1
|
Zhao ZY, Siow Y, Liu LY, Li X, Wang HL, Lei ZM. The SPARC-related modular calcium binding 1 ( Smoc1 ) regulated by androgen is required for mouse gubernaculum development and testicular descent. Asian J Androl 2025; 27:44-51. [PMID: 39119686 PMCID: PMC11784950 DOI: 10.4103/aja202449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/22/2024] [Indexed: 08/10/2024] Open
Abstract
ABSTRACT Testicular descent occurs in two consecutive stages: the transabdominal stage and the inguinoscrotal stage. Androgens play a crucial role in the second stage by influencing the development of the gubernaculum, a structure that pulls the testis into the scrotum. However, the mechanisms of androgen actions underlying many of the processes associated with gubernaculum development have not been fully elucidated. To identify the androgen-regulated genes, we conducted large-scale gene expression analyses on the gubernaculum harvested from luteinizing hormone/choriogonadotropin receptor knockout ( Lhcgr KO) mice, an animal model of inguinoscrotal testis maldescent resulting from androgen deficiency. We found that the expression of secreted protein acidic and rich in cysteine (SPARC)-related modular calcium binding 1 ( Smoc1 ) was the most severely suppressed at both the transcript and protein levels, while its expression was the most dramatically induced by testosterone administration in the gubernacula of Lhcgr KO mice. The upregulation of Smoc1 expression by testosterone was curtailed by the addition of an androgen receptor antagonist, flutamide. In addition, in vitro studies demonstrated that SMOC1 modestly but significantly promoted the proliferation of gubernacular cells. In the cultures of myogenic differentiation medium, both testosterone and SMOC1 enhanced the expression of myogenic regulatory factors such as paired box 7 ( Pax7 ) and myogenic factor 5 ( Myf5 ). After short-interfering RNA-mediated knocking down of Smoc1 , the expression of Pax7 and Myf5 diminished, and testosterone alone did not recover, but additional SMOC1 did. These observations indicate that SMOC1 is pivotal in mediating androgen action to regulate gubernaculum development during inguinoscrotal testicular descent.
Collapse
Affiliation(s)
- Zhi-Yi Zhao
- Department of Andrology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yong Siow
- Department of OB/GYN, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Ling-Yun Liu
- Department of Andrology, The First Hospital of Jilin University, Changchun 130021, China
| | - Xian Li
- Department of OB/GYN, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Hong-Liang Wang
- Department of Andrology, The First Hospital of Jilin University, Changchun 130021, China
| | - Zhen-Min Lei
- Department of OB/GYN, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
2
|
Ono M, Nakajima K, Tomizawa SI, Shirakawa T, Okada I, Saitsu H, Matsumoto N, Ohbo K. Spatial and temporal expression analysis of BMP signal modifiers, Smoc1 and Smoc2, from postnatal to adult developmental stages in the mouse testis. Gene Expr Patterns 2024; 54:119383. [PMID: 39510490 DOI: 10.1016/j.gep.2024.119383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Smoc1 and Smoc2, members of the SPARC family of genes, encode signaling molecules downstream of growth factors such as the TGF-β, FGF, and PDGF families. Smoc1 has been implicated in playing a crucial role in microphthalmia with limb anomalies in humans and mice, while Smoc2 deficiency causes dental developmental defects. Although developmental cytokines/growth factors including TGF-β superfamily have been shown to play critical roles in postnatal spermatogenesis, there are no reports analyzing the spatial and temporal expression of Smoc1 and Smoc2 in the postnatal testis. In this study, we investigated the mRNA and protein expression of Smoc1 and Smoc2 in neonatal, juvenile, and adult mouse testes by RNA in situ hybridization, immunofluorescence, and single-cell RNA-seq analysis. We show that Smoc1 and Smoc2 have distinct expression patterns in male germ cells: Smoc1 is more highly expressed than Smoc2 in the germline. In contrast, Smoc2 is highly expressed in testicular somatic cells from neonatal to juvenile stages. The Smoc2-expressing cells then switch from somatic cells to germ cells in adults. Thus, although SMOC1 and SMOC2 proteins are structurally very similar, their spatial and temporal expression patterns in the postnatal testis differ significantly, suggesting their distinct roles in reproduction.
Collapse
Affiliation(s)
- Michio Ono
- Department of Histology and Cell Biology, School of Medicine, Yokohama City University, 3-9, Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Kuniko Nakajima
- Department of Histology and Cell Biology, School of Medicine, Yokohama City University, 3-9, Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Shin-Ichi Tomizawa
- Department of Histology and Cell Biology, School of Medicine, Yokohama City University, 3-9, Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Takayuki Shirakawa
- Department of Histology and Cell Biology, School of Medicine, Yokohama City University, 3-9, Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Ippei Okada
- Department of Human Genetics, School of Medicine, Yokohama City University, 3-9, Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Hirotomo Saitsu
- Biochemistry Department, Hamamatsu University School of Medicine, 1-20-1, Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, School of Medicine, Yokohama City University, 3-9, Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Kazuyuki Ohbo
- Department of Histology and Cell Biology, School of Medicine, Yokohama City University, 3-9, Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.
| |
Collapse
|
3
|
Balcomb K, Johnston C, Kavanagh T, Leitner D, Schneider J, Halliday G, Wisniewski T, Sunde M, Drummond E. SMOC1 colocalizes with Alzheimer's disease neuropathology and delays Aβ aggregation. Acta Neuropathol 2024; 148:72. [PMID: 39585417 PMCID: PMC11588930 DOI: 10.1007/s00401-024-02819-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/30/2024] [Accepted: 10/30/2024] [Indexed: 11/26/2024]
Abstract
SMOC1 has emerged as one of the most significant and consistent new biomarkers of early Alzheimer's disease (AD). Recent studies show that SMOC1 is one of the earliest changing proteins in AD, with levels in the cerebrospinal fluid increasing many years before symptom onset. Despite this clear association with disease, little is known about the role of SMOC1 in AD or its function in the brain. Therefore, the aim of this study was to examine the distribution of SMOC1 in human AD brain tissue and to determine if SMOC1 influenced amyloid beta (Aβ) aggregation. The distribution of SMOC1 in human brain tissue was assessed in 3 brain regions (temporal cortex, hippocampus, and frontal cortex) using immunohistochemistry in a cohort of 73 cases encompassing advanced AD, mild cognitive impairment (MCI), preclinical AD, and cognitively normal controls. The Aβ- and phosphorylated tau-interaction with SMOC1 was assessed in control, MCI, and advanced AD human brain tissue using co-immunoprecipitation, and the influence of SMOC1 on Aβ aggregation kinetics was assessed using Thioflavin-T assays and electron microscopy. SMOC1 strongly colocalized with a subpopulation of amyloid plaques in AD (43.8 ± 2.4%), MCI (32.8 ± 5.4%), and preclinical AD (28.3 ± 6.4%). SMOC1 levels in the brain strongly correlated with plaque load, irrespective of disease stage. SMOC1 also colocalized with a subpopulation of phosphorylated tau aggregates in AD (9.6 ± 2.6%). Co-immunoprecipitation studies showed that SMOC1 strongly interacted with Aβ in human MCI and AD brain tissue and with phosphorylated tau in human AD brain tissue. Thioflavin-T aggregation assays showed that SMOC1 significantly delayed Aβ aggregation in a dose-dependent manner, and electron microscopy confirmed that the Aβ fibrils generated in the presence of SMOC1 had an altered morphology. Overall, our results emphasize the importance of SMOC1 in the onset and progression of AD and suggest that SMOC1 may influence pathology development in AD.
Collapse
Affiliation(s)
- Kaleah Balcomb
- Brain and Mind Centre and School of Medical Sciences, University of Sydney, Camperdown, NSW, 2050, Australia
| | - Caitlin Johnston
- School of Medical Sciences, University of Sydney, Camperdown, NSW, 2050, Australia
| | - Tomas Kavanagh
- Brain and Mind Centre and School of Medical Sciences, University of Sydney, Camperdown, NSW, 2050, Australia
| | - Dominique Leitner
- Center for Cognitive Neurology, Department of Neurology, Grossman School of Medicine, New York University, New York, NY, 10016, USA
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Julie Schneider
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W Harrison Street, Suite 1000, Chicago, IL, 60612, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
- Department of Pathology, Rush University Medical Center, Chicago, IL, USA
| | - Glenda Halliday
- Brain and Mind Centre and School of Medical Sciences, University of Sydney, Camperdown, NSW, 2050, Australia
| | - Thomas Wisniewski
- Center for Cognitive Neurology, Department of Neurology, Grossman School of Medicine, New York University, New York, NY, 10016, USA
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Margaret Sunde
- School of Medical Sciences, University of Sydney, Camperdown, NSW, 2050, Australia
| | - Eleanor Drummond
- Brain and Mind Centre and School of Medical Sciences, University of Sydney, Camperdown, NSW, 2050, Australia.
| |
Collapse
|
4
|
Balcomb K, Johnston C, Kavanagh T, Leitner D, Schneider J, Halliday G, Wisniewski T, Sunde M, Drummond E. SMOC1 colocalizes with Alzheimer's disease neuropathology and delays Aβ aggregation. RESEARCH SQUARE 2024:rs.3.rs-5229472. [PMID: 39574902 PMCID: PMC11581049 DOI: 10.21203/rs.3.rs-5229472/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2024]
Abstract
SMOC1 has emerged as one of the most significant and consistent new biomarkers of early Alzheimer's disease (AD). Recent studies show that SMOC1 is one of the earliest changing proteins in AD, with levels in the cerebrospinal fluid increasing many years before symptom onset. Despite this clear association with disease, little is known about the role of SMOC1 in AD or its function in the brain. Therefore, the aim of this study was to examine the distribution of SMOC1 in human AD brain tissue and to determine if SMOC1 influenced amyloid beta (Aβ) aggregation. The distribution of SMOC1 in human brain tissue was assessed in 3 brain regions (temporal cortex, hippocampus, frontal cortex) using immunohistochemistry in a cohort of 73 cases encompassing advanced AD, mild cognitive impairment (MCI), preclinical AD and cognitively normal controls. The Aβ- and phosphorylated tau-interaction with SMOC1 was assessed in control, MCI and advanced AD human brain tissue using co-immunoprecipitation, and the influence of SMOC1 on Aβ aggregation kinetics was assessed using Thioflavin T assays and electron microscopy. SMOC1 strongly colocalized with a subpopulation of amyloid plaques in AD (43.8±2.4%), MCI (32.8±5.4%) and preclinical AD (28.3±6.4%). SMOC1 levels in the brain strongly correlated with plaque load, irrespective of disease stage. SMOC1 also colocalized with a subpopulation of phosphorylated tau aggregates in AD (9.6±2.6%). Co-immunoprecipitation studies showed that SMOC1 strongly interacted with Aβ in human MCI and AD brain tissue and with phosphorylated tau in human AD brain tissue. Thioflavin T aggregation assays showed that SMOC1 significantly delayed Aβ aggregation in a dose-dependent manner, and electron microscopy confirmed that the Aβ fibrils generated in the presence of SMOC1 had an altered morphology. Overall, our results emphasize the importance of SMOC1 in the onset and progression of AD and suggest that SMOC1 may influence pathology development in AD.
Collapse
|
5
|
Xiang X, Huang X, Wang J, Zhang H, Zhou W, Xu C, Huang Y, Tan Y, Yin Z. Transcriptomic and metabolomic analyses of the ovaries of Taihe black-bone silky fowls at the peak egg-laying and nesting period. Front Genet 2023; 14:1222087. [PMID: 37876591 PMCID: PMC10591096 DOI: 10.3389/fgene.2023.1222087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 09/25/2023] [Indexed: 10/26/2023] Open
Abstract
The poor reproductive performance of most local Chinese chickens limits the economic benefits and output of related enterprises. As an excellent local breed in China, Taihe black-bone silky fowl is in urgent need of our development and utilization. In this study, we performed transcriptomic and metabolomic analyses of the ovaries of Taihe black-bone silky fowls at the peak egg-laying period (PP) and nesting period (NP) to reveal the molecular mechanisms affecting reproductive performance. In the transcriptome, we identified five key differentially expressed genes (DEGs) that may affect the reproductive performance of Taihe black-bone silky fowl: BCHE, CCL5, SMOC1, CYTL1, and SCIN, as well as three important pathways: the extracellular region, Neuroactive ligand-receptor interaction and Cytokine-cytokine receptor interaction. In the metabolome, we predicted three important ovarian significantly differential metabolites (SDMs): LPC 20:4, Bisphenol A, and Cortisol. By integration analysis of transcriptome and metabolome, we identified three important metabolite-gene pairs: "LPC 20:4-BCHE", "Bisphenol A-SMOC1", and "Cortisol- SCIN". In summary, this study contributes to a deeper understanding of the regulatory mechanism of egg production in Taihe black-bone silky fowl and provides a scientific basis for improving the reproductive performance of Chinese local chickens.
Collapse
Affiliation(s)
- Xin Xiang
- Animal Science College, Zhejiang University, Hangzhou, China
| | - Xuan Huang
- Animal Science College, Zhejiang University, Hangzhou, China
| | | | - Haiyang Zhang
- Animal Science College, Zhejiang University, Hangzhou, China
| | - Wei Zhou
- Animal Science College, Zhejiang University, Hangzhou, China
| | - Chunhui Xu
- Animal Science College, Zhejiang University, Hangzhou, China
| | - Yunyan Huang
- Animal Science College, Zhejiang University, Hangzhou, China
| | - Yuting Tan
- Animal Science College, Zhejiang University, Hangzhou, China
| | - Zhaozheng Yin
- Animal Science College, Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
Liu Z, Fu S, He X, Dai L, Liu X, Narisu, Shi C, Gu M, Wang Y, Manda, Guo L, Bao Y, Baiyinbatu, Chang C, Liu Y, Zhang W. Integrated Multi-Tissue Transcriptome Profiling Characterizes the Genetic Basis and Biomarkers Affecting Reproduction in Sheep ( Ovis aries). Genes (Basel) 2023; 14:1881. [PMID: 37895230 PMCID: PMC10606288 DOI: 10.3390/genes14101881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
The heritability of litter size in sheep is low and controlled by multiple genes, but the research on its related genes is not sufficient. Here, to explore the expression pattern of multi-tissue genes in Chinese native sheep, we selected 10 tissues of the three adult ewes with the highest estimated breeding value in the early study of the prolific Xinggao sheep population. The global gene expression analysis showed that the ovary, uterus, and hypothalamus expressed the most genes. Using the Uniform Manifold Approximation and Projection (UMAP) cluster analysis, these samples were clustered into eight clusters. The functional enrichment analysis showed that the genes expressed in the spleen, uterus, and ovary were significantly enriched in the Ataxia Telangiectasia Mutated Protein (ATM) signaling pathway, and most genes in the liver, spleen, and ovary were enriched in the immune response pathway. Moreover, we focus on the expression genes of the hypothalamic-pituitary-ovarian axis (HPO) and found that 11,016 genes were co-expressed in the three tissues, and different tissues have different functions, but the oxytocin signaling pathway was widely enriched. To further explore the differences in the expression genes (DEGs) of HPO in different sheep breeds, we downloaded the transcriptome data in the public data, and the analysis of DEGs (Xinggao sheep vs. Sunite sheep in Hypothalamus, Xinggao sheep vs. Sunite sheep in Pituitary, and Xinggao sheep vs. Suffolk sheep in Ovary) revealed the neuroactive ligand-receptor interactions. In addition, the gene subsets of the transcription factors (TFs) of DEGs were identified. The results suggest that 51 TF genes and the homeobox TF may play an important role in transcriptional variation across the HPO. Altogether, our study provided the first fundamental resource to investigate the physiological functions and regulation mechanisms in sheep. This important data contributes to improving our understanding of the reproductive biology of sheep and isolating effecting molecular markers that can be used for genetic selection in sheep.
Collapse
Affiliation(s)
- Zaixia Liu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (Z.L.); (L.D.); (N.); (C.S.); (M.G.); (M.); (L.G.); (Y.B.); (B.); (C.C.)
- Inner Mongolia Engineering Research Center of Genomic Big Data for Agriculture, Hohhot 010018, China
| | - Shaoyin Fu
- Institute of Animal Husbandry, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot 010031, China; (S.F.); (X.H.)
| | - Xiaolong He
- Institute of Animal Husbandry, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot 010031, China; (S.F.); (X.H.)
| | - Lingli Dai
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (Z.L.); (L.D.); (N.); (C.S.); (M.G.); (M.); (L.G.); (Y.B.); (B.); (C.C.)
- Inner Mongolia Engineering Research Center of Genomic Big Data for Agriculture, Hohhot 010018, China
- Veterinary Research Institute, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot 010031, China
| | - Xuewen Liu
- Animal Husbandry and Bioengineering, College of Agronomy, Xing’an Vocational and Technical College, Ulanhot 137400, China;
| | - Narisu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (Z.L.); (L.D.); (N.); (C.S.); (M.G.); (M.); (L.G.); (Y.B.); (B.); (C.C.)
- Inner Mongolia Engineering Research Center of Genomic Big Data for Agriculture, Hohhot 010018, China
| | - Caixia Shi
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (Z.L.); (L.D.); (N.); (C.S.); (M.G.); (M.); (L.G.); (Y.B.); (B.); (C.C.)
| | - Mingjuan Gu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (Z.L.); (L.D.); (N.); (C.S.); (M.G.); (M.); (L.G.); (Y.B.); (B.); (C.C.)
- Inner Mongolia Engineering Research Center of Genomic Big Data for Agriculture, Hohhot 010018, China
| | - Yu Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China;
| | - Manda
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (Z.L.); (L.D.); (N.); (C.S.); (M.G.); (M.); (L.G.); (Y.B.); (B.); (C.C.)
| | - Lili Guo
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (Z.L.); (L.D.); (N.); (C.S.); (M.G.); (M.); (L.G.); (Y.B.); (B.); (C.C.)
- Inner Mongolia Engineering Research Center of Genomic Big Data for Agriculture, Hohhot 010018, China
- School of Life Science, Inner Mongolia University, Hohhot 010021, China;
| | - Yanchun Bao
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (Z.L.); (L.D.); (N.); (C.S.); (M.G.); (M.); (L.G.); (Y.B.); (B.); (C.C.)
- Inner Mongolia Engineering Research Center of Genomic Big Data for Agriculture, Hohhot 010018, China
| | - Baiyinbatu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (Z.L.); (L.D.); (N.); (C.S.); (M.G.); (M.); (L.G.); (Y.B.); (B.); (C.C.)
- Inner Mongolia Engineering Research Center of Genomic Big Data for Agriculture, Hohhot 010018, China
| | - Chencheng Chang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (Z.L.); (L.D.); (N.); (C.S.); (M.G.); (M.); (L.G.); (Y.B.); (B.); (C.C.)
- Inner Mongolia Engineering Research Center of Genomic Big Data for Agriculture, Hohhot 010018, China
| | - Yongbin Liu
- School of Life Science, Inner Mongolia University, Hohhot 010021, China;
| | - Wenguang Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (Z.L.); (L.D.); (N.); (C.S.); (M.G.); (M.); (L.G.); (Y.B.); (B.); (C.C.)
- Inner Mongolia Engineering Research Center of Genomic Big Data for Agriculture, Hohhot 010018, China
- College of Life Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| |
Collapse
|
7
|
Grande G, Graziani A, De Toni L, Garolla A, Milardi D, Ferlin A. Acquired Male Hypogonadism in the Post-Genomic Era-A Narrative Review. Life (Basel) 2023; 13:1854. [PMID: 37763258 PMCID: PMC10532903 DOI: 10.3390/life13091854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Although precision medicine took its first steps from genomic medicine, it has gone far beyond genomics, considering the full complexity of cellular physiology. Therefore, the present time can be considered as the "post-genomic era". In detail, proteomics captures the overall protein profile of an analyzed sample, whilst metabolomics has the purpose of studying the molecular aspects of a known medical condition through the measurement of metabolites with low molecular weight in biological specimens. In this review, the role of post-genomic platforms, namely proteomics and metabolomics, is evaluated with a specific interest in their application for the identification of novel biomarkers in male hypogonadism and in the identification of new perspectives of knowledge on the pathophysiological function of testosterone. Post-genomic platforms, including MS-based proteomics and metabolomics based on ultra-high-performance liquid chromatography-HRMS, have been applied to find solutions to clinical questions related to the diagnosis and treatment of male hypogonadism. In detail, seminal proteomics helped us in identifying novel non-invasive markers of androgen activity to be translated into clinical practice, sperm proteomics revealed the role of testosterone in spermatogenesis, while serum metabolomics helped identify the different metabolic pathways associated with testosterone deficiency and replacement treatment, both in patients with insulin sensitivity and patients with insulin resistance.
Collapse
Affiliation(s)
- Giuseppe Grande
- Unit of Andrology and Reproductive Medicine, Department of Medicine, University of Padova, 35128 Padova, Italy; (A.G.); (L.D.T.); (A.G.); (A.F.)
| | - Andrea Graziani
- Unit of Andrology and Reproductive Medicine, Department of Medicine, University of Padova, 35128 Padova, Italy; (A.G.); (L.D.T.); (A.G.); (A.F.)
| | - Luca De Toni
- Unit of Andrology and Reproductive Medicine, Department of Medicine, University of Padova, 35128 Padova, Italy; (A.G.); (L.D.T.); (A.G.); (A.F.)
| | - Andrea Garolla
- Unit of Andrology and Reproductive Medicine, Department of Medicine, University of Padova, 35128 Padova, Italy; (A.G.); (L.D.T.); (A.G.); (A.F.)
| | - Domenico Milardi
- Division of Endocrinology, Fondazione Policlinico Universitario “Agostino Gemelli” Scientific Hospitalization and Treatment Institute (IRCCS), 00168 Rome, Italy;
| | - Alberto Ferlin
- Unit of Andrology and Reproductive Medicine, Department of Medicine, University of Padova, 35128 Padova, Italy; (A.G.); (L.D.T.); (A.G.); (A.F.)
| |
Collapse
|
8
|
Glorieux L, Vandooren L, Derclaye S, Pyr Dit Ruys S, Oncina-Gil P, Salowka A, Herinckx G, Aajja E, Lemoine P, Spourquet C, Lefort H, Henriet P, Tyteca D, Spagnoli FM, Alsteens D, Vertommen D, Pierreux CE. In-Depth Analysis of the Pancreatic Extracellular Matrix during Development for Next-Generation Tissue Engineering. Int J Mol Sci 2023; 24:10268. [PMID: 37373416 DOI: 10.3390/ijms241210268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/04/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
The pancreas is a complex organ consisting of differentiated cells and extracellular matrix (ECM) organized adequately to enable its endocrine and exocrine functions. Although much is known about the intrinsic factors that control pancreas development, very few studies have focused on the microenvironment surrounding pancreatic cells. This environment is composed of various cells and ECM components, which play a critical role in maintaining tissue organization and homeostasis. In this study, we applied mass spectrometry to identify and quantify the ECM composition of the developing pancreas at the embryonic (E) day 14.5 and postnatal (P) day 1 stages. Our proteomic analysis identified 160 ECM proteins that displayed a dynamic expression profile with a shift in collagens and proteoglycans. Furthermore, we used atomic force microscopy to measure the biomechanical properties and found that the pancreatic ECM was soft (≤400 Pa) with no significant change during pancreas maturation. Lastly, we optimized a decellularization protocol for P1 pancreatic tissues, incorporating a preliminary crosslinking step, which effectively preserved the 3D organization of the ECM. The resulting ECM scaffold proved suitable for recellularization studies. Our findings provide insights into the composition and biomechanics of the pancreatic embryonic and perinatal ECM, offering a foundation for future studies investigating the dynamic interactions between the ECM and pancreatic cells.
Collapse
Affiliation(s)
- Laura Glorieux
- Cell Biology Unit, de Duve Institute, UCLouvain, 1200 Brussels, Belgium
| | - Laura Vandooren
- Cell Biology Unit, de Duve Institute, UCLouvain, 1200 Brussels, Belgium
| | - Sylvie Derclaye
- Nanobiophysics Lab, Louvain Institute of Biomolecular Science and Technology, UCLouvain, 1348 Louvain-la-Neuve, Belgium
| | | | - Paloma Oncina-Gil
- Nanobiophysics Lab, Louvain Institute of Biomolecular Science and Technology, UCLouvain, 1348 Louvain-la-Neuve, Belgium
| | - Anna Salowka
- Centre for Gene Therapy and Regenerative Medicine, King's College London, Great Maze Pond, London SE1 9RT, UK
| | - Gaëtan Herinckx
- de Duve Institute and MASSPROT Platform, UCLouvain, 1200 Brussels, Belgium
| | - Elias Aajja
- Cell Biology Unit, de Duve Institute, UCLouvain, 1200 Brussels, Belgium
| | - Pascale Lemoine
- Cell Biology Unit, de Duve Institute, UCLouvain, 1200 Brussels, Belgium
| | | | - Hélène Lefort
- Cell Biology Unit, de Duve Institute, UCLouvain, 1200 Brussels, Belgium
| | - Patrick Henriet
- Cell Biology Unit, de Duve Institute, UCLouvain, 1200 Brussels, Belgium
| | - Donatienne Tyteca
- Cell Biology Unit, de Duve Institute, UCLouvain, 1200 Brussels, Belgium
| | - Francesca M Spagnoli
- Centre for Gene Therapy and Regenerative Medicine, King's College London, Great Maze Pond, London SE1 9RT, UK
| | - David Alsteens
- Nanobiophysics Lab, Louvain Institute of Biomolecular Science and Technology, UCLouvain, 1348 Louvain-la-Neuve, Belgium
| | - Didier Vertommen
- de Duve Institute and MASSPROT Platform, UCLouvain, 1200 Brussels, Belgium
| | | |
Collapse
|
9
|
Zhang T, Li C, Deng J, Jia Y, Qu L, Ning Z. Chicken Hypothalamic and Ovarian DNA Methylome Alteration in Response to Forced Molting. Animals (Basel) 2023; 13:ani13061012. [PMID: 36978553 PMCID: PMC10044502 DOI: 10.3390/ani13061012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/12/2023] [Accepted: 03/03/2023] [Indexed: 03/18/2023] Open
Abstract
Epigenetic modifications play an important role in regulating animal adaptation to external stress. To explore how DNA methylation regulates the expression levels of related genes during forced molting (FM) of laying hens, the hypothalamus and ovary tissues were analyzed at five periods using Whole-Genome Bisulfite Sequencing. The results show that methylation levels fluctuated differently in the exon, intron, 5′UTR, 3′UTR, promoter, and intergenic regions of the genome during FM. In addition, 16 differentially methylated genes (DMGs) regulating cell aging, immunity, and development were identified in the two reversible processes of starvation and redevelopment during FM. Comparing DMGs with differentially expressed genes (DEGs) obtained in the same periods, five hypermethylated DMGs (DSTYK, NKTR, SMOC1, SCAMP3, and ATOH8) that inhibited the expression of DEGs were found. Therefore, DMGs epigenetically modify the DEGs during the FM process of chickens, leading to the rapid closure and restart of their reproductive function and a re-increase in the egg-laying rate. Therefore, this study further confirmed that epigenetic modifications could regulate gene expression during FM and provides theoretical support for the subsequent optimization of FM technology.
Collapse
Affiliation(s)
- Tongyu Zhang
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Chengfeng Li
- Hubei Shendan Healthy Food Co., Ltd., Xiaogan 432600, China
| | - Jianwen Deng
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yaxiong Jia
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100091, China
| | - Lujiang Qu
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- State Key Laboratory of Animal Nutrition, Beijing 100193, China
| | - Zhonghua Ning
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- State Key Laboratory of Animal Nutrition, Beijing 100193, China
- Correspondence:
| |
Collapse
|
10
|
Xiang X, Huang X, Wang J, Zhang H, Zhou W, Xu C, Huang Y, Tan Y, Yin Z. Transcriptome Analysis of the Ovaries of Taihe Black-Bone Silky Fowls at Different Egg-Laying Stages. Genes (Basel) 2022; 13:2066. [PMID: 36360303 PMCID: PMC9691135 DOI: 10.3390/genes13112066] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/19/2022] [Accepted: 11/07/2022] [Indexed: 01/01/2025] Open
Abstract
The poor egg-laying performance and short peak egg-laying period restrict the economic benefits of enterprises relating to the Taihe black-bone silky fowl. Ovaries are the main organ for egg production in poultry. Unlike that of mammals, the spawning mechanism of poultry has rarely been reported. As a prominent local breed in China, the reproductive performance of Taihe black-bone silky fowls is in urgent need of development and exploitation. To further explore the egg-laying regulation mechanism in the different periods of Taihe black-bone silky fowls, the ovarian tissues from 12 chickens were randomly selected for transcriptome analysis, and 4 chickens in each of the three periods (i.e., the pre-laying period (102 days old, Pre), peak laying period (203 days old, Peak), and late laying period (394 days old, Late)). A total of 12 gene libraries were constructed, and a total of 9897 differential expression genes (DEGs) were identified from three comparisons; the late vs. peak stage had 509 DEGs, the pre vs. late stage had 5467 DEGs, and the pre vs. peak stage had 3921 DEGs (pre-stage: pre-egg-laying period (102 days old), peak-stage: peak egg-laying period (203 days old), and late-stage: late egg-laying period (394 days old)). In each of the two comparisons, 174, 84, and 2752 differentially co-expressed genes were obtained, respectively, and 43 differentially co-expressed genes were obtained in the three comparisons. Through the analysis of the differential genes, we identified some important genes and pathways that would affect reproductive performance and ovarian development. The differential genes were LPAR3, AvBD1, SMOC1, IGFBP1, ADCY8, GDF9, PTK2B, PGR, and CD44, and the important signaling pathways included proteolysis, extracellular matrices, vascular smooth muscle contraction, the NOD-like receptor signaling pathway and the phagosome. Through the analysis of the FPKM (Fragments Per Kilobase of exon model per Million mapped fragments) values of the genes, we screened three peak egg-laying period-specific expressed genes: IHH, INHA, and CYP19A1. The twelve genes and five signaling pathways mentioned above have rarely been reported in poultry ovary studies, and our study provides a scientific basis for the improvement of the reproductive performance in Taihe black-bone silky fowls.
Collapse
Affiliation(s)
- Xin Xiang
- Zijingang Campus, Animal Science College, Zhejiang University, Hangzhou 310058, China
| | - Xuan Huang
- Zijingang Campus, Animal Science College, Zhejiang University, Hangzhou 310058, China
| | | | - Haiyang Zhang
- Zijingang Campus, Animal Science College, Zhejiang University, Hangzhou 310058, China
| | - Wei Zhou
- Zijingang Campus, Animal Science College, Zhejiang University, Hangzhou 310058, China
| | - Chunhui Xu
- Zijingang Campus, Animal Science College, Zhejiang University, Hangzhou 310058, China
| | - Yunyan Huang
- Zijingang Campus, Animal Science College, Zhejiang University, Hangzhou 310058, China
| | - Yuting Tan
- Zijingang Campus, Animal Science College, Zhejiang University, Hangzhou 310058, China
| | - Zhaozheng Yin
- Zijingang Campus, Animal Science College, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
11
|
Gene profiling in dorso-ventral patterning of mouse tongue development. Genes Genomics 2022; 44:1181-1189. [PMID: 35951154 DOI: 10.1007/s13258-022-01282-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/05/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND The tongue is a muscular fleshy organ in the oral cavity that is anatomically divided into the dorsal, ventral, anterior, and posterior part. The intricate tissue organisation and diverse origins of the tongue make it a complex organ of the oral cavity. OBJECTIVES To reveal the signalling molecules involved in the formation of the dorsal and ventral parts of the tongue through microarray analysis. METHODS Dorsal and ventral tongue tissues were isolated from embryonic day 14 mice by micro-dissection. RNA was extracted from the dorsal and ventral tongue tissues separately for microarray analysis. Microarray data were confirmed by quantitative reverse transcription polymerase chain reaction and whole-mount in situ hybridisation. RESULTS Microarray analysis revealed expression of 33,793 genes. Of these, 931 genes were found to be equally expressed in both the dorsal and ventral parts of the tongue. On limiting the fold-change cut-off to over 1.5-fold, 725 genes were expressed over 1.5-fold in the ventral part and 1,672 in the dorsal part of the tongue. The qPCR and whole-mount in situ hybridisation revealed the expressions of angiopoietin 2 (Angpt2), fibroblast growth factor 18 (Fgf18), mesenchyme homeobox gene1 (Meox1), and SPARC-related modular calcium binding 2 (Smoc2) in the ventral part of the tongue. CONCLUSIONS Numerous signalling molecules can be selected from our microarray results to examine their roles in tongue development and disease model systems. In the near future, the selection of candidate genes and their functional evaluations will be performed through loss- and gain-of-function mutation studies.
Collapse
|
12
|
Feng D, Gao P, Henley N, Dubuissez M, Chen N, Laurin LP, Royal V, Pichette V, Gerarduzzi C. SMOC2 promotes an epithelial-mesenchymal transition and a pro-metastatic phenotype in epithelial cells of renal cell carcinoma origin. Cell Death Dis 2022; 13:639. [PMID: 35869056 PMCID: PMC9307531 DOI: 10.1038/s41419-022-05059-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 06/22/2022] [Accepted: 07/01/2022] [Indexed: 01/21/2023]
Abstract
Renal Cell Carcinoma (RCC) is the most common form of all renal cancer cases, and well-known for its highly aggressive metastatic behavior. SMOC2 is a recently described non-structural component of the extracellular matrix (ECM) that is highly expressed during tissue remodeling processes with emerging roles in cancers, yet its role in RCC remains elusive. Using gene expression profiles from patient samples, we identified SMOC2 as being significantly expressed in RCC tissue compared to normal renal tissue, which correlated with shorter RCC patient survival. Specifically, de novo protein synthesis of SMOC2 was shown to be much higher in the tubular epithelial cells of patients with biopsy-proven RCC. More importantly, we provide evidence of SMOC2 triggering kidney epithelial cells into an epithelial-to-mesenchymal transition (EMT), a phenotype known to promote metastasis. We found that SMOC2 induced mesenchymal-like morphology and activities in both RCC and non-RCC kidney epithelial cell lines. Mechanistically, treatment of RCC cell lines ACHN and 786-O with SMOC2 (recombinant and enforced expression) caused a significant increase in EMT-markers, -matrix production, -proliferation, and -migration, which were inhibited by targeting SMOC2 by siRNA. We further characterized SMOC2 activation of EMT to occur through the integrin β3, FAK and paxillin pathway. The proliferation and metastatic potential of SMOC2 overexpressing ACHN and 786-O cell lines were validated in vivo by their significantly higher tumor growth in kidneys and systemic dissemination into other organs when compared to their respective controls. In principle, understanding the impact that SMOC2 has on EMT may lead to more evidence-based treatments and biomarkers for RCC metastasis.
Collapse
Affiliation(s)
- Daniel Feng
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, Faculté de Médecine, Centre affilié à l'Université de Montréal, Montréal, Québec, Canada
| | - Peng Gao
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, Faculté de Médecine, Centre affilié à l'Université de Montréal, Montréal, Québec, Canada
| | - Nathalie Henley
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, Faculté de Médecine, Centre affilié à l'Université de Montréal, Montréal, Québec, Canada
| | - Marion Dubuissez
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, Faculté de Médecine, Centre affilié à l'Université de Montréal, Montréal, Québec, Canada
| | - Nan Chen
- Faculty of Science, University of British Columbia, Vancouver, British Columbia, Canada
| | - Louis-Philippe Laurin
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, Faculté de Médecine, Centre affilié à l'Université de Montréal, Montréal, Québec, Canada
| | - Virginie Royal
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, Faculté de Médecine, Centre affilié à l'Université de Montréal, Montréal, Québec, Canada
| | - Vincent Pichette
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, Faculté de Médecine, Centre affilié à l'Université de Montréal, Montréal, Québec, Canada
- Département de Médecine, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Casimiro Gerarduzzi
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada.
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, Faculté de Médecine, Centre affilié à l'Université de Montréal, Montréal, Québec, Canada.
- Département de Médecine, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
13
|
Bello SF, Adeola AC, Nie Q. The study of candidate genes in the improvement of egg production in ducks – a review. Poult Sci 2022; 101:101850. [PMID: 35544958 PMCID: PMC9108513 DOI: 10.1016/j.psj.2022.101850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 03/05/2022] [Accepted: 03/08/2022] [Indexed: 11/01/2022] Open
Abstract
Duck is the second-largest poultry species aside from chicken. The rate of egg production is a major determinant of the economic income of poultry farmers. Among the reproductive organs, the ovary is a major part of the female reproductive system which is highly important for egg production. Based on the importance of this organ, several studies have been carried out to identify candidate genes at the transcriptome level, and also the expression level of these genes at different tissues or egg-laying conditions, and single nucleotide polymorphism (SNPs) of genes associated with egg production in duck. In this review, expression profile and association study analyses at SNPs level of different candidate genes with egg production traits of duck were highlighted. Furthermore, different studies on transcriptome analysis, Quantitative Trait Loci (QTL) mapping, and Genome Wide Association Study (GWAS) approach used to identify potential candidate genes for egg production in ducks were reported. This review would widen our knowledge on molecular markers that are associated or have a positive correlation to improving egg production in ducks, for the increasing world populace.
Collapse
|
14
|
Grande G, Barrachina F, Soler-Ventura A, Jodar M, Mancini F, Marana R, Chiloiro S, Pontecorvi A, Oliva R, Milardi D. The Role of Testosterone in Spermatogenesis: Lessons From Proteome Profiling of Human Spermatozoa in Testosterone Deficiency. Front Endocrinol (Lausanne) 2022; 13:852661. [PMID: 35663320 PMCID: PMC9161277 DOI: 10.3389/fendo.2022.852661] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Testosterone is essential to maintain qualitative spermatogenesis. Nonetheless, no studies have been yet performed in humans to analyze the testosterone-mediated expression of sperm proteins and their importance in reproduction. Thus, this study aimed to identify sperm protein alterations in male hypogonadism using proteomic profiling. We have performed a comparative proteomic analysis comparing sperm from fertile controls (a pool of 5 normogonadic normozoospermic fertile men) versus sperm from patients with secondary hypogonadism (a pool of 5 oligozoospermic hypogonadic patients due to isolated LH deficiency). Sperm protein composition was analyzed, after peptide labelling with Isobaric Tags, via liquid chromatography followed by tandem mass spectrometry (LC-MS/MS) on an LTQ Velos-Orbitrap mass spectrometer. LC-MS/MS data were analyzed using Proteome Discoverer. Criteria used to accept protein identification included a false discovery rate (FDR) of 1% and at least 1 peptide match per protein. Up to 986 proteins were identified and, of those, 43 proteins were differentially expressed: 32 proteins were under-expressed and 11 were over-expressed in the pool of hypogonadic patients compared to the controls. Bioinformatic analyses were performed using UniProt Knowledgebase, and the Gene Ontology Consortium database based on PANTHER. Notably, 13 of these 43 differentially expressed proteins have been previously reported to be related to sperm function and spermatogenesis. Western blot analyses for A-Kinase Anchoring Protein 3 (AKAP3) and the Prolactin Inducible Protein (PIP) were used to confirm the proteomics data. In summary, a high-resolution mass spectrometry-based proteomic approach was used for the first time to describe alterations of the sperm proteome in secondary male hypogonadism. Some of the differential sperm proteins described in this study, which include Prosaposin, SMOC-1, SERPINA5, SPANXB1, GSG1, ELSPBP1, fibronectin, 5-oxoprolinase, AKAP3, AKAP4, HYDIN, ROPN1B, ß-Microseminoprotein and Protein S100-A8, could represent new targets for the design of infertility treatments due to androgen deficiency.
Collapse
Affiliation(s)
- Giuseppe Grande
- Research Group on Human Fertility, International Scientific Institute “Paul VI”, Rome, Italy
- Division of Endocrinology, Fondazione Policlinico Universitario “Agostino Gemelli” Scientific Hospitalization and Treatment Institute (IRCCS), Rome, Italy
| | - Ferran Barrachina
- Department of Biomedical Sciences, Molecular Biology of Reproduction and Development Research Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Fundació Clínic per a la Recerca Biomèdica, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Ada Soler-Ventura
- Department of Biomedical Sciences, Molecular Biology of Reproduction and Development Research Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Fundació Clínic per a la Recerca Biomèdica, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Meritxell Jodar
- Department of Biomedical Sciences, Molecular Biology of Reproduction and Development Research Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Fundació Clínic per a la Recerca Biomèdica, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Biochemistry and Molecular Genetics Service, Hospital Clínic, Barcelona, Spain
| | - Francesca Mancini
- Research Group on Human Fertility, International Scientific Institute “Paul VI”, Rome, Italy
| | - Riccardo Marana
- Research Group on Human Fertility, International Scientific Institute “Paul VI”, Rome, Italy
| | - Sabrina Chiloiro
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, Rome, Italy
| | - Alfredo Pontecorvi
- Research Group on Human Fertility, International Scientific Institute “Paul VI”, Rome, Italy
- Division of Endocrinology, Fondazione Policlinico Universitario “Agostino Gemelli” Scientific Hospitalization and Treatment Institute (IRCCS), Rome, Italy
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, Rome, Italy
| | - Rafael Oliva
- Department of Biomedical Sciences, Molecular Biology of Reproduction and Development Research Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Fundació Clínic per a la Recerca Biomèdica, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Biochemistry and Molecular Genetics Service, Hospital Clínic, Barcelona, Spain
| | - Domenico Milardi
- Research Group on Human Fertility, International Scientific Institute “Paul VI”, Rome, Italy
- Division of Endocrinology, Fondazione Policlinico Universitario “Agostino Gemelli” Scientific Hospitalization and Treatment Institute (IRCCS), Rome, Italy
| |
Collapse
|
15
|
Xu H, Lu G, Zhou S, Fang F. MicroRNA-19a-3p Acts as an Oncogene in Gastric Cancer and Exerts the Effect by Targeting SMOC2. Appl Biochem Biotechnol 2022; 194:3833-3842. [PMID: 35543855 DOI: 10.1007/s12010-022-03944-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2022] [Indexed: 11/09/2022]
Abstract
MicroRNAs are reported to be involved in tumor development. This study aims to investigate the biological functions and molecular mechanisms of microRNA-19a-3p in gastric cancer cells. TCGA-based expression analysis and qRT-PCR assay illustrated that microRNA-19a-3p was overexpressed in gastric cancer. MTT and Transwell assays indicated that microRNA-19a-3p could strengthen the proliferation, migration, and invasion of gastric cancer cells. SMOC2 was bioinformatically predicted as the target of microRNA-19a-3p, followed by identified using a dual-luciferase assay. The effects of microRNA-19a-3p/SMOC2 regulatory axis on gastric cancer cells were examined by MTT and Transwell assays as well. Concludingly, this study demonstrated that microRNA-19a-3p could promote the aggressive cell phenotypes of gastric cancer cells by targeting SMOC2.
Collapse
Affiliation(s)
- Hui Xu
- Department of General Surgery, Tonglu First People's Hospital, No.338 Xuesheng Road, Hangzhou, Zhejiang, 311500, People's Republic of China
| | - Guochun Lu
- Department of General Surgery, Tonglu First People's Hospital, No.338 Xuesheng Road, Hangzhou, Zhejiang, 311500, People's Republic of China
| | - Shengkun Zhou
- Department of General Surgery, Tonglu First People's Hospital, No.338 Xuesheng Road, Hangzhou, Zhejiang, 311500, People's Republic of China
| | - Fu Fang
- Department of General Surgery, Tonglu First People's Hospital, No.338 Xuesheng Road, Hangzhou, Zhejiang, 311500, People's Republic of China.
| |
Collapse
|
16
|
Hong C, Lishan W, Peng X, Zhengqing L, Yang Y, Fangfang H, Zeqian Y, Zhangjun C, Jiahua Z. Hsa_circ_0074298 promotes pancreatic cancer progression and resistance to gemcitabine by sponging miR-519 to target SMOC. J Cancer 2022; 13:34-50. [PMID: 34976169 PMCID: PMC8692684 DOI: 10.7150/jca.62927] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 11/05/2021] [Indexed: 01/06/2023] Open
Abstract
Objective: To investigate the expression of hsa_circ_0074298 (circular RNA) and the molecular mechanism that promotes tumor growth and enhances the chemoresistance of pancreatic cancer. Methods: Real-time reverse transcription-PCR was used to detect hsa_circ_0074298 expression in pancreatic cancer. The intracellular localization of hsa_circ_0074298 was determined by RNA in situ hybridization. The CCK8 method, colony formation assay, Transwell assay, and flow cytometry were used to evaluate the effects of hsa_circ_0074298 on the proliferation, migration, invasion, cell cycle, apoptosis of pancreatic cancer cells. Bioinformatics analysis and dual luciferase assays were employed to detect the association of hsa_circ_0074298 and miR-519d and the binding of miR-519d to the target gene SMOC2. A subcutaneous xenograft model was established to observe the effect of hsa_circ_0074298 in vivo. Results: The hsa_circ_0074298 was mainly localized in the cytoplasm. Hsa_circ_0074298 was highly expressed in pancreatic cancer tissues and cell lines. The expression of hsa_circ_0074298 was significantly correlated with pancreatic cancer tumor size, lymph node metastasis, and pathological grade. hsa_circ_0074298 could sponge miR-519, and miR-519d bound to SMOC2. Downregulation of hsa_circ_0074298 expression significantly inhibited cell proliferation, migration, invasion, colony forming ability and promoted cell cycle arrest, apoptosis and chemo-resistance of pancreatic cancer in vitro and vivo. However, the effects could be reversed by a miR-519d inhibitor or SMOC2 overexpression. Conclusion: By sponging miR-519 and targeting SMOC2, hsa_circ_0074298 promotes the growth and metastasis of pancreatic cancer and increases the resistance of pancreatic cancer cells to gemcitabine.
Collapse
Affiliation(s)
- Chen Hong
- Department of Hepatopancreatobiliary Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu Province, 210009, China
| | - Wang Lishan
- Department of Hepatopancreatobiliary Surgery, Zhongda Hospital Southeast University, Nanjing, Jiangsu Province, 210009, China
| | - Xie Peng
- Department of Hepatopancreatobiliary Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu Province, 210009, China
| | - Lei Zhengqing
- Department of Hepatopancreatobiliary Surgery, Zhongda Hospital Southeast University, Nanjing, Jiangsu Province, 210009, China
| | - Yang Yang
- Department of Hepatopancreatobiliary Surgery, Zhongda Hospital Southeast University, Nanjing, Jiangsu Province, 210009, China
| | - Hu Fangfang
- Department of Hepatopancreatobiliary Surgery, Zhongda Hospital Southeast University, Nanjing, Jiangsu Province, 210009, China
| | - Yu Zeqian
- Department of Hepatopancreatobiliary Surgery, Zhongda Hospital Southeast University, Nanjing, Jiangsu Province, 210009, China
| | - Cheng Zhangjun
- Department of Hepatopancreatobiliary Surgery, Zhongda Hospital Southeast University, Nanjing, Jiangsu Province, 210009, China
| | - Zhou Jiahua
- Department of Hepatopancreatobiliary Surgery, Zhongda Hospital Southeast University, Nanjing, Jiangsu Province, 210009, China
| |
Collapse
|
17
|
Xin C, Lei J, Wang Q, Yin Y, Yang X, Moran Guerrero JA, Sabbisetti V, Sun X, Vaidya VS, Bonventre JV. Therapeutic silencing of SMOC2 prevents kidney function loss in mouse model of chronic kidney disease. iScience 2021; 24:103193. [PMID: 34703992 PMCID: PMC8524153 DOI: 10.1016/j.isci.2021.103193] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 11/16/2022] Open
Abstract
Chronic kidney disease (CKD) is associated with substantial morbidity and mortality. We developed a mouse model that mimics human CKD with inflammation, extracellular matrix deposition, tubulointerstitial fibrosis, increased proteinuria, and associated reduction in glomerular filtration rate over time. Using this model, we show that genetic deficiency of SMOC2 or therapeutic silencing of SMOC2 with small interfering RNAs (siRNAs) after disease onset significantly ameliorates inflammation, fibrosis, and kidney function loss. Mechanistically, we found that SMOC2 promotes fibroblast to myofibroblast differentiation by activation of diverse cellular signaling pathways including MAPKs, Smad, and Akt. Thus, targeting SMOC2 therapeutically offers an approach to prevent fibrosis progression and CKD after injury.
Collapse
Affiliation(s)
- Cuiyan Xin
- Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jiahui Lei
- Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qian Wang
- Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- The Second Department of General Geriatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yixia Yin
- Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Xiaoqian Yang
- Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jose Alberto Moran Guerrero
- Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Venkata Sabbisetti
- Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Xiaoming Sun
- Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Vishal S. Vaidya
- Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Joseph V. Bonventre
- Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
18
|
Alabiad MA, Harb OA, Hefzi N, Ahmed RZ, Osman G, Shalaby AM, Alnemr AAA, Saraya YS. Prognostic and clinicopathological significance of TMEFF2, SMOC-2, and SOX17 expression in endometrial carcinoma. Exp Mol Pathol 2021; 122:104670. [PMID: 34339705 DOI: 10.1016/j.yexmp.2021.104670] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 06/21/2021] [Accepted: 07/29/2021] [Indexed: 12/14/2022]
Abstract
Background there is a need for novel biomarkers and targeting therapies for predicting Endometrial carcinoma (EC) progression and recurrence. TMEFF2 is a gene that was found to play a role in EMT. SMOC-2 is expressed in embryogenesis and it was identified as a recent stem cell-related gene that has a role in cancer progression. SRY-box 17 (SOX17) is a member of the SRY-related HMG-box (SOX) family of transcription factors. Dysregulation or downregulation of SOX17 expression was found in many cancer tissues. AIM In the present study, we aimed to assess the tissue protein expressions of TMEFF2, SMOC-2, and SOX17 in EC using immunohistochemistry to evaluate their clinicopathological values and prognostic roles in EC patients. PATIENTS AND METHODS This is prospective cohort study included 120 patients with EC. Sections from 120 paraffin blocks were retrieved and stained with TMEFF2, SMOC-2, and SOX17 using immunohistochemistry, the expression of markers in all tissue samples was assessed, analyzed and correlation of pathological parameters with the levels of expression was done. All patients were followed up till death or till the last known alive data for about 50 months (range from 25 to 60). RESULTS TMEFF2, SMOC-2 expression was correlated with the presence of lymph node metastases (p = 0.023), distant metastasis (p = 0.039) recurrence of the tumor after successful therapy, overall survival, and disease-free survival (p < 0.001). SOX17 positive expression was positively correlated with low grade (p = 0.019), absence of lymph node metastasis (p = 0.001), absence of distant metastasis (p = 0.013), low stage (p = 0.03), and its negative expression was positively correlated with recurrence of the tumor after successful therapy, overall survival and disease-free survival (p = 0.001). In conclusion, we demonstrated that both TMEFF2 and SMOC-2 were highly expressed in EC and were associated with a shortened survival rate, dismal outcome, and poor prognosis in EC patients. While SOX17 expression was related to a favorable outcome and its down-regulation was associated with dismal EC patient's survival.
Collapse
Affiliation(s)
- Mohamed Ali Alabiad
- Department of Pathology, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
| | - Ola A Harb
- Department of Pathology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Nabila Hefzi
- Department of Clinical Oncology& Nuclear Medicine, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Rham Z Ahmed
- Department of Medical Oncology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Gamal Osman
- Department of General Surgery, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Amany Mohamed Shalaby
- Department of Histology and Cell Biology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Amr Abd-Almohsen Alnemr
- Department of Gynecology and Obstetrics, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Yasser S Saraya
- Department of Gynecology and Obstetrics, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
19
|
Bao X, Song Y, Li T, Zhang S, Huang L, Zhang S, Cao J, Liu X, Zhang J. Comparative Transcriptome Profiling of Ovary Tissue between Black Muscovy Duck and White Muscovy Duck with High- and Low-Egg Production. Genes (Basel) 2020; 12:57. [PMID: 33396489 PMCID: PMC7824526 DOI: 10.3390/genes12010057] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/25/2020] [Accepted: 12/28/2020] [Indexed: 12/19/2022] Open
Abstract
The egg-laying rate is an important indicator for evaluating fertility of poultry. In order to better understand the laying mechanism of Muscovy ducks, gene expression profiles and pathways of ovarian tissues in high- and low-laying black (BH and BL) and white Muscovy ducks (WH and WL) during the peak production period were performed by using RNA-seq. The total number of reads produced for each ovarian sample ranged from 44,344,070 to 47,963,328. A total of 113, 619 and 87 differentially expressed genes (DEGs) were identified in BH-vs-WH, BL-vs-BH and BL-vs-WL, respectively. Among them, 54, 356 and 49 genes were up regulated and 59, 263 and 38 genes were down regulated. In addition, there were only 10 up-regulated genes in WL-vs-WH. In the comparison of DEGs in black and white Muscovy ducks, two co-expressed DEG genes were detected between BH-vs-WH and BL-vs-WL and seven DEGs were co-expressed between BL-vs-BH and WL-vs-WH. The RNA-Seq data were confirmed to be reliable by qPCR. Numerous DEGs known to be involved in ovarian development were identified, including TGFβ2, NGFR, CEBPD, CPEB2, POSTN, SMOC1, FGF18, EFNA5 and SDC4. Gene Ontology (GO) annotations indicated that DEGs related to ovarian development were mainly enriched in biological processes of "circadian sleep/wake cycle process," "negative regulation of transforming growth factor-β secretion," "positive regulation of calcium ion transport" in BH-vs-WH and "cell surface receptor signaling pathway," "Notch signaling pathway" and "calcium ion transport" in BL-vs-BH. Besides, "steroid biosynthetic process," "granulosa cell development" and "egg coat formation" were mainly enriched in BL-vs-WL and "reproduction," "MAPK cascade" and "mitotic cell cycle" were mainly enriched in WL-vs-WH. KEGG pathway analysis showed that the PI3K-Akt signaling pathway and ovarian steroidogenesis were the most enriched in Muscovy duck ovary transcriptome data. This work highlights potential genes and pathways that may affect ovarian development in Muscovy duck.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jianqin Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (X.B.); (Y.S.); (T.L.); (S.Z.); (L.H.); (S.Z.); (J.C.); (X.L.)
| |
Collapse
|
20
|
Secreted modular calcium-binding proteins in pathophysiological processes and embryonic development. Chin Med J (Engl) 2020; 132:2476-2484. [PMID: 31613820 PMCID: PMC6831058 DOI: 10.1097/cm9.0000000000000472] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Objective: Secreted modular calcium-binding proteins (SMOCs) are extracellular glycoproteins of the secreted protein, acidic, and rich in cysteine-related modular calcium-binding protein family and include two isoforms, SMOC1 and SMOC2, in humans. Functionally, SMOCs bind to calcium for various cell functions. In this review, we provided a summary of the most recent advancements in and findings of SMOC1 and SMOC2 in development, homeostasis, and disease states. Data sources: All publications in the PubMed database were searched and retrieved (up to July 24, 2019) using various combinations of keywords searching, including SMOC1, SMOC2, and diseases. Study selection: All original studies and review articles of SMOCs in human diseases and embryo development written in English were retrieved and included. Results: SMOC1 and SMOC2 regulate embryonic development, cell homeostasis, and disease pathophysiology. They play an important role in the regulation of cell cycle progression, cell attachment to the extracellular matrix, tissue fibrosis, calcification, angiogenesis, birth defects, and cancer development. Conclusions: SMOC1 and SMOC2 are critical regulators of many cell biological processes and potential therapeutic targets for the control of human cancers and birth defects.
Collapse
|
21
|
Wang Y, Ni C, Li X, Lin Z, Zhu Q, Li L, Ge RS. Phthalate-Induced Fetal Leydig Cell Dysfunction Mediates Male Reproductive Tract Anomalies. Front Pharmacol 2019; 10:1309. [PMID: 31780936 PMCID: PMC6851233 DOI: 10.3389/fphar.2019.01309] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 10/15/2019] [Indexed: 12/19/2022] Open
Abstract
Male fetal Leydig cells in the testis secrete androgen and insulin-like 3, determining the sexual differentiation. The abnormal development of fetal Leydig cells could lead to the reduction of androgen and insulin-like 3, thus causing the male reproductive tract anomalies in male neonates, including cryptorchidism and hypospadias. Environmental pollutants, such as phthalic acid esters (phthalates), can perturb the development and differentiated function of Leydig cells, thereby contributing to the reproductive toxicity in the male. Here, we review the epidemiological studies in humans and experimental investigations in rodents of various phthalates. Most of phthalates disturb the expression of various genes encoded for steroidogenesis-related proteins and insulin-like 3 in fetal Leydig cells and the dose-additive effects are exerted after exposure in a mixture.
Collapse
Affiliation(s)
- Yiyan Wang
- Department of Anesthesiology The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chaobo Ni
- Department of Anesthesiology The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaoheng Li
- Department of Anesthesiology The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhenkun Lin
- Center of Scientific Research, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qiqi Zhu
- Center of Scientific Research, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Linxi Li
- Center of Scientific Research, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ren-Shan Ge
- Department of Anesthesiology The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Center of Scientific Research, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
22
|
Papaioannou E, Yánez DC, Ross S, Lau CI, Solanki A, Chawda MM, Virasami A, Ranz I, Ono M, O'Shaughnessy RFL, Crompton T. Sonic Hedgehog signaling limits atopic dermatitis via Gli2-driven immune regulation. J Clin Invest 2019; 129:3153-3170. [PMID: 31264977 PMCID: PMC6668675 DOI: 10.1172/jci125170] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 05/14/2019] [Indexed: 12/19/2022] Open
Abstract
Hedgehog (Hh) proteins regulate development and tissue homeostasis, but their role in atopic dermatitis (AD) remains unknown. We found that on induction of mouse AD, Sonic Hedgehog (Shh) expression in skin and Hh pathway action in skin T cells were increased. Shh signaling reduced AD pathology and the levels of Shh expression determined disease severity. Hh-mediated transcription in skin T cells in AD-induced mice increased Treg populations and their suppressive function through increased active transforming growth factor–β (TGF-β) in Treg signaling to skin T effector populations to reduce disease progression and pathology. RNA sequencing of skin CD4+ T cells from AD-induced mice demonstrated that Hh signaling increased expression of immunoregulatory genes and reduced expression of inflammatory and chemokine genes. Addition of recombinant Shh to cultures of naive human CD4+ T cells in iTreg culture conditions increased FOXP3 expression. Our findings establish an important role for Shh upregulation in preventing AD, by increased Gli-driven, Treg cell–mediated immune suppression, paving the way for a potential new therapeutic strategy.
Collapse
Affiliation(s)
- Eleftheria Papaioannou
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Diana C Yánez
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom.,School of Medicine, Universidad San Francisco de Quito, Quito, Ecuador
| | - Susan Ross
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Ching-In Lau
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Anisha Solanki
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Mira Manilal Chawda
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Alex Virasami
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Ismael Ranz
- Department of Respiratory Medicine and Allergy, King's College London, London, United Kingdom
| | - Masahiro Ono
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom.,Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Ryan F L O'Shaughnessy
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom.,Blizard Institute, Queen Mary University of London, London, United Kingdom
| | - Tessa Crompton
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| |
Collapse
|
23
|
Chioccarelli T, Manfrevola F, Ferraro B, Sellitto C, Cobellis G, Migliaccio M, Fasano S, Pierantoni R, Chianese R. Expression Patterns of Circular RNAs in High Quality and Poor Quality Human Spermatozoa. Front Endocrinol (Lausanne) 2019; 10:435. [PMID: 31338066 PMCID: PMC6626923 DOI: 10.3389/fendo.2019.00435] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/17/2019] [Indexed: 12/12/2022] Open
Abstract
Circular RNAs (circRNAs) are expressed in human testis and seminal plasma. Until today, there is missing information about a possible payload of circRNAs in human spermatozoa (SPZ). With this in mind, we carried out a circRNA microarray identifying a total of 10.726 transcripts, 28% novel based and 84.6% with exonic structure; their potential contribution in molecular pathways was evaluated by KEGG analysis. Whether circRNAs may be related to SPZ quality was speculated evaluating two different populations of SPZ (A SPZ = good quality, B SPZ = low quality), separated on the basis of morphology and motility parameters, by Percoll gradient. Thus, 148 differentially expressed (DE)-circRNAs were identified and the expression of selected specific SPZ-derived circRNAs was evaluated in SPZ head/tail-enriched preparations, to check the preservation of these molecules during SPZ maturation and their transfer into oocyte during fertilization. Lastly, circRNA/miRNA/mRNA network was built by bioinformatics approach.
Collapse
Affiliation(s)
- Teresa Chioccarelli
- Dipartimento di Medicina Sperimentale, Università degli Studi della Campania L. Vanvitelli, Naples, Italy
| | - Francesco Manfrevola
- Dipartimento di Medicina Sperimentale, Università degli Studi della Campania L. Vanvitelli, Naples, Italy
| | - Bruno Ferraro
- UOSD di Fisiopatologia della Riproduzione, Presidio Ospedaliero di Marcianise, Caserta, Italy
| | - Carolina Sellitto
- UOSD di Fisiopatologia della Riproduzione, Presidio Ospedaliero di Marcianise, Caserta, Italy
| | - Gilda Cobellis
- Dipartimento di Medicina Sperimentale, Università degli Studi della Campania L. Vanvitelli, Naples, Italy
| | - Marina Migliaccio
- Dipartimento di Medicina Sperimentale, Università degli Studi della Campania L. Vanvitelli, Naples, Italy
| | - Silvia Fasano
- Dipartimento di Medicina Sperimentale, Università degli Studi della Campania L. Vanvitelli, Naples, Italy
| | - Riccardo Pierantoni
- Dipartimento di Medicina Sperimentale, Università degli Studi della Campania L. Vanvitelli, Naples, Italy
- *Correspondence: Riccardo Pierantoni
| | - Rosanna Chianese
- Dipartimento di Medicina Sperimentale, Università degli Studi della Campania L. Vanvitelli, Naples, Italy
| |
Collapse
|
24
|
Lu H, Ju DD, Yang GD, Zhu LY, Yang XM, Li J, Song WW, Wang JH, Zhang CC, Zhang ZG, Zhang R. Targeting cancer stem cell signature gene SMOC-2 Overcomes chemoresistance and inhibits cell proliferation of endometrial carcinoma. EBioMedicine 2018; 40:276-289. [PMID: 30594556 PMCID: PMC6412073 DOI: 10.1016/j.ebiom.2018.12.044] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/30/2018] [Accepted: 12/19/2018] [Indexed: 12/11/2022] Open
Abstract
Background Endometrial cancer is one of the most common gynecological malignancies and has exhibited an increasing incidence rate in recent years. Cancer stem cells (CSCs), which are responsible for tumor growth and chemoresistance, have been confirmed in endometrial cancer. However, it is still challenging to identify endometrial cancer stem cells to then target for therapy. Methods Flow cytometry was used to identify the endometrial cancer stem cells. Sphere formation assay, western blotting, qRT-PCR assay, cell viability assay, xenograft assay and immunohistochemistry staining analysis were utilized to evaluate the effect of SPARC-related modular calcium binding 2 (SMOC-2) on the cells proliferation and drug resistance. Cell viability assay, qRT-PCR assay, immunofluorescence staining, Co-IP assay and luciferase reporter gene assay were performed to explore the possible molecular mechanism by which SMOC-2 activates WNT/β-catenin pathway. Findings We found the expression of SPARC-related modular calcium binding 2 (SMOC-2), a member of SPARC family, was higher in endometrial CSCs than that in non-CSCs. SMOC-2 was also more highly expressed in spheres than in monolayer cultures. The silencing of SMOC-2 suppressed cell sphere ability; reduced the expression of the stemness-associated genes SOX2, OCT4 and NANOG; and enhanced chemosensitivity in endometrial cancer cells. By co-culture IP assay, we demonstrated that SMOC-2 directly interacted with WNT receptors (Fzd6 and LRP6), enhanced ligand-receptor interaction with canonical WNT ligands (Wnt3a and Wnt10b), and finally, activated the WNT/β-catenin pathway in endometrial cancer. SMOC-2 expression was closely correlated with CSC markers CD133 and CD44 expression in endometrial cancer tissue. Interpretation Taken together, we conclude that SMOC-2 might be a novel endometrial cancer stem cell signature gene and therapeutic target for endometrial cancer. Fund National Natural Science Foundation of China, Scientific and Technological Innovation Act Program of Shanghai Science and Technology Commission, Scientific and Technological Innovation Act Program of Fengxian Science and Technology Commission, Natural Science Foundation of Shanghai.
Collapse
Affiliation(s)
- Huan Lu
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou 510500, China; Department of Obstetrics and Gynecology, Fengxian Hospital, Southern Medical University, Shanghai 201499, China
| | - Dan-Dan Ju
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Guang-Dong Yang
- Department of Obstetrics and Gynecology, Fengxian Hospital, Southern Medical University, Shanghai 201499, China; Department of Obstetrics and Gynecology, Tianjin Union Medical Center, Tianjin 300121, China
| | - Lin-Yan Zhu
- Department of Obstetrics and Gynecology, Fengxian Hospital, Southern Medical University, Shanghai 201499, China
| | - Xiao-Mei Yang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200240, China
| | - Jun Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200240, China
| | - Wei-Wei Song
- Department of Obstetrics and Gynecology, Fengxian Hospital, Southern Medical University, Shanghai 201499, China
| | - Jin-Hao Wang
- Department of Obstetrics and Gynecology, Fengxian Hospital, Southern Medical University, Shanghai 201499, China
| | - Can-Can Zhang
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou 510500, China; Department of Obstetrics and Gynecology, Fengxian Hospital, Southern Medical University, Shanghai 201499, China
| | - Zhi-Gang Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200240, China.
| | - Rong Zhang
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou 510500, China; Department of Obstetrics and Gynecology, Fengxian Hospital, Southern Medical University, Shanghai 201499, China.
| |
Collapse
|
25
|
Su S, Li H, Du F, Zhang C, Li X, Jing X, Liu L, Li Z, Yang X, Xu P, Yuan X, Zhu J, Bouzoualegh R. Combined QTL and Genome Scan Analyses With the Help of 2b-RAD Identify Growth-Associated Genetic Markers in a New Fast-Growing Carp Strain. Front Genet 2018; 9:592. [PMID: 30581452 PMCID: PMC6293859 DOI: 10.3389/fgene.2018.00592] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 11/15/2018] [Indexed: 11/17/2022] Open
Abstract
Common carp is one of the oldest and most popular cultured freshwater fish species both globally and in China. In a previous study, we used a carp strain with a long breeding tradition in China, named Huanghe, to create a new fast-growing strain by selection for fast growth for 6 years. The growth performance at 8 months of age has been improved by 20.84%. To achieve this, we combined the best linear unbiased prediction with marker-assisted selection techniques. Recent progress in genome-wide association studies and genomic selection in livestock breeding inspired common carp breeders to consider genome-based breeding approaches. In this study, we developed a 2b-RAD sequence assay as a means of investigating the quantitative trait loci in common carp. A total of 4,953,017,786 clean reads were generated for 250 specimens (average reads/specimen = 19,812,071) with BsaXI Restriction Enzyme. From these, 56,663 SNPs were identified, covering 50 chromosomes and 3,377 scaffolds. Principal component analysis indicated that selection and control groups are relatively clearly distinct. Top 1% of Fst values was selected as the threshold signature of artificial selection. Among the 244 identified loci, genes associated with sex-related factors and nutritional metabolism (especially fat metabolism) were annotated. Eighteen QTL were associated with growth parameters. Body length at 3 months of age and body weight (both at 3 and 8 months) were controlled by polygenic effects, but body size (length, depth, width) at 8 months of age was controlled mainly by several loci with major effects. Importantly, a single shared QTL (IGF2 gene) partially controlled the body length, depth, and width. By merging the above results, we concluded that mainly the genes related to neural pathways, sex and fatty acid metabolism contributed to the improved growth performance of the new Huanghe carp strain. These findings are one of the first investigations into the potential use of genomic selection in the breeding of common carp. Moreover, our results show that combining the Fst, QTL mapping and CRISPR–Cas9 methods can be an effective way to identify important novel candidate molecular markers in economic breeding programs.
Collapse
Affiliation(s)
- Shengyan Su
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China.,Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Hengde Li
- Ministry of Agriculture Key Laboratory of Aquatic Genomics, CAFS Key Laboratory of Aquatic Genomics and Beijing Key Laboratory of Fishery Biotechnology, Center for Applied Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing, China
| | - Fukuan Du
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Chengfeng Zhang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China.,Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Xinyuan Li
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Xiaojun Jing
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China.,Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Liyue Liu
- China Zebrafish Resource Center, Wuhan, China
| | - Zhixun Li
- Henan Academy of Fishery Sciences, Zhengzhou, China
| | - Xingli Yang
- Henan Academy of Fishery Sciences, Zhengzhou, China
| | - Pao Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China.,Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Xinhua Yuan
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China.,Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Jian Zhu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China.,Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Raouf Bouzoualegh
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| |
Collapse
|
26
|
Mancini C, Zonta A, Botta G, Breda Klobus A, Valbonesi S, Pasini B, Giorgio E, Viora E, Brusco A, Brussino A. A fetal case of microphthalmia and limb anomalies with abnormal neuronal migration associated with SMOC1 biallelic variants. Eur J Med Genet 2018; 62:103578. [PMID: 30445150 DOI: 10.1016/j.ejmg.2018.11.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 09/26/2018] [Accepted: 11/09/2018] [Indexed: 01/30/2023]
Abstract
Microphthalmia with limb anomalies (MLA, OMIM, 206920) is a rare autosomal-recessive disease caused by biallelic pathogenic variants in the SMOC1 gene. It is characterized by ocular disorders (microphtalmia or anophtalmia) and limb anomalies (oligodactyly, syndactyly, and synostosis of the 4th and 5th metacarpals), variably associated with long bone hypoplasia, horseshoe kidney, venous anomalies, vertebral anomalies, developmental delay, and intellectual disability. Here, we report the case of a woman who interrupted her pregnancy after ultrasound scans revealed a depression of the frontal bone, posterior fossa anomalies, cerebral ventricular enlargement, cleft spine involving the sacral and lower-lumbar vertebrae, and bilateral microphthalmia. Micrognathia, four fingers in both feet and a slight tibial bowing were added to the clinical picture after fetal autopsy. Exome sequencing identified two variants in the SMOC1 gene, each inherited from one of the parents: c.709G>T - p.(Glu237*) on exon 8 and c.1223G>A - p.(Cys408Tyr) on exon 11, both predicted to be pathogenic by different bioinformatics software. Brain histopathology showed an abnormal cortical neuronal migration, which could be related to the SMOC1 protein function, given its role in cellular signaling, proliferation and migration. Finally, we summarize phenotypic and genetic data of known MLA cases showing that our case has some unique features (Chiari II malformation; focal neuropathological alterations) that could be part of the variable phenotype of SMOC1-associated diseases.
Collapse
Affiliation(s)
- Cecilia Mancini
- University of Torino, Department of Medical Sciences, 10126, Torino, Italy
| | - Andrea Zonta
- Città Della Salute e Della Scienza University Hospital, Medical Genetics Unit, 10126, Torino, Italy
| | - Giovanni Botta
- Città Della Salute e Della Scienza University Hospital, Departments of Pathology, 10126, Torino, Italy
| | | | | | - Barbara Pasini
- Città Della Salute e Della Scienza University Hospital, Medical Genetics Unit, 10126, Torino, Italy
| | - Elisa Giorgio
- University of Torino, Department of Medical Sciences, 10126, Torino, Italy
| | - Elsa Viora
- Città Della Salute e Della Scienza University Hospital, Department of Gynecology and Obstetrics, Ultrasound and Prenatal Diagnosis Unit, 10126, Torino, Italy
| | - Alfredo Brusco
- University of Torino, Department of Medical Sciences, 10126, Torino, Italy; Città Della Salute e Della Scienza University Hospital, Medical Genetics Unit, 10126, Torino, Italy.
| | | |
Collapse
|
27
|
Peeters T, Monteagudo S, Tylzanowski P, Luyten FP, Lories R, Cailotto F. SMOC2 inhibits calcification of osteoprogenitor and endothelial cells. PLoS One 2018; 13:e0198104. [PMID: 29897942 PMCID: PMC5999237 DOI: 10.1371/journal.pone.0198104] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 05/14/2018] [Indexed: 11/18/2022] Open
Abstract
Tissue calcification is an important physiological process required for the normal structure and function of bone. However, ectopic or excessive calcification contributes to diseases such as chondrocalcinosis, to calcium deposits in the skin or to vascular calcification. SMOC2 is a member of the BM-40/osteonectin family of calcium-binding secreted matricellular proteins. Using osteoprogenitor MC3T3-E1 cells stably overexpressing SMOC2, we show that SMOC2 inhibits osteogenic differentiation and extracellular matrix mineralization. Stable Smoc2 knockdown in these cells had no effect on mineralization suggesting that endogenous SMOC2 is not essential for the mineralization process. Mineralization in MC3T3-E1 cells overexpressing mutant SMOC2 lacking the extracellular calcium-binding domain was significantly increased compared to cells overexpressing full length SMOC2. When SMOC2 overexpressing cells were cultured in the presence of extracellular calcium supplementation, SMOC2’s inhibitory effect on calcification was rescued. Our observations were translationally validated in primary human periosteal-derived cells. Furthermore, SMOC2 was able to impair mineralization in transdifferentiated human umbilical vein endothelial cells. Taken together, our data indicate that SMOC2 can act as an inhibitor of mineralization. We propose a possible role for SMOC2 to prevent calcification disorders.
Collapse
Affiliation(s)
- Tine Peeters
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Silvia Monteagudo
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Przemko Tylzanowski
- Laboratory for Developmental and Stem Cell Biology, Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| | - Frank P. Luyten
- Laboratory for Developmental and Stem Cell Biology, Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Division of Rheumatology, University Hospitals Leuven, Leuven, Belgium
| | - Rik Lories
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Division of Rheumatology, University Hospitals Leuven, Leuven, Belgium
- * E-mail:
| | - Frédéric Cailotto
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- UMR 7365 CNRS‐Université de Lorraine, Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), Biopôle de l’Université de Lorraine, Campus Biologie-Santé, Vandoeuvre Les Nancy, France
| |
Collapse
|
28
|
Abstract
The extracellular matrix (ECM) has central roles in tissue integrity and remodeling throughout the life span of animals. While collagens are the most abundant structural components of ECM in most tissues, tissue-specific molecular complexity is contributed by ECM glycoproteins. The matricellular glycoproteins are categorized primarily according to functional criteria and represented predominantly by the thrombospondin, tenascin, SPARC/osteonectin, and CCN families. These proteins do not self-assemble into ECM fibrils; nevertheless, they shape ECM properties through interactions with structural ECM proteins, growth factors, and cells. Matricellular proteins also promote cell migration or morphological changes through adhesion-modulating or counter-adhesive actions on cell-ECM adhesions, intracellular signaling, and the actin cytoskeleton. Typically, matricellular proteins are most highly expressed during embryonic development. In adult tissues, expression is more limited unless activated by cues for dynamic tissue remodeling and cell motility, such as occur during inflammatory response and wound repair. Many insights in the complex roles of matricellular proteins have been obtained from studies of gene knockout mice. However, with the exception of chordate-specific tenascins, these are highly conserved proteins that are encoded in many animal phyla. This review will consider the increasing body of research on matricellular proteins in nonmammalian animal models. These models provide better access to the very earliest stages of embryonic development and opportunities to study biological processes such as limb and organ regeneration. In aggregate, this research is expanding concepts of the functions and mechanisms of action of matricellular proteins.
Collapse
Affiliation(s)
- Josephine C Adams
- School of Biochemistry, University of Bristol, Bristol, United Kingdom.
| |
Collapse
|
29
|
Lindström NO, Guo J, Kim AD, Tran T, Guo Q, De Sena Brandine G, Ransick A, Parvez RK, Thornton ME, Baskin L, Grubbs B, McMahon JA, Smith AD, McMahon AP. Conserved and Divergent Features of Mesenchymal Progenitor Cell Types within the Cortical Nephrogenic Niche of the Human and Mouse Kidney. J Am Soc Nephrol 2018; 29:806-824. [PMID: 29449449 DOI: 10.0.6.145/asn.2017080890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 11/27/2017] [Indexed: 05/24/2023] Open
Abstract
Cellular interactions among nephron, interstitial, and collecting duct progenitors drive mammalian kidney development. In mice, Six2+ nephron progenitor cells (NPCs) and Foxd1+ interstitial progenitor cells (IPCs) form largely distinct lineage compartments at the onset of metanephric kidney development. Here, we used the method for analyzing RNA following intracellular sorting (MARIS) approach, single-cell transcriptional profiling, in situ hybridization, and immunolabeling to characterize the presumptive NPC and IPC compartments of the developing human kidney. As in mice, each progenitor population adopts a stereotypical arrangement in the human nephron-forming niche: NPCs capped outgrowing ureteric branch tips, whereas IPCs were sandwiched between the NPCs and the renal capsule. Unlike mouse NPCs, human NPCs displayed a transcriptional profile that overlapped substantially with the IPC transcriptional profile, and key IPC determinants, including FOXD1, were readily detected within SIX2+ NPCs. Comparative gene expression profiling in human and mouse Six2/SIX2+ NPCs showed broad agreement between the species but also identified species-biased expression of some genes. Notably, some human NPC-enriched genes, including DAPL1 and COL9A2, are linked to human renal disease. We further explored the cellular diversity of mesenchymal cell types in the human nephrogenic niche through single-cell transcriptional profiling. Data analysis stratified NPCs into two main subpopulations and identified a third group of differentiating cells. These findings were confirmed by section in situ hybridization with novel human NPC markers predicted through the single-cell studies. This study provides a benchmark for the mesenchymal progenitors in the human nephrogenic niche and highlights species-variability in kidney developmental programs.
Collapse
Affiliation(s)
- Nils O Lindström
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine
| | - Jinjin Guo
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine
| | - Albert D Kim
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine
| | - Tracy Tran
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine
| | - Qiuyu Guo
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine
| | | | - Andrew Ransick
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine
| | - Riana K Parvez
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine
| | - Matthew E Thornton
- Maternal Fetal Medicine Division, University of Southern California, Los Angeles, California; and
| | - Laurence Baskin
- Department of Urology and Pediatrics, University of California San Francisco, San Francisco, California
| | - Brendan Grubbs
- Maternal Fetal Medicine Division, University of Southern California, Los Angeles, California; and
| | - Jill A McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine
| | - Andrew D Smith
- Molecular and Computational Biology, Department of Biological Sciences, and
| | - Andrew P McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine,
| |
Collapse
|
30
|
Lindström NO, Guo J, Kim AD, Tran T, Guo Q, De Sena Brandine G, Ransick A, Parvez RK, Thornton ME, Baskin L, Grubbs B, McMahon JA, Smith AD, McMahon AP. Conserved and Divergent Features of Mesenchymal Progenitor Cell Types within the Cortical Nephrogenic Niche of the Human and Mouse Kidney. J Am Soc Nephrol 2018; 29:806-824. [PMID: 29449449 DOI: 10.1681/asn.2017080890] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 11/27/2017] [Indexed: 01/12/2023] Open
Abstract
Cellular interactions among nephron, interstitial, and collecting duct progenitors drive mammalian kidney development. In mice, Six2+ nephron progenitor cells (NPCs) and Foxd1+ interstitial progenitor cells (IPCs) form largely distinct lineage compartments at the onset of metanephric kidney development. Here, we used the method for analyzing RNA following intracellular sorting (MARIS) approach, single-cell transcriptional profiling, in situ hybridization, and immunolabeling to characterize the presumptive NPC and IPC compartments of the developing human kidney. As in mice, each progenitor population adopts a stereotypical arrangement in the human nephron-forming niche: NPCs capped outgrowing ureteric branch tips, whereas IPCs were sandwiched between the NPCs and the renal capsule. Unlike mouse NPCs, human NPCs displayed a transcriptional profile that overlapped substantially with the IPC transcriptional profile, and key IPC determinants, including FOXD1, were readily detected within SIX2+ NPCs. Comparative gene expression profiling in human and mouse Six2/SIX2+ NPCs showed broad agreement between the species but also identified species-biased expression of some genes. Notably, some human NPC-enriched genes, including DAPL1 and COL9A2, are linked to human renal disease. We further explored the cellular diversity of mesenchymal cell types in the human nephrogenic niche through single-cell transcriptional profiling. Data analysis stratified NPCs into two main subpopulations and identified a third group of differentiating cells. These findings were confirmed by section in situ hybridization with novel human NPC markers predicted through the single-cell studies. This study provides a benchmark for the mesenchymal progenitors in the human nephrogenic niche and highlights species-variability in kidney developmental programs.
Collapse
Affiliation(s)
- Nils O Lindström
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine
| | - Jinjin Guo
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine
| | - Albert D Kim
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine
| | - Tracy Tran
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine
| | - Qiuyu Guo
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine
| | | | - Andrew Ransick
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine
| | - Riana K Parvez
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine
| | - Matthew E Thornton
- Maternal Fetal Medicine Division, University of Southern California, Los Angeles, California; and
| | - Laurence Baskin
- Department of Urology and Pediatrics, University of California San Francisco, San Francisco, California
| | - Brendan Grubbs
- Maternal Fetal Medicine Division, University of Southern California, Los Angeles, California; and
| | - Jill A McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine
| | - Andrew D Smith
- Molecular and Computational Biology, Department of Biological Sciences, and
| | - Andrew P McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine,
| |
Collapse
|
31
|
Solanki A, Yanez DC, Ross S, Lau CI, Papaioannou E, Li J, Saldaña JI, Crompton T. Gli3 in fetal thymic epithelial cells promotes thymocyte positive selection and differentiation by repression of Shh. Development 2018; 145:dev.146910. [PMID: 29361554 PMCID: PMC5817998 DOI: 10.1242/dev.146910] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 01/03/2018] [Indexed: 12/15/2022]
Abstract
Gli3 is a Hedgehog (Hh)-responsive transcription factor that can function as a transcriptional repressor or activator. We show that Gli3 activity in mouse thymic epithelial cells (TECs) promotes positive selection and differentiation from CD4+ CD8+ to CD4+ CD8- single-positive (SP4) cells in the fetal thymus and that Gli3 represses Shh Constitutive deletion of Gli3, and conditional deletion of Gli3 from TECs, reduced differentiation to SP4, whereas conditional deletion of Gli3 from thymocytes did not. Conditional deletion of Shh from TECs increased differentiation to SP4, and expression of Shh was upregulated in the Gli3-deficient thymus. Use of a transgenic Hh reporter showed that the Hh pathway was active in thymocytes, and increased in the Gli3-deficient fetal thymus. Neutralisation of endogenous Hh proteins in the Gli3-/- thymus restored SP4 differentiation, indicating that Gli3 in TECs promotes SP4 differentiation by repression of Shh Transcriptome analysis showed that Hh-mediated transcription was increased whereas TCR-mediated transcription was decreased in Gli3-/- thymocytes compared with wild type.
Collapse
Affiliation(s)
- Anisha Solanki
- UCL GOS Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Diana C Yanez
- UCL GOS Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Susan Ross
- UCL GOS Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Ching-In Lau
- UCL GOS Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | | | - Jiawei Li
- UCL GOS Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - José Ignacio Saldaña
- UCL GOS Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK.,School of Health, Sport and Bioscience, University of East London, London E15 4LZ, UK
| | - Tessa Crompton
- UCL GOS Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| |
Collapse
|
32
|
Jamshidi J, Abdollahi S, Ghaedi H, Alehabib E, Tafakhori A, Alinaghi S, Chapi M, Johari AH, Darvish H. A novel mutation in SMOC1 and variable phenotypic expression in two patients with Waardenburg anophthalmia syndrome. Eur J Med Genet 2017; 60:578-582. [DOI: 10.1016/j.ejmg.2017.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 08/09/2017] [Accepted: 08/10/2017] [Indexed: 11/28/2022]
|
33
|
Huang XQ, Zhou ZQ, Zhang XF, Chen CL, Tang Y, Zhu Q, Zhang JH, Xia JC. Overexpression of SMOC2 Attenuates the Tumorigenicity of Hepatocellular Carcinoma Cells and Is Associated With a Positive Postoperative Prognosis in Human Hepatocellular Carcinoma. J Cancer 2017; 8:3812-3827. [PMID: 29151969 PMCID: PMC5688935 DOI: 10.7150/jca.20775] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 08/21/2017] [Indexed: 01/05/2023] Open
Abstract
Secreted modular calcium binding protein-2 (SMOC2), a recently identified matricellular protein that belongs to the SPARC protein family, has been reported to be downregulated in various cancers. The purpose of this study was to investigate the clinical significance and biological function of SMOC2 in human hepatocellular carcinoma. Real-time quantitative PCR and western blotting analyses revealed that SMOC2 mRNA and protein levels were significantly downregulated in human HCC tissues compared to the matched adjacent normal tissues. Clinicopathological analysis indicated that SMOC2 expression was significantly associated with tumor size, number of tumors, tumor-node-metastasis (TNM) stage and distant metastasis. Kaplan-Meier survival analysis showed that high tumor SMOC2 expression was associated with improved overall survival and disease-free survival in patients with HCC. Functional analyses (cell proliferation and colony formation assays, cell migration and invasion assays, cell cycle and apoptosis assays) demonstrated that stable overexpression of SMOC2 using a lentiviral vector significantly inhibited cell proliferation, colony formation, migration and invasion, and induced G0/G1 phase arrest in HCC cells in vitro. In addition, experiments with a mouse model revealed the suppressed effect of SMOC2 on HCC tumorigenicity and metastases in vivo. These results suggest that SMOC2 functions as a tumor suppressor during the development of HCC and may represent an effective prognostic factor and novel therapeutic target for HCC.
Collapse
Affiliation(s)
- Xu-Qiong Huang
- Huadu District People's Hospital of Guangzhou, Southern Medical University, Guangzhou, Guangdong province, 510800, China.,Department of Epidemiology and Health Statistics, Guangdong Pharmaceutical University, Guangzhou, Guangdong province, 510010, China
| | - Zi-Qi Zhou
- State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong province, 510060, China
| | - Xiao-Fei Zhang
- State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong province, 510060, China
| | - Chang-Long Chen
- State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong province, 510060, China
| | - Yan Tang
- State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong province, 510060, China
| | - Qian Zhu
- State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong province, 510060, China
| | - Jian-Hua Zhang
- Department of Epidemiology and Health Statistics, Guangdong Pharmaceutical University, Guangzhou, Guangdong province, 510010, China.,Department of Health Service Management, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong province, 510006, China
| | - Jian-Chuan Xia
- State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong province, 510060, China
| |
Collapse
|
34
|
Morimoto Y, Ono S, Imamura A, Okazaki Y, Kinoshita A, Mishima H, Nakane H, Ozawa H, Yoshiura KI, Kurotaki N. Deep sequencing reveals variations in somatic cell mosaic mutations between monozygotic twins with discordant psychiatric disease. Hum Genome Var 2017; 4:17032. [PMID: 28765789 PMCID: PMC5529667 DOI: 10.1038/hgv.2017.32] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/23/2017] [Accepted: 06/20/2017] [Indexed: 01/09/2023] Open
Abstract
Monozygotic (MZ) twins have been thought to be genetically identical. However, recent studies have shown discordant variants between them. We performed whole-exome sequencing (WES) in five MZ twin pairs with discordant neurodevelopmental disorders and one healthy control MZ twin to detect discordant variants. We identified three discordant variants confirmed by deep sequencing after analysis by personalized next-generation sequencing (NGS). Three mutations in FBXO38 (chr5:147774428;T>G), SMOC2 (chr6:169051385;A>G) and TDRP (chr8:442616;A>G), were detected with low allele frequency of mutant alleles on deep sequencing, suggesting that these loci are mosaic due to somatic mutations in a developmental stage. Our results suggest that deep sequencing analysis would be an adequate method to detect discordant mutations in candidate genes responsible for heritable diseases.
Collapse
Affiliation(s)
- Yoshiro Morimoto
- Department of Neuropsychiatry, Unit of Translation Medicine Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Department of Human Genetics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Shinji Ono
- Department of Neuropsychiatry, Unit of Translation Medicine Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Department of Human Genetics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Akira Imamura
- Department of Neuropsychiatry, Unit of Translation Medicine Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yuji Okazaki
- Department of Psychiatry, Koseikai Michino-o Hospital, Nagasaki, Japan
| | - Akira Kinoshita
- Department of Human Genetics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hiroyuki Mishima
- Department of Human Genetics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hideyuki Nakane
- Unit of Rehabilitation Science, Department of Psychiatric Rehabilitation Science, University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hiroki Ozawa
- Department of Neuropsychiatry, Unit of Translation Medicine Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Koh-Ichiro Yoshiura
- Department of Human Genetics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Naohiro Kurotaki
- Department of Neuropsychiatry, Unit of Translation Medicine Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
35
|
Marchant TW, Johnson EJ, McTeir L, Johnson CI, Gow A, Liuti T, Kuehn D, Svenson K, Bermingham ML, Drögemüller M, Nussbaumer M, Davey MG, Argyle DJ, Powell RM, Guilherme S, Lang J, Ter Haar G, Leeb T, Schwarz T, Mellanby RJ, Clements DN, Schoenebeck JJ. Canine Brachycephaly Is Associated with a Retrotransposon-Mediated Missplicing of SMOC2. Curr Biol 2017; 27:1573-1584.e6. [PMID: 28552356 PMCID: PMC5462623 DOI: 10.1016/j.cub.2017.04.057] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 03/14/2017] [Accepted: 04/27/2017] [Indexed: 12/30/2022]
Abstract
In morphological terms, “form” is used to describe an object’s shape and size. In dogs, facial form is stunningly diverse. Facial retrusion, the proximodistal shortening of the snout and widening of the hard palate is common to brachycephalic dogs and is a welfare concern, as the incidence of respiratory distress and ocular trauma observed in this class of dogs is highly correlated with their skull form. Progress to identify the molecular underpinnings of facial retrusion is limited to association of a missense mutation in BMP3 among small brachycephalic dogs. Here, we used morphometrics of skull isosurfaces derived from 374 pedigree and mixed-breed dogs to dissect the genetics of skull form. Through deconvolution of facial forms, we identified quantitative trait loci that are responsible for canine facial shapes and sizes. Our novel insights include recognition that the FGF4 retrogene insertion, previously associated with appendicular chondrodysplasia, also reduces neurocranium size. Focusing on facial shape, we resolved a quantitative trait locus on canine chromosome 1 to a 188-kb critical interval that encompasses SMOC2. An intronic, transposable element within SMOC2 promotes the utilization of cryptic splice sites, causing its incorporation into transcripts, and drastically reduces SMOC2 gene expression in brachycephalic dogs. SMOC2 disruption affects the facial skeleton in a dose-dependent manner. The size effects of the associated SMOC2 haplotype are profound, accounting for 36% of facial length variation in the dogs we tested. Our data bring new focus to SMOC2 by highlighting its clinical implications in both human and veterinary medicine. A population-based genetics study of dogs that required diagnostic imaging Resolution of a QTL associated with face length reduction (brachycephaly) Association of brachycephaly with a retrotransposon that disrupts SMOC2 splicing The SMOC2 locus explains up to 36% of face length variation in dogs
Collapse
Affiliation(s)
- Thomas W Marchant
- Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Edward J Johnson
- Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Lynn McTeir
- Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Craig I Johnson
- Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Adam Gow
- Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Tiziana Liuti
- Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Dana Kuehn
- Friendship Hospital for Animals, Washington, DC 20016, USA
| | | | - Mairead L Bermingham
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | | | - Marc Nussbaumer
- Naturhistorisches Museum, Bernastrasse 15, 3005 Bern, Switzerland
| | - Megan G Davey
- Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - David J Argyle
- Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Roger M Powell
- Powell Torrance Diagnostic Services, Manor Farm Business Park, Higham Gobion, Hertfordshire SG5 3HR, UK
| | - Sérgio Guilherme
- Davies Veterinary Specialists, Manor Farm Business Park, Higham Gobion, Hertfordshire SG5 3HR, UK
| | - Johann Lang
- Division of Clinical Radiology, Department of Clinical Veterinary Medicine, University of Bern, 3001 Bern, Switzerland
| | - Gert Ter Haar
- Department of Clinical Sciences and Services, Royal Veterinary College, Hertfordshire AL9 7TA, UK
| | - Tosso Leeb
- Institute of Genetics, University of Bern, 3001 Bern, Switzerland
| | - Tobias Schwarz
- Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Richard J Mellanby
- Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Dylan N Clements
- Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Jeffrey J Schoenebeck
- Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK.
| |
Collapse
|
36
|
Gerarduzzi C, Kumar RK, Trivedi P, Ajay AK, Iyer A, Boswell S, Hutchinson JN, Waikar SS, Vaidya VS. Silencing SMOC2 ameliorates kidney fibrosis by inhibiting fibroblast to myofibroblast transformation. JCI Insight 2017; 2:90299. [PMID: 28422762 DOI: 10.1172/jci.insight.90299] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 03/16/2017] [Indexed: 12/14/2022] Open
Abstract
Secreted modular calcium-binding protein 2 (SMOC2) belongs to the secreted protein acidic and rich in cysteine (SPARC) family of matricellular proteins whose members are known to modulate cell-matrix interactions. We report that SMOC2 is upregulated in the kidney tubular epithelial cells of mice and humans following fibrosis. Using genetically manipulated mice with SMOC2 overexpression or knockdown, we show that SMOC2 is critically involved in the progression of kidney fibrosis. Mechanistically, we found that SMOC2 activates a fibroblast-to-myofibroblast transition (FMT) to stimulate stress fiber formation, proliferation, migration, and extracellular matrix production. Furthermore, we demonstrate that targeting SMOC2 by siRNA results in attenuation of TGFβ1-mediated FMT in vitro and an amelioration of kidney fibrosis in mice. These findings implicate that SMOC2 is a key signaling molecule in the pathological secretome of a damaged kidney and targeting SMOC2 offers a therapeutic strategy for inhibiting FMT-mediated kidney fibrosis - an unmet medical need.
Collapse
Affiliation(s)
- Casimiro Gerarduzzi
- Renal Division, Department of Medicine, Brigham and Women's Hospital (BWH), Boston, Massachusetts, USA
| | - Ramya K Kumar
- Renal Division, Department of Medicine, Brigham and Women's Hospital (BWH), Boston, Massachusetts, USA
| | - Priyanka Trivedi
- Renal Division, Department of Medicine, Brigham and Women's Hospital (BWH), Boston, Massachusetts, USA
| | - Amrendra K Ajay
- Renal Division, Department of Medicine, Brigham and Women's Hospital (BWH), Boston, Massachusetts, USA
| | - Ashwin Iyer
- Renal Division, Department of Medicine, Brigham and Women's Hospital (BWH), Boston, Massachusetts, USA
| | - Sarah Boswell
- Harvard Program in Therapeutic Sciences, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Sushrut S Waikar
- Renal Division, Department of Medicine, Brigham and Women's Hospital (BWH), Boston, Massachusetts, USA
| | - Vishal S Vaidya
- Renal Division, Department of Medicine, Brigham and Women's Hospital (BWH), Boston, Massachusetts, USA.,Harvard Program in Therapeutic Sciences, Harvard Medical School, Boston, Massachusetts, USA.,Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
37
|
Su JR, Kuai JH, Li YQ. Smoc2 potentiates proliferation of hepatocellular carcinoma cells via promotion of cell cycle progression. World J Gastroenterol 2016; 22:10053-10063. [PMID: 28018113 PMCID: PMC5143752 DOI: 10.3748/wjg.v22.i45.10053] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/07/2016] [Accepted: 10/26/2016] [Indexed: 02/06/2023] Open
Abstract
AIM To determine the influence of Smoc2 on hepatocellular carcinoma (HCC) cell proliferation and to find a possible new therapeutic target for preventing HCC progression. METHODS We detected expression of Smoc2 in HCC tissues and corresponding non-tumor liver (CNL) tissues using PCR, western blot, and immunohistochemistry methods. Subsequently, we down-regulated and up-regulated Smoc2 expression using siRNA and lentivirus transfection assay, respectively. Then, we identified the effect of Smoc2 on cell proliferation and cell cycle using CCK-8 and flow cytometry, respectively. The common cell growth signaling influenced by Smoc2 was detected by western blot assay. RESULTS The expression of Smoc2 was significantly higher in HCC tissues compared with CNL tissues. Overexpression of Smoc2 promoted HCC cell proliferation and cell cycle progression. Down-regulation of Smoc2 led to inhibition of cell proliferation and cell cycle progression. Smoc2 had positive effect on ERK and AKT signaling. CONCLUSION Smoc2 promotes the proliferation of HCC cells through accelerating cell cycle progression and might act as an anti-cancer therapeutic target in the future.
Collapse
|
38
|
Martin LJ. Cell interactions and genetic regulation that contribute to testicular Leydig cell development and differentiation. Mol Reprod Dev 2016; 83:470-87. [DOI: 10.1002/mrd.22648] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 04/10/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Luc J. Martin
- Department of Biology; Université de Moncton; Moncton New-Brunswick Canada
| |
Collapse
|
39
|
Wang X, Johnson AC, Williams JM, White T, Chade AR, Zhang J, Liu R, Roman RJ, Lee JW, Kyle PB, Solberg-Woods L, Garrett MR. Nephron Deficiency and Predisposition to Renal Injury in a Novel One-Kidney Genetic Model. J Am Soc Nephrol 2014; 26:1634-46. [PMID: 25349207 DOI: 10.1681/asn.2014040328] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 09/08/2014] [Indexed: 11/03/2022] Open
Abstract
Some studies have reported up to 40% of patients born with a single kidney develop hypertension, proteinuria, and in some cases renal failure. The increased susceptibility to renal injury may be due, in part, to reduced nephron numbers. Notably, children who undergo nephrectomy or adults who serve as kidney donors exhibit little difference in renal function compared with persons who have two kidneys. However, the difference in risk between being born with a single kidney versus being born with two kidneys and then undergoing nephrectomy are unclear. Animal models used previously to investigate this question are not ideal because they require invasive methods to model congenital solitary kidney. In this study, we describe a new genetic animal model, the heterogeneous stock-derived model of unilateral renal agenesis (HSRA) rat, which demonstrates 50%-75% spontaneous incidence of a single kidney. The HSRA model is characterized by reduced nephron number (more than would be expected by loss of one kidney), early kidney/glomerular hypertrophy, and progressive renal injury, which culminates in reduced renal function. Long-term studies of temporal relationships among BP, renal hemodynamics, and renal function demonstrate that spontaneous single-kidney HSRA rats are more likely than uninephrectomized normal littermates to exhibit renal impairment because of the combination of reduced nephron numbers and prolonged exposure to renal compensatory mechanisms (i.e., hyperfiltration). Future studies with this novel animal model may provide additional insight into the genetic contributions to kidney development and agenesis and the factors influencing susceptibility to renal injury in individuals with congenital solitary kidney.
Collapse
Affiliation(s)
| | | | - Jan M Williams
- Departments of *Pharmacology and Toxicology, Medicine (Nephrology)
| | | | - Alejandro R Chade
- Physiology and Biophysics, Radiology, University of Mississippi Medical Center, Jackson, Mississippi; and
| | | | | | - Richard J Roman
- Departments of *Pharmacology and Toxicology, Medicine (Nephrology)
| | | | | | - Leah Solberg-Woods
- Department of Pediatrics, Medical College of Wisconsin, Madison, Wisconsin
| | | |
Collapse
|
40
|
Barthold JS, Wang Y, Robbins A, Pike J, McDowell E, Johnson KJ, McCahan SM. Transcriptome analysis of the dihydrotestosterone-exposed fetal rat gubernaculum identifies common androgen and insulin-like 3 targets. Biol Reprod 2013; 89:143. [PMID: 24174575 DOI: 10.1095/biolreprod.113.112953] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Androgens and insulin-like 3 (INSL3) are required for development of the fetal gubernaculum and testicular descent. Previous studies suggested that the INSL3-exposed fetal gubernacular transcriptome is enriched for genes involved in neural pathways. In the present study, we profiled the transcriptome of fetal gubernaculum explants exposed to dihydrotestosterone (DHT) and compared this response to that with INSL3. We exposed fetal (Embryonic Day 17) rat gubernacula to DHT for 24 h (10 and 30 nM) or 6 h (1 and 10 nM) in organ culture and analyzed gene expression relative to that of vehicle-treated controls using Affymetrix arrays. Results were annotated using functional, pathway, and promoter analyses and independently validated for selected transcripts using quantitative RT-PCR (qRT-PCR). Transcripts were differentially expressed after 24 h but not 6 h. Most highly overrepresented functional categories included those related to gene expression, skeletal and muscular development and function, and Wnt signaling. Promoter response elements enriched in the DHT-specific transcriptome included consensus sequences for c-ETS1, ELK1, CREB, CRE-BP1/c-June, NRF2, and USF. We observed that 55% of DHT probe sets were also differentially expressed after INSL3 exposure and that the direction of change was the same in 96%. The qRT-PCR results confirmed that DHT increased expression of the INSL3-responsive genes Crlf1 and Chrdl2 but reduced expression of Wnt4. We also validated reduced Tgfb2 and Cxcl12 and increased Slit3 expression following DHT exposure. These data suggest a robust overlap in the DHT- and INSL3-regulated transcriptome that may be mediated in part by CREB signaling and a common Wnt pathway response for both hormones in the fetal gubernaculum.
Collapse
Affiliation(s)
- Julia S Barthold
- Nemours Biomedical Research/Alfred I. duPont Hospital for Children, Wilmington, Delaware
| | | | | | | | | | | | | |
Collapse
|
41
|
Fontes-Oliveira CC, Busquets S, Fuster G, Ametller E, Figueras M, Olivan M, Toledo M, López-Soriano FJ, Qu X, Demuth J, Stevens P, Varbanov A, Wang F, Isfort RJ, Argilés JM. A differential pattern of gene expression in skeletal muscle of tumor-bearing rats reveals dysregulation of excitation-contraction coupling together with additional muscle alterations. Muscle Nerve 2013; 49:233-48. [DOI: 10.1002/mus.23893] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 04/19/2013] [Accepted: 04/24/2013] [Indexed: 12/31/2022]
Affiliation(s)
- Cibely Cristine Fontes-Oliveira
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biologia; Universitat de Barcelona; Diagonal 643 Barcelona 08028 Spain
| | - Sílvia Busquets
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biologia; Universitat de Barcelona; Diagonal 643 Barcelona 08028 Spain
- Institut de Biomedicina de la Universitat de Barcelona; Barcelona Spain
| | - Gemma Fuster
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biologia; Universitat de Barcelona; Diagonal 643 Barcelona 08028 Spain
| | - Elisabet Ametller
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biologia; Universitat de Barcelona; Diagonal 643 Barcelona 08028 Spain
| | - Maite Figueras
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biologia; Universitat de Barcelona; Diagonal 643 Barcelona 08028 Spain
| | - Mireia Olivan
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biologia; Universitat de Barcelona; Diagonal 643 Barcelona 08028 Spain
| | - Míriam Toledo
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biologia; Universitat de Barcelona; Diagonal 643 Barcelona 08028 Spain
| | - Francisco J. López-Soriano
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biologia; Universitat de Barcelona; Diagonal 643 Barcelona 08028 Spain
- Institut de Biomedicina de la Universitat de Barcelona; Barcelona Spain
| | - Xiaoyan Qu
- Procter & Gamble; Mason Business Center; 8700 Mason-Montgomery Road Mason Ohio 45040 USA
| | - Jeffrey Demuth
- Procter & Gamble; Mason Business Center; 8700 Mason-Montgomery Road Mason Ohio 45040 USA
| | - Paula Stevens
- Procter & Gamble; Mason Business Center; 8700 Mason-Montgomery Road Mason Ohio 45040 USA
| | - Alex Varbanov
- Procter & Gamble; Mason Business Center; 8700 Mason-Montgomery Road Mason Ohio 45040 USA
| | - Feng Wang
- Procter & Gamble; Mason Business Center; 8700 Mason-Montgomery Road Mason Ohio 45040 USA
| | - Robert J. Isfort
- Procter & Gamble; Mason Business Center; 8700 Mason-Montgomery Road Mason Ohio 45040 USA
| | - Josep M. Argilés
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biologia; Universitat de Barcelona; Diagonal 643 Barcelona 08028 Spain
- Institut de Biomedicina de la Universitat de Barcelona; Barcelona Spain
| |
Collapse
|
42
|
Krementsov DN, Katchy A, Case LK, Carr FE, Davis B, Williams C, Teuscher C. Studies in experimental autoimmune encephalomyelitis do not support developmental bisphenol a exposure as an environmental factor in increasing multiple sclerosis risk. Toxicol Sci 2013; 135:91-102. [PMID: 23798566 DOI: 10.1093/toxsci/kft141] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Multiple sclerosis (MS), a demyelinating immune-mediated central nervous system disease characterized by increasing female penetrance, is the leading cause of disability in young adults in the developed world. Epidemiological data strongly implicate an environmental factor, acting at the population level during gestation, in the increasing incidence of female MS observed over the last 50 years, yet the identity of this factor remains unknown. Gestational exposure to bisphenol A (BPA), an endocrine disruptor used in the manufacture of polycarbonate plastics since the 1950s, has been reported to alter a variety of physiological processes in adulthood. BPA has estrogenic activity, and we hypothesized that increased gestational exposure to environmental BPA may therefore contribute to the increasing female MS risk. To test this hypothesis, we utilized two different mouse models of MS, experimental autoimmune encephalomyelitis (EAE) in C57BL/6J mice (chronic progressive) and in SJL/J mice (relapsing-remitting). Dams were exposed to physiologically relevant levels of BPA in drinking water starting 2 weeks prior to mating and continuing until weaning of offspring. EAE was induced in adult offspring. No significant changes in EAE incidence, progression, or severity were observed with BPA exposure, despite changes in cytokine production by autoreactive T cells. However, endocrine disruption was evidenced by changes in testes development, and transcriptomic profiling revealed that BPA exposure altered the expression of several genes important for testes development, including Pdgfa, which was downregulated. Overall, our results do not support gestational BPA exposure as a significant contributor to the increasing female MS risk.
Collapse
Affiliation(s)
- Dimitry N Krementsov
- Department of Medicine, Immunobiology Program, University of Vermont, Burlington, Vermont 05405, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Tolmacheva EN, Kashevarova AA, Skryabin NA, Lebedev IN. Epigenetic effects of trisomy 16 in human placenta. Mol Biol 2013. [DOI: 10.1134/s0026893313030175] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
44
|
Alfawaz S, Fong F, Plagnol V, Wong FSL, Fearne J, Kelsell DP. Recessive oligodontia linked to a homozygous loss-of-function mutation in the SMOC2 gene. Arch Oral Biol 2013; 58:462-6. [PMID: 23317772 DOI: 10.1016/j.archoralbio.2012.12.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 11/16/2012] [Accepted: 12/13/2012] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Recently, several genes have been reported with mutations or variants that underlie a number of syndromic and non-syndromic forms of oligodontia including MSX1, PAX9, AXIN2, EDA and WNT10A. This study aimed to identify the causal mutations in a consanguineous Pakistan family with oligodontia and microdontia. DESIGN Exome sequencing was performed in two of affected members of the Pakistan family. RESULTS The exome sequencing data revealed that the affected individuals were homozygous with a novel mutation in exon 8 of the SMOC2 gene, c.681T>A (p.C227X). CONCLUSIONS This is the second report describing SMOC2 mutations with oligodontia and microdontia underlining the key role for this signalling molecule in tooth development.
Collapse
Affiliation(s)
- S Alfawaz
- Centre for Oral Growth & Development, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, Turner Street, London E1 2AD, UK
| | | | | | | | | | | |
Collapse
|
45
|
Baratta CA, Brown TJ, Al-Dhalaan F, Ringuette MJ. Evolution and Function of SPARC and Tenascins: Matricellular Counter-Adhesive Glycoproteins with Pleiotropic Effects on Angiogenesis and Tissue Fibrosis. EVOLUTION OF EXTRACELLULAR MATRIX 2013. [DOI: 10.1007/978-3-642-36002-2_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
46
|
Genetic association suggests that SMOC1 mediates between prenatal sex hormones and digit ratio. Hum Genet 2012; 132:415-21. [PMID: 23263445 DOI: 10.1007/s00439-012-1259-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 12/09/2012] [Indexed: 12/22/2022]
Abstract
Men and women differ statistically in the relative lengths of their index and ring fingers; and the ratio of these lengths has been used as a biomarker for prenatal testosterone. The ratio has been correlated with a wide range of traits and conditions including prostate cancer, obesity, autism, ADHD, and sexual orientation. In a genome-wide association study of 979 healthy adults, we find that digit ratio is strongly associated with variation upstream of SMOC1 (rs4902759: P = 1.41 × 10(-8)) and a meta-analysis of this and an independent study shows a probability of P = 1.5 × 10(-11). The protein encoded by SMOC1 has recently been shown to play a critical role in limb development; its expression in prostate tissue is dependent on sex hormones, and it has been implicated in the sexually dimorphic development of the gonads. We put forward the hypothesis that SMOC1 provides a link between prenatal hormone exposure and digit ratio.
Collapse
|
47
|
Ren Y, Cowan RG, Migone FF, Quirk SM. Overactivation of hedgehog signaling alters development of the ovarian vasculature in mice. Biol Reprod 2012; 86:174. [PMID: 22402963 DOI: 10.1095/biolreprod.112.099176] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The hedgehog (HH) signaling pathway is critical for ovarian function in Drosophila, but its role in the mammalian ovary has not been defined. Previously, expression of a dominant active allele of the HH signal transducer protein smoothened (SMO) in Amhr2(cre/+)SmoM2 mice caused anovulation in association with a lack of smooth muscle in the theca of developing follicles. The current study examined events during the first 2 wk of life in Amhr2(cre/+)SmoM2 mice to gain insight into the cause of anovulation. Expression of transcriptional targets of HH signaling, Gli1, Ptch1, and Hhip, which are used as measures of pathway activity, were elevated during the first several days of life in Amhr2(cre/+)SmoM2 mice compared to controls but were similar to controls in older mice. Microarray analysis showed that genes with increased expression in 2-day-old mutants compared to controls were enriched for the processes of vascular and tube development and steroidogenesis. The density of platelet endothelial cell adhesion molecule (PECAM)-labeled endothelial tubes was increased in the cortex of newborn ovaries of mutant mice. Costaining of preovulatory follicles for PECAM and smooth muscle actin showed that muscle-type vascular support cells are deficient in theca of mutant mice. Expression of genes for steroidogenic enzymes that are normally expressed in the fetal adrenal gland were elevated in newborn ovaries of mutant mice. In summary, overactivation of HH signaling during early life alters gene expression and vascular development and this is associated with the lifelong development of anovulatory follicles in which the thecal vasculature fails to mature appropriately.
Collapse
Affiliation(s)
- Yi Ren
- Department of Animal Science, Cornell University, Ithaca, New York 14853, USA
| | | | | | | |
Collapse
|
48
|
Nishimoto K, Rigsby CS, Wang T, Mukai K, Gomez-Sanchez CE, Rainey WE, Seki T. Transcriptome analysis reveals differentially expressed transcripts in rat adrenal zona glomerulosa and zona fasciculata. Endocrinology 2012; 153:1755-63. [PMID: 22374966 PMCID: PMC3320243 DOI: 10.1210/en.2011-1915] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In mammals, aldosterone is produced in the zona glomerulosa (zG), the outermost layer of the adrenal cortex, whereas glucocorticoids are produced in adjacent zona fasciculata (zF). However, the cellular mechanisms controlling the zonal development and the differential hormone production (i.e. functional zonation) are poorly understood. To explore the mechanisms, we defined zone-specific transcripts in this study. Eleven-week-old male rats were used and adrenal tissues were collected from zG and zF using laser-capture microdissection. RNA was isolated, biotin labeled, amplified, and hybridized to Illumina microarray chips. The microarray data were compared by fold change calculations. In zG, 235 transcripts showed more than a 2-fold up-regulation compared to zF with statistical significance. Similarly, 231 transcripts showed up-regulation in zF. The microarray findings were validated using quantitative RT-PCR and immunohistochemical staining on selected transcripts, including Cyp11b2 (zG/zF: 214.2x), Rgs4 (68.4x), Smoc2 (49.3x), and Mia1 (43.1x) in zG as well as Ddah1 (zF/zG 16.2x), Cidea (15.5x), Frzb (9.5x), and Hsd11b2 (8.3x) in zF. The lists of transcripts obtained in the current study will be an invaluable tool for the elucidation of cellular mechanisms leading to zG and zF functional zonation.
Collapse
Affiliation(s)
- Koshiro Nishimoto
- Department of Physiology, Georgia Health Sciences University, Augusta, Georgia 30912, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Baillet A, Mandon-Pépin B, Veitia R, Cotinot C. [Genetics of early ovarian differentiation: recent data]. Biol Aujourdhui 2012; 205:201-21. [PMID: 22251856 DOI: 10.1051/jbio/2011021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Indexed: 11/14/2022]
Abstract
Early ovarian development has long been thought of as a default pathway switched on passively by the absence of SRY gene. Recent genetic and transcriptomic studies challenge this view and show that two master pathways simultaneously repress male-specific genes and activate female-specific genetic cascades. This antagonistic action is maintained from embryonic stages to adulthood. The differentiation of the ovarian somatic component is regulated by both the forkhead transcription factor FOXL2 (alone or in combination with oestrogens according to the species) and β-catenin pathway activated by Wnt4 and Rspo1. The sex-specific change in the fate of primordial germ cells depends on the gonad environment. Female gonocytes actively proliferate by mitosis then enter meiosis I until the diplotene stage. Primordial follicle formation occurs when oocytes are individually surrounded with pre-granulosa cells. In mammals, the population of primordial follicles serves as a resting and finite pool of oocytes available during the female reproductive life span. Recent data on factors controlling these molecular processes will be presented in this review.
Collapse
Affiliation(s)
- Adrienne Baillet
- Laboratoire de Génétique et Biologie Cellulaire, EA 4589 Université de Versailles Saint-Quentin-en-Yvelines, École Pratique des Hautes Études, 78035 Versailles Cedex, France
| | | | | | | |
Collapse
|
50
|
Bradshaw AD. Diverse biological functions of the SPARC family of proteins. Int J Biochem Cell Biol 2012; 44:480-8. [PMID: 22249026 DOI: 10.1016/j.biocel.2011.12.021] [Citation(s) in RCA: 195] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 12/09/2011] [Accepted: 12/27/2011] [Indexed: 12/14/2022]
Abstract
The SPARC family of proteins represents a diverse group of proteins that modulate cell interaction with the extracellular milieu. The eight members of the SPARC protein family are modular in nature. Each shares a follistatin-like domain and an extracellular calcium binding E-F hand motif. In addition, each family member is secreted into the extracellular space. Some of the shared activities of this family include, regulation of extracellular matrix assembly and deposition, counter-adhesion, effects on extracellular protease activity, and modulation of growth factor/cytokine signaling pathways. Recently, several SPARC family members have been implicated in human disease pathogenesis. This review discusses recent advances in the understanding of the functional roles of the SPARC family of proteins in development and disease.
Collapse
Affiliation(s)
- Amy D Bradshaw
- Division of Cardiology, Department of Medicine, Medical University of South Carolina and Ralph H. Johnson Veteran's Administration, Charleston, SC, United States.
| |
Collapse
|