural crest migration. Biochem Biophys Res Commun 2010; 402:402-7. [PMID: 20946874 DOI: 10.1016/j.bbrc.2010.10.044] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Accepted: 10/08/2010] [Indexed: 12/28/2022]
Abstract
Members of the plexin protein family are known regulators of axon guidance, but recent data indicate that they have broader functions in the regulation of embryonic morphogenesis. Here we provide further evidence of this by showing that PlexinA1 is expressed in Xenopus neural crest cells and is required for their migration. PlexinA1 expression is detected in migrating cranial neural crest cells and knockdown of PlexinA1 expression using Morpholino oligonucleotides inhibits neural crest migration. PlexinA1 likely affects neural crest migration by interaction with PTK7, a regulator of planar cell polarity that is required for neural crest migration. PlexinA1 and PTK7 interact in immunoprecipitation assays and show phenotypic interaction in co-injection experiments. Considering that plexins and PTK7 have been shown to genetically interact in Drosophila axon guidance and chick cardiac morphogenesis, our data suggest that this interaction is evolutionary conserved and may be relevant for a broad range of morphogenetic events including the migration of neural crest cells in Xenopus laevis.
Collapse
Affiliation(s)
- Gabriele Wagner
- Department of Developmental Biochemistry, Center for Molecular Physiology of the Brain (CMPB), GZMB, University of Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | | | | | | |
Collapse
|