1
|
Nguyen TH, Vicidomini R, Choudhury SD, Han TH, Maric D, Brody T, Serpe M. scRNA-seq data from the larval Drosophila ventral cord provides a resource for studying motor systems function and development. Dev Cell 2024; 59:1210-1230.e9. [PMID: 38569548 PMCID: PMC11078614 DOI: 10.1016/j.devcel.2024.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/05/2023] [Accepted: 03/06/2024] [Indexed: 04/05/2024]
Abstract
The Drosophila larval ventral nerve cord (VNC) shares many similarities with the spinal cord of vertebrates and has emerged as a major model for understanding the development and function of motor systems. Here, we use high-quality scRNA-seq, validated by anatomical identification, to create a comprehensive census of larval VNC cell types. We show that the neural lineages that comprise the adult VNC are already defined, but quiescent, at the larval stage. Using fluorescence-activated cell sorting (FACS)-enriched populations, we separate all motor neuron bundles and link individual neuron clusters to morphologically characterized known subtypes. We discovered a glutamate receptor subunit required for basal neurotransmission and homeostasis at the larval neuromuscular junction. We describe larval glia and endorse the general view that glia perform consistent activities throughout development. This census represents an extensive resource and a powerful platform for future discoveries of cellular and molecular mechanisms in repair, regeneration, plasticity, homeostasis, and behavioral coordination.
Collapse
Affiliation(s)
| | | | | | | | - Dragan Maric
- Flow and Imaging Cytometry Core, NINDS, NIH, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
2
|
Keränen SVE, Villahoz-Baleta A, Bruno AE, Halfon MS. REDfly: An Integrated Knowledgebase for Insect Regulatory Genomics. INSECTS 2022; 13:618. [PMID: 35886794 PMCID: PMC9323752 DOI: 10.3390/insects13070618] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 11/29/2022]
Abstract
We provide here an updated description of the REDfly (Regulatory Element Database for Fly) database of transcriptional regulatory elements, a unique resource that provides regulatory annotation for the genome of Drosophila and other insects. The genomic sequences regulating insect gene expression-transcriptional cis-regulatory modules (CRMs, e.g., "enhancers") and transcription factor binding sites (TFBSs)-are not currently curated by any other major database resources. However, knowledge of such sequences is important, as CRMs play critical roles with respect to disease as well as normal development, phenotypic variation, and evolution. Characterized CRMs also provide useful tools for both basic and applied research, including developing methods for insect control. REDfly, which is the most detailed existing platform for metazoan regulatory-element annotation, includes over 40,000 experimentally verified CRMs and TFBSs along with their DNA sequences, their associated genes, and the expression patterns they direct. Here, we briefly describe REDfly's contents and data model, with an emphasis on the new features implemented since 2020. We then provide an illustrated walk-through of several common REDfly search use cases.
Collapse
Affiliation(s)
| | - Angel Villahoz-Baleta
- Center for Computational Research, State University of New York at Buffalo, Buffalo, NY 14203, USA; (A.V.-B.); (A.E.B.)
- New York State Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Andrew E. Bruno
- Center for Computational Research, State University of New York at Buffalo, Buffalo, NY 14203, USA; (A.V.-B.); (A.E.B.)
- New York State Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Marc S. Halfon
- New York State Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY 14203, USA
- Department of Biomedical Informatics, State University of New York at Buffalo, Buffalo, NY 14203, USA
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
- Department of Molecular and Cellular Biology and Program in Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| |
Collapse
|
3
|
Douthit J, Hairston A, Lee G, Morrison CA, Holguera I, Treisman JE. R7 photoreceptor axon targeting depends on the relative levels of lost and found expression in R7 and its synaptic partners. eLife 2021; 10:65895. [PMID: 34003117 PMCID: PMC8205486 DOI: 10.7554/elife.65895] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 05/17/2021] [Indexed: 01/17/2023] Open
Abstract
As neural circuits form, growing processes select the correct synaptic partners through interactions between cell surface proteins. The presence of such proteins on two neuronal processes may lead to either adhesion or repulsion; however, the consequences of mismatched expression have rarely been explored. Here, we show that the Drosophila CUB-LDL protein Lost and found (Loaf) is required in the UV-sensitive R7 photoreceptor for normal axon targeting only when Loaf is also present in its synaptic partners. Although targeting occurs normally in loaf mutant animals, removing loaf from photoreceptors or expressing it in their postsynaptic neurons Tm5a/b or Dm9 in a loaf mutant causes mistargeting of R7 axons. Loaf localizes primarily to intracellular vesicles including endosomes. We propose that Loaf regulates the trafficking or function of one or more cell surface proteins, and an excess of these proteins on the synaptic partners of R7 prevents the formation of stable connections.
Collapse
Affiliation(s)
- Jessica Douthit
- Kimmel Center for Biology and Medicine at the Skirball Institute and Department of Cell Biology, NYU School of Medicine, New York, United States
| | - Ariel Hairston
- Kimmel Center for Biology and Medicine at the Skirball Institute and Department of Cell Biology, NYU School of Medicine, New York, United States
| | - Gina Lee
- Kimmel Center for Biology and Medicine at the Skirball Institute and Department of Cell Biology, NYU School of Medicine, New York, United States
| | - Carolyn A Morrison
- Kimmel Center for Biology and Medicine at the Skirball Institute and Department of Cell Biology, NYU School of Medicine, New York, United States
| | - Isabel Holguera
- Department of Biology, New York University, New York, United States
| | - Jessica E Treisman
- Kimmel Center for Biology and Medicine at the Skirball Institute and Department of Cell Biology, NYU School of Medicine, New York, United States
| |
Collapse
|
4
|
Abstract
Drosophila melanogaster, a small dipteran of African origin, represents one of the best-studied model organisms. Early work in this system has uniquely shed light on the basic principles of genetics and resulted in a versatile collection of genetic tools that allow to uncover mechanistic links between genotype and phenotype. Moreover, given its worldwide distribution in diverse habitats and its moderate genome-size, Drosophila has proven very powerful for population genetics inference and was one of the first eukaryotes whose genome was fully sequenced. In this book chapter, we provide a brief historical overview of research in Drosophila and then focus on recent advances during the genomic era. After describing different types and sources of genomic data, we discuss mechanisms of neutral evolution including the demographic history of Drosophila and the effects of recombination and biased gene conversion. Then, we review recent advances in detecting genome-wide signals of selection, such as soft and hard selective sweeps. We further provide a brief introduction to background selection, selection of noncoding DNA and codon usage and focus on the role of structural variants, such as transposable elements and chromosomal inversions, during the adaptive process. Finally, we discuss how genomic data helps to dissect neutral and adaptive evolutionary mechanisms that shape genetic and phenotypic variation in natural populations along environmental gradients. In summary, this book chapter serves as a starting point to Drosophila population genomics and provides an introduction to the system and an overview to data sources, important population genetic concepts and recent advances in the field.
Collapse
|
5
|
Luan H, Kuzin A, Odenwald WF, White BH. Cre-assisted fine-mapping of neural circuits using orthogonal split inteins. eLife 2020; 9:e53041. [PMID: 32286225 PMCID: PMC7217698 DOI: 10.7554/elife.53041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 04/11/2020] [Indexed: 01/18/2023] Open
Abstract
Existing genetic methods of neuronal targeting do not routinely achieve the resolution required for mapping brain circuits. New approaches are thus necessary. Here, we introduce a method for refined neuronal targeting that can be applied iteratively. Restriction achieved at the first step can be further refined in a second step, if necessary. The method relies on first isolating neurons within a targeted group (i.e. Gal4 pattern) according to their developmental lineages, and then intersectionally limiting the number of lineages by selecting only those in which two distinct neuroblast enhancers are active. The neuroblast enhancers drive expression of split Cre recombinase fragments. These are fused to non-interacting pairs of split inteins, which ensure reconstitution of active Cre when all fragments are expressed in the same neuroblast. Active Cre renders all neuroblast-derived cells in a lineage permissive for Gal4 activity. We demonstrate how this system can facilitate neural circuit-mapping in Drosophila.
Collapse
Affiliation(s)
- Haojiang Luan
- Laboratory of Molecular Biology, National Institute of Mental Health, NIHBethesdaUnited States
| | - Alexander Kuzin
- Neural Cell-Fate Determinants Section, National Institute of Neurological Disorders and Stroke, NIHBethesdaUnited States
| | - Ward F Odenwald
- Neural Cell-Fate Determinants Section, National Institute of Neurological Disorders and Stroke, NIHBethesdaUnited States
| | - Benjamin H White
- Laboratory of Molecular Biology, National Institute of Mental Health, NIHBethesdaUnited States
| |
Collapse
|
6
|
Manee MM, Jackson J, Bergman CM. Conserved Noncoding Elements Influence the Transposable Element Landscape in Drosophila. Genome Biol Evol 2018; 10:1533-1545. [PMID: 29850787 PMCID: PMC6007792 DOI: 10.1093/gbe/evy104] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2018] [Indexed: 12/15/2022] Open
Abstract
Highly conserved noncoding elements (CNEs) constitute a significant proportion of the genomes of multicellular eukaryotes. The function of most CNEs remains elusive, but growing evidence indicates they are under some form of purifying selection. Noncoding regions in many species also harbor large numbers of transposable element (TE) insertions, which are typically lineage specific and depleted in exons because of their deleterious effects on gene function or expression. However, it is currently unknown whether the landscape of TE insertions in noncoding regions is random or influenced by purifying selection on CNEs. Here, we combine comparative and population genomic data in Drosophila melanogaster to show that the abundance of TE insertions in intronic and intergenic CNEs is reduced relative to random expectation, supporting the idea that selective constraints on CNEs eliminate a proportion of TE insertions in noncoding regions. However, we find no evidence for differences in the allele frequency spectra for polymorphic TE insertions in CNEs versus those in unconstrained spacer regions, suggesting that the distribution of fitness effects acting on observable TE insertions is similar across different functional compartments in noncoding DNA. Our results provide evidence that selective constraints on CNEs contribute to shaping the landscape of TE insertion in eukaryotic genomes, and provide further evidence that CNEs are indeed functionally constrained and not simply mutational cold spots.
Collapse
Affiliation(s)
- Manee M Manee
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom.,National Center for Biotechnology, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia.,Center of Excellence for Genomics (CEG), King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - John Jackson
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom.,Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Casey M Bergman
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom.,Department of Genetics, University of Georgia, Athens, GA.,Institute of Bioinformatics, University of Georgia, Athens, GA
| |
Collapse
|
7
|
Kuzin A, Smith S, Brody T, Odenwald WF. Structure and cis-regulatory analysis of a Drosophila grainyhead neuroblast enhancer. Genesis 2018; 56:e23094. [PMID: 29417712 DOI: 10.1002/dvg.23094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/05/2018] [Accepted: 02/05/2018] [Indexed: 02/06/2023]
Abstract
Evolutionary analysis of cis-regulatory DNA reveals that enhancers consist of clusters of conserved sequence blocks (CSBs) that are made up of both unique and repeated sequence elements. This study seeks to address the basis for spatial and temporal regulation of neuroblas. A search for temporally restricted CNS NB enhancers identified one within the transcription factor grainyhead (grh) gene locus. The intronic enhancer, grh-15, contains two separable semi-autonomous activities, one that drives expression predominantly within the developing brain NBs and another in ventral cord NBs. To gain insight into the function of the CSBs constituting the brain-specific enhancer, we have systematically deleted each CSB and compared the activity of the altered enhancer to that of the full brain-specific enhancer. While our results indicate that information regulating enhancer activity is highly redundant, we have found that individual CSBs convey expression in subsets of larval lineages that are generated from either Type I or Type II NBs. These studies also highlight how evolutionary sequence conservation can be used as a guide the functional analysis of cis-regulatory DNA.
Collapse
Affiliation(s)
- Alexander Kuzin
- Neural Cell-Fate Determinants Section, NINDS, NIH, Bethesda, Maryland
| | - Svetlana Smith
- Neural Cell-Fate Determinants Section, NINDS, NIH, Bethesda, Maryland
| | - Thomas Brody
- Neural Cell-Fate Determinants Section, NINDS, NIH, Bethesda, Maryland
| | - Ward F Odenwald
- Neural Cell-Fate Determinants Section, NINDS, NIH, Bethesda, Maryland
| |
Collapse
|
8
|
Ross J, Kuzin A, Brody T, Odenwald WF. Mutational analysis of a Drosophila neuroblast enhancer governing nubbin expression during CNS development. Genesis 2018; 56:e23237. [PMID: 30005136 PMCID: PMC6175444 DOI: 10.1002/dvg.23237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 06/07/2018] [Accepted: 06/22/2018] [Indexed: 11/17/2022]
Abstract
While developmental studies of Drosophila neural stem cell lineages have identified transcription factors (TFs) important to cell identity decisions, currently only an incomplete understanding exists of the cis‐regulatory elements that control the dynamic expression of these TFs. Our previous studies have identified multiple enhancers that regulate the POU‐domain TF paralogs nubbin and pdm‐2 genes. Evolutionary comparative analysis of these enhancers reveals that they each contain multiple conserved sequence blocks (CSBs) that span TF DNA‐binding sites for known regulators of neuroblast (NB) gene expression in addition to novel sequences. This study functionally analyzes the conserved DNA sequence elements within a NB enhancer located within the nubbin gene and highlights a high level of complexity underlying enhancer structure. Mutational analysis has revealed CSBs that are important for enhancer activation and silencing in the developing CNS. We have also observed that adjusting the number and relative positions of the TF binding sites within these CSBs alters enhancer function.
Collapse
Affiliation(s)
- Jermaine Ross
- Neural Cell-Fate Determinants Section, NINDS, NIH, Bethesda, Maryland
| | - Alexander Kuzin
- Neural Cell-Fate Determinants Section, NINDS, NIH, Bethesda, Maryland
| | - Thomas Brody
- Neural Cell-Fate Determinants Section, NINDS, NIH, Bethesda, Maryland
| | - Ward F Odenwald
- Neural Cell-Fate Determinants Section, NINDS, NIH, Bethesda, Maryland
| |
Collapse
|
9
|
Wester JVWC, Lima CAC, Machado MCR, Zampar PV, Tavares SS, Monesi N. Characterization of a novel Drosophila melanogaster cis-regulatory module that drives gene expression to the larval tracheal system and adult thoracic musculature. Genesis 2018; 56:e23222. [PMID: 30096221 DOI: 10.1002/dvg.23222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 06/10/2018] [Accepted: 06/11/2018] [Indexed: 11/05/2022]
Abstract
In a previous bioinformatics analysis we identified 10 conserved Drosophila melanogaster sequences that reside upstream from protein coding genes (CGs). Here we characterize one of these genomic regions, which constitutes a Drosophila melanogaster cis-regulatory module (CRM) that we denominate TT-CRM. The TT-CRM is 646 bp long and is located in one of the introns of CG32239 and resides about 3,500 bp upstream of CG13711 and about 620 bp upstream of CG12493. Analysis of 646 bp-lacZ lines revealed that TT-CRM drives gene expression not only to the larval, prepupal, and pupal tracheal system but also to the adult dorsal longitudinal muscles. The patterns of mRNA expression of the transgene and of the CGs that lie in the vicinity of TT-CRM were investigated both in dissected trachea and in adult thoraces. Through RT-qPCR we observed that in the tracheal system the pattern of expression of 646 bp-lacZ is similar to the pattern of expression of CG32239 and CG13711, whereas in the thoracic muscles 646 bp-lacZ expression accompanies the expression of CG12493. Together, these results suggest new functions for two previously characterized D. melanogaster genes and also contribute to the initial characterization of a novel CRM that drives a dynamic pattern of expression throughout development.
Collapse
Affiliation(s)
- Jorge Victor Wilfredo Cachay Wester
- Programa de Pós-Graduação em Biologia Celular e Molecular, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Carlos Antonio Couto Lima
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Maiaro Cabral Rosa Machado
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Patrícia Vieira Zampar
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Simone Sakagute Tavares
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Nadia Monesi
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
10
|
CORL Expression in the Drosophila Central Nervous System Is Regulated by Stage Specific Interactions of Intertwined Activators and Repressors. G3-GENES GENOMES GENETICS 2018; 8:2527-2536. [PMID: 29848623 PMCID: PMC6027887 DOI: 10.1534/g3.118.200282] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
CORL proteins (SKOR in mice and Fussel in humans) are a subfamily of central nervous system (CNS) specific proteins related to Sno/Ski oncogenes. Their developmental and homeostatic roles are largely unknown. We previously showed that Drosophila CORL (dCORL; fussel in Flybase) functions between the Activin receptor Baboon and Ecdysone Receptor-B1 (EcR-B1) activation in mushroom body neurons of third instar larval brains. To better understand dCORL regulation and function we generated a series of reporter genes. We examined the embryonic and larval CNS and found that dCORL is regulated by stage specific interactions between intertwined activators and repressors spanning numerous reporters. The reporter AH.lacZ, which contains sequences 7-11kb upstream of dCORL exon1, reflects dCORL brain expression at all stages. Surprisingly, AH.lacZ was not detected in EcR-B1 expressing mushroom body neurons. In larvae AH.lacZ is coexpressed with Elav and the transcription factor Drifter in dILP2 insulin producing cells of the pars intercerebralis. The presence of dCORL in insulin producing cells suggests that dCORL functions non-autonomously in the regulation of EcR-B1 mushroom body activation via the modulation of insulin signaling. Overall, the high level of sequence conservation seen in all CORL/SKOR/Fussel family members and their common CNS specificity suggest that similarly complex regulation and a potential function in insulin signaling are associated with SKOR/Fussel proteins in mammals.
Collapse
|
11
|
Zacharioudaki E, Housden BE, Garinis G, Stojnic R, Delidakis C, Bray SJ. Genes implicated in stem cell identity and temporal programme are directly targeted by Notch in neuroblast tumours. Development 2015; 143:219-31. [PMID: 26657768 PMCID: PMC4725341 DOI: 10.1242/dev.126326] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 12/02/2015] [Indexed: 01/03/2023]
Abstract
Notch signalling is involved in a multitude of developmental decisions and its aberrant activation is linked to many diseases, including cancers. One example is the neural stem cell tumours that arise from constitutive Notch activity in Drosophila neuroblasts. To investigate how hyperactivation of Notch in larval neuroblasts leads to tumours, we combined results from profiling the upregulated mRNAs and mapping the regions bound by the core Notch pathway transcription factor Su(H). This identified 246 putative direct Notch targets. These genes were highly enriched for transcription factors and overlapped significantly with a previously identified regulatory programme dependent on the proneural transcription factor Asense. Included were genes associated with the neuroblast maintenance and self-renewal programme that we validated as Notch regulated in vivo. Another group were the so-called temporal transcription factors, which have been implicated in neuroblast maturation. Normally expressed in specific time windows, several temporal transcription factors were ectopically expressed in the stem cell tumours, suggesting that Notch had reprogrammed their normal temporal regulation. Indeed, the Notch-induced hyperplasia was reduced by mutations affecting two of the temporal factors, which, conversely, were sufficient to induce mild hyperplasia on their own. Altogether, the results suggest that Notch induces neuroblast tumours by directly promoting the expression of genes that contribute to stem cell identity and by reprogramming the expression of factors that could regulate maturity.
Collapse
Affiliation(s)
- Evanthia Zacharioudaki
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK Institute of Molecular Biology and Biotechnology, FORTH-Hellas, Heraklion, Crete 70013, Greece Department of Biology, University of Crete, Heraklion, Greece GR71409
| | - Benjamin E Housden
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | - George Garinis
- Institute of Molecular Biology and Biotechnology, FORTH-Hellas, Heraklion, Crete 70013, Greece Department of Biology, University of Crete, Heraklion, Greece GR71409
| | - Robert Stojnic
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK Cambridge Systems Biology Centre, University of Cambridge, Cambridge CB2 1QR, UK
| | - Christos Delidakis
- Institute of Molecular Biology and Biotechnology, FORTH-Hellas, Heraklion, Crete 70013, Greece Department of Biology, University of Crete, Heraklion, Greece GR71409
| | - Sarah J Bray
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| |
Collapse
|
12
|
cis-regulatory analysis of the Drosophila pdm locus reveals a diversity of neural enhancers. BMC Genomics 2015; 16:700. [PMID: 26377945 PMCID: PMC4574355 DOI: 10.1186/s12864-015-1897-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 09/02/2015] [Indexed: 11/15/2022] Open
Abstract
Background One of the major challenges in developmental biology is to understand the regulatory events that generate neuronal diversity. During Drosophila embryonic neural lineage development, cellular temporal identity is established in part by a transcription factor (TF) regulatory network that mediates a cascade of cellular identity decisions. Two of the regulators essential to this network are the POU-domain TFs Nubbin and Pdm-2, encoded by adjacent genes collectively known as pdm. The focus of this study is the discovery and characterization of cis-regulatory DNA that governs their expression. Results Phylogenetic footprinting analysis of a 125 kb genomic region that spans the pdm locus identified 116 conserved sequence clusters. To determine which of these regions function as cis-regulatory enhancers that regulate the dynamics of pdm gene expression, we tested each for in vivo enhancer activity during embryonic development and postembryonic neurogenesis. Our screen revealed 77 unique enhancers positioned throughout the noncoding region of the pdm locus. Many of these activated neural-specific gene expression during different developmental stages and many drove expression in overlapping patterns. Sequence comparisons of functionally related enhancers that activate overlapping expression patterns revealed that they share conserved elements that can be predictive of enhancer behavior. To facilitate data accessibility, the results of our analysis are catalogued in cisPatterns, an online database of the structure and function of these and other Drosophila enhancers. Conclusions These studies reveal a diversity of modular enhancers that most likely regulate pdm gene expression during embryonic and adult development, highlighting a high level of temporal and spatial expression specificity. In addition, we discovered clusters of functionally related enhancers throughout the pdm locus. A subset of these enhancers share conserved elements including sequences that correspond to known TF DNA binding sites. Although comparative analysis of the nubbin and pdm-2 encoding sequences indicate that these two genes most likely arose from a duplication event, we found only partial evidence of sequence duplication between their enhancers, suggesting that after the putative duplication their cis-regulatory DNA diverged at a higher rate than their coding sequences. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1897-2) contains supplementary material, which is available to authorized users.
Collapse
|
13
|
Rouault H, Santolini M, Schweisguth F, Hakim V. Imogene: identification of motifs and cis-regulatory modules underlying gene co-regulation. Nucleic Acids Res 2014; 42:6128-45. [PMID: 24682824 PMCID: PMC4041412 DOI: 10.1093/nar/gku209] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Cis-regulatory modules (CRMs) and motifs play a central role in tissue and condition-specific gene expression. Here we present Imogene, an ensemble of statistical tools that we have developed to facilitate their identification and implemented in a publicly available software. Starting from a small training set of mammalian or fly CRMs that drive similar gene expression profiles, Imogene determines de novocis-regulatory motifs that underlie this co-expression. It can then predict on a genome-wide scale other CRMs with a regulatory potential similar to the training set. Imogene bypasses the need of large datasets for statistical analyses by making central use of the information provided by the sequenced genomes of multiple species, based on the developed statistical tools and explicit models for transcription factor binding site evolution. We test Imogene on characterized tissue-specific mouse developmental CRMs. Its ability to identify CRMs with the same specificity based on its de novo created motifs is comparable to that of previously evaluated ‘motif-blind’ methods. We further show, both in flies and in mammals, that Imogene de novo generated motifs are sufficient to discriminate CRMs related to different developmental programs. Notably, purely relying on sequence data, Imogene performs as well in this discrimination task as a previously reported learning algorithm based on Chromatin Immunoprecipitation (ChIP) data for multiple transcription factors at multiple developmental stages.
Collapse
Affiliation(s)
- Hervé Rouault
- Developmental and Stem Cell Biology Department, Institut Pasteur, F-75015 Paris, France CNRS, URA2578, F-75015 Paris, France
| | - Marc Santolini
- Laboratoire de Physique Statistique, CNRS, École Normale Supérieure, Université P. et M. Curie, Université Paris-Diderot
| | - François Schweisguth
- Developmental and Stem Cell Biology Department, Institut Pasteur, F-75015 Paris, France CNRS, URA2578, F-75015 Paris, France
| | - Vincent Hakim
- Laboratoire de Physique Statistique, CNRS, École Normale Supérieure, Université P. et M. Curie, Université Paris-Diderot
| |
Collapse
|
14
|
Cis-regulatory complexity within a large non-coding region in the Drosophila genome. PLoS One 2013; 8:e60137. [PMID: 23613719 PMCID: PMC3632565 DOI: 10.1371/journal.pone.0060137] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 02/21/2013] [Indexed: 11/22/2022] Open
Abstract
Analysis of cis-regulatory enhancers has revealed that they consist of clustered blocks of highly conserved sequences. Although most characterized enhancers reside near their target genes, a growing number of studies have shown that enhancers located over 50 kb from their minimal promoter(s) are required for appropriate gene expression and many of these ‘long-range’ enhancers are found in genomic regions that are devoid of identified exons. To gain insight into the complexity of Drosophila cis-regulatory sequences within exon-poor regions, we have undertaken an evolutionary analysis of 39 of these regions located throughout the genome. This survey revealed that within these genomic expanses, clusters of conserved sequence blocks (CSBs) are positioned once every 1.1 kb, on average, and that a typical cluster contains multiple (5 to 30 or more) CSBs that have been maintained for at least 190 My of evolutionary divergence. As an initial step toward assessing the cis-regulatory activity of conserved clusters within gene-free genomic expanses, we have tested the in-vivo enhancer activity of 19 consecutive CSB clusters located in the middle of a 115 kb gene-poor region on the 3rd chromosome. Our studies revealed that each cluster functions independently as a specific spatial/temporal enhancer. In total, the enhancers possess a diversity of regulatory functions, including dynamically activating expression in defined patterns within subsets of cells in discrete regions of the embryo, larvae and/or adult. We also observed that many of the enhancers are multifunctional–that is, they activate expression during multiple developmental stages. By extending these results to the rest of the Drosophila genome, which contains over 70,000 non-coding CSB clusters, we suggest that most function as enhancers.
Collapse
|
15
|
Spitz F, Furlong EEM. Transcription factors: from enhancer binding to developmental control. Nat Rev Genet 2012; 13:613-26. [PMID: 22868264 DOI: 10.1038/nrg3207] [Citation(s) in RCA: 1413] [Impact Index Per Article: 117.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Developmental progression is driven by specific spatiotemporal domains of gene expression, which give rise to stereotypically patterned embryos even in the presence of environmental and genetic variation. Views of how transcription factors regulate gene expression are changing owing to recent genome-wide studies of transcription factor binding and RNA expression. Such studies reveal patterns that, at first glance, seem to contrast with the robustness of the developmental processes they encode. Here, we review our current knowledge of transcription factor function from genomic and genetic studies and discuss how different strategies, including extensive cooperative regulation (both direct and indirect), progressive priming of regulatory elements, and the integration of activities from multiple enhancers, confer specificity and robustness to transcriptional regulation during development.
Collapse
Affiliation(s)
- François Spitz
- Developmental Biology Unit, European Molecular Biology Laboratory, D-69117 Heidelberg, Germany.
| | | |
Collapse
|
16
|
Kuzin A, Kundu M, Ross J, Koizumi K, Brody T, Odenwald WF. The cis-regulatory dynamics of the Drosophila CNS determinant castor are controlled by multiple sub-pattern enhancers. Gene Expr Patterns 2012; 12:261-72. [PMID: 22691242 PMCID: PMC3436978 DOI: 10.1016/j.gep.2012.05.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 05/24/2012] [Accepted: 05/25/2012] [Indexed: 01/23/2023]
Abstract
In the developing CNS, unique functional identities among neurons and glia are, in part, established as a result of successive transitions in gene expression programs within neural precursor cells. One of the temporal-identity windows within Drosophila CNS neural precursor cells or neuroblasts (NBs) is marked by the expression of a zinc-finger transcription factor (TF) gene, castor (cas). Our analysis of cis-regulatory DNA within a cas loss-of-function rescue fragment has identified seven enhancers that independently activate reporter transgene expression in specific sub-patterns of the wild-type embryonic cas gene expression domain. Most of these enhancers also regulate different aspects of cas expression within the larval and adult CNS. Phylogenetic footprinting reveals that each enhancer is made up of clusters of highly conserved DNA sequence blocks that are flanked by less-conserved inter-cluster spacer sequences. Comparative analysis of the conserved DNA also reveals that cas enhancers share different combinations of sequence elements and many of these shared elements contain core DNA-binding recognition motifs for characterized temporal-identity TFs. Intra-species alignments show that two of the sub-pattern enhancers originated from an inverted duplication and that this repeat is unique to the cas locus in all sequenced Drosophila species. Finally we show that three of the enhancers differentially require cas function for their wild-type regulatory behavior. Cas limits the expression of one enhancer while two others require cas function for full expression. These studies represent a starting point for the further analysis of cas gene expression and the TFs that regulate it.
Collapse
Affiliation(s)
- Alexander Kuzin
- Neural Cell-Fate Determinants Section, NINDS, NIH 9000 Rockville Pike, Bethesda MD 20892
| | - Mukta Kundu
- Neural Cell-Fate Determinants Section, NINDS, NIH 9000 Rockville Pike, Bethesda MD 20892
| | - Jermaine Ross
- Neural Cell-Fate Determinants Section, NINDS, NIH 9000 Rockville Pike, Bethesda MD 20892
| | | | - Thomas Brody
- Neural Cell-Fate Determinants Section, NINDS, NIH 9000 Rockville Pike, Bethesda MD 20892
| | - Ward F. Odenwald
- Neural Cell-Fate Determinants Section, NINDS, NIH 9000 Rockville Pike, Bethesda MD 20892
| |
Collapse
|
17
|
Roessler E, Hu P, Hong SK, Srivastava K, Carrington B, Sood R, Petrykowska H, Elnitski L, Ribeiro LA, Richieri-Costa A, Feldman B, Odenwald WF, Muenke M. Unique alterations of an ultraconserved non-coding element in the 3'UTR of ZIC2 in holoprosencephaly. PLoS One 2012; 7:e39026. [PMID: 22859937 PMCID: PMC3409191 DOI: 10.1371/journal.pone.0039026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 05/15/2012] [Indexed: 01/23/2023] Open
Abstract
Coding region alterations of ZIC2 are the second most common type of mutation in holoprosencephaly (HPE). Here we use several complementary bioinformatic approaches to identify ultraconserved cis-regulatory sequences potentially driving the expression of human ZIC2. We demonstrate that an 804 bp element in the 3′ untranslated region (3′UTR) is highly conserved across the evolutionary history of vertebrates from fish to humans. Furthermore, we show that while genetic variation of this element is unexpectedly common among holoprosencephaly subjects (6/528 or >1%), it is not present in control individuals. Two of six proband-unique variants are de novo, supporting their pathogenic involvement in HPE outcomes. These findings support a general recommendation that the identification and analysis of key ultraconserved elements should be incorporated into the genetic risk assessment of holoprosencephaly cases.
Collapse
Affiliation(s)
- Erich Roessler
- Medical Genetics Branch, National Human Genome Research Institute (NHGRI), National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ping Hu
- Medical Genetics Branch, National Human Genome Research Institute (NHGRI), National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sung-Kook Hong
- Medical Genetics Branch, National Human Genome Research Institute (NHGRI), National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kshitij Srivastava
- Medical Genetics Branch, National Human Genome Research Institute (NHGRI), National Institutes of Health, Bethesda, Maryland, United States of America
| | - Blake Carrington
- Zebrafish Core Facility, Genetics and Molecular Biology Branch, National Human Genome Research Institute (NHGRI), National Institutes of Health, Bethesda, Maryland, United States of America
| | - Raman Sood
- Zebrafish Core Facility, Genetics and Molecular Biology Branch, National Human Genome Research Institute (NHGRI), National Institutes of Health, Bethesda, Maryland, United States of America
| | - Hanna Petrykowska
- Genome Technology Branch, National Human Genome Research Institute (NHGRI), National Institutes of Health, Bethesda, Maryland, United States of America
| | - Laura Elnitski
- Genome Technology Branch, National Human Genome Research Institute (NHGRI), National Institutes of Health, Bethesda, Maryland, United States of America
| | - Lucilene A. Ribeiro
- Molecular Genetics Laboratory and Clinical Genetics Service, Hospital for Rehabilitation and Craniofacial Anomalies, USP, Bauru, Brazil
| | - Antonio Richieri-Costa
- Molecular Genetics Laboratory and Clinical Genetics Service, Hospital for Rehabilitation and Craniofacial Anomalies, USP, Bauru, Brazil
| | - Benjamin Feldman
- Medical Genetics Branch, National Human Genome Research Institute (NHGRI), National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ward F. Odenwald
- Neural Cell-Fate Determinants Section, National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Maximilian Muenke
- Medical Genetics Branch, National Human Genome Research Institute (NHGRI), National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
18
|
Herrmann C, Van de Sande B, Potier D, Aerts S. i-cisTarget: an integrative genomics method for the prediction of regulatory features and cis-regulatory modules. Nucleic Acids Res 2012; 40:e114. [PMID: 22718975 PMCID: PMC3424583 DOI: 10.1093/nar/gks543] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The field of regulatory genomics today is characterized by the generation of high-throughput data sets that capture genome-wide transcription factor (TF) binding, histone modifications, or DNAseI hypersensitive regions across many cell types and conditions. In this context, a critical question is how to make optimal use of these publicly available datasets when studying transcriptional regulation. Here, we address this question in Drosophila melanogaster for which a large number of high-throughput regulatory datasets are available. We developed i-cisTarget (where the 'i' stands for integrative), for the first time enabling the discovery of different types of enriched 'regulatory features' in a set of co-regulated sequences in one analysis, being either TF motifs or 'in vivo' chromatin features, or combinations thereof. We have validated our approach on 15 co-expressed gene sets, 21 ChIP data sets, 628 curated gene sets and multiple individual case studies, and show that meaningful regulatory features can be confidently discovered; that bona fide enhancers can be identified, both by in vivo events and by TF motifs; and that combinations of in vivo events and TF motifs further increase the performance of enhancer prediction.
Collapse
Affiliation(s)
- Carl Herrmann
- TAGC - Inserm U1090 and Aix-Marseille Université, Campus de Luminy, 13288 Marseille, France.
| | | | | | | |
Collapse
|