1
|
Di Y, Li L, Xu J, Liu A, Zhao R, Li S, Li Y, Ding J, Chen S, Qu M. MAPK signaling pathway enhances tolerance of Mytilus galloprovincialis to co-exposure of sulfamethoxazole and polyethylene microplastics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:125007. [PMID: 39307337 DOI: 10.1016/j.envpol.2024.125007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024]
Abstract
Microplastics (MPs) and antibiotics often coexist in complex marine environments, yet their combined detrimental effects on marine organisms remain underexplored. This study evaluated the effects of polyethylene microplastics (PE, 200 μg/L) and sulfamethoxazole (SMX, 50 μg/L), both individually and in combination, on Mytilus galloprovincialis. The exposure lasted 6 days, followed by a 6-day recovery period. Bioaccumulation, DNA damage, pollutants transport/metabolism related responses and responding alterations of mitogen-activated protein kinase (MAPK) signaling pathway were detected in gills and digestive glands. Bioaccumulation of SMX/PE in mussels occurred in a tissue-specific manner, co-exposure altered SMX contents in investigated tissues. Co-exposure did not induce extra DNA damage, elevated DNA damage was alleviated during the recovery period in all treated groups. The exposure of SMX/PE exerted different alterations in pollutants transport/metabolism related responses, characterized by multixenobiotic resistance and relative expression of key genes (cytochrome P450 monooxygenase, glutathione S-transferase, ATP-binding cassette transporters). Key molecules (p38 MAPK, c-jun N-terminal kinase, extracellular regulated protein kinase, nuclear factor-κB and tumor protein p53) in MAPK signaling pathway were activated at transcriptional and translational levels after SMX/PE and co-exposure. Co-regulation between MAPK members and pollutants transport/metabolism related factors was revealed, suggesting MAPK signaling pathway served as a regulating hub in exposed mussels to conquer SMX/PE stress. Overall, this study provides new insights on SMX/PE induced health risks in marine mussels and potential mechanism through MAPK cascades regulation.
Collapse
Affiliation(s)
- Yanan Di
- Ocean College, Zhejiang University, Zhoushan, 316100, China; Hainan Institute of Zhejiang University, Sanya, 572025, China
| | - Liya Li
- Ocean College, Zhejiang University, Zhoushan, 316100, China; Hainan Institute of Zhejiang University, Sanya, 572025, China
| | - Jianzhou Xu
- Ocean College, Zhejiang University, Zhoushan, 316100, China; Hainan Institute of Zhejiang University, Sanya, 572025, China
| | - Ao Liu
- Ocean College, Zhejiang University, Zhoushan, 316100, China
| | - Ruoxuan Zhao
- Ocean College, Zhejiang University, Zhoushan, 316100, China
| | - Shuimei Li
- Ocean College, Zhejiang University, Zhoushan, 316100, China
| | - Yichen Li
- Ocean College, Zhejiang University, Zhoushan, 316100, China
| | - Jiawei Ding
- Ocean College, Zhejiang University, Zhoushan, 316100, China
| | - Siyu Chen
- Ocean College, Zhejiang University, Zhoushan, 316100, China
| | - Mengjie Qu
- Ocean College, Zhejiang University, Zhoushan, 316100, China; Hainan Institute of Zhejiang University, Sanya, 572025, China.
| |
Collapse
|
2
|
Fang J, Yang C, Liao Y, Wang Q, Deng Y. Transcriptomic and metabolomic analyses reveal sex-related differences in the gonads of Pinctada fucata martensii. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101304. [PMID: 39116717 DOI: 10.1016/j.cbd.2024.101304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024]
Abstract
Pinctada fucata martensii is an economically important bivalve mollusk, as this species makes a major contribution to seawater pearl production. Pearl production efficiency varies between the sexes of P. f. martensii, but many aspects of the molecular mechanisms underlying sex determination and sex differentiation in P. f. martensii remain unclear. Here, transcriptomic and metabonomic analyses were conducted to identify the major genes and metabolic changes associated with sex determination and gametogenesis. We identified a total of 3426 differentially expressed genes (DEGs) between females and males. These included Fem-1c and Foxl2, which are involved in sex determination and sex differentiation, and SOHLH2, Nanos1 and TSSK4, which are involved in gametogenesis. We also identified a total of 5231 significant differential metabolites (SDMs) between females and males. These DEGs were enriched in 47 metabolic pathways, including "ABC transporters," "purine metabolism," and "glycerophospholipid metabolism." Our findings provide new insights into the molecular mechanisms underlying sex determination, sex differentiation, and gametogenesis and will aid future studies of P. f. martensii.
Collapse
Affiliation(s)
- Jiaying Fang
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Chuangye Yang
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang 524088, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, 524088, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy culture, Zhanjiang, 524088, China
| | - Yongshan Liao
- Pearl Research Institute, Guangdong Ocean University, Zhanjiang, China
| | - Qingheng Wang
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yuewen Deng
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang 524088, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, 524088, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy culture, Zhanjiang, 524088, China; Pearl Research Institute, Guangdong Ocean University, Zhanjiang, China.
| |
Collapse
|
3
|
Telmer CA, Karimi K, Chess MM, Agalakov S, Arshinoff BI, Lotay V, Wang DZ, Chu S, Pells TJ, Vize PD, Hinman VF, Ettensohn CA. Echinobase: a resource to support the echinoderm research community. Genetics 2024; 227:iyae002. [PMID: 38262680 PMCID: PMC11075573 DOI: 10.1093/genetics/iyae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 12/27/2023] [Indexed: 01/25/2024] Open
Abstract
Echinobase (www.echinobase.org) is a model organism knowledgebase serving as a resource for the community that studies echinoderms, a phylum of marine invertebrates that includes sea urchins and sea stars. Echinoderms have been important experimental models for over 100 years and continue to make important contributions to environmental, evolutionary, and developmental studies, including research on developmental gene regulatory networks. As a centralized resource, Echinobase hosts genomes and collects functional genomic data, reagents, literature, and other information for the community. This third-generation site is based on the Xenbase knowledgebase design and utilizes gene-centric pages to minimize the time and effort required to access genomic information. Summary gene pages display gene symbols and names, functional data, links to the JBrowse genome browser, and orthology to other organisms and reagents, and tabs from the Summary gene page contain more detailed information concerning mRNAs, proteins, diseases, and protein-protein interactions. The gene pages also display 1:1 orthologs between the fully supported species Strongylocentrotus purpuratus (purple sea urchin), Lytechinus variegatus (green sea urchin), Patiria miniata (bat star), and Acanthaster planci (crown-of-thorns sea star). JBrowse tracks are available for visualization of functional genomic data from both fully supported species and the partially supported species Anneissia japonica (feather star), Asterias rubens (sugar star), and L. pictus (painted sea urchin). Echinobase serves a vital role by providing researchers with annotated genomes including orthology, functional genomic data aligned to the genomes, and curated reagents and data. The Echinoderm Anatomical Ontology provides a framework for standardizing developmental data across the phylum, and knowledgebase content is formatted to be findable, accessible, interoperable, and reusable by the research community.
Collapse
Affiliation(s)
- Cheryl A Telmer
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Kamran Karimi
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada T2N 1N4
| | - Macie M Chess
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Sergei Agalakov
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada T2N 1N4
| | - Bradley I Arshinoff
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada T2N 1N4
| | - Vaneet Lotay
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada T2N 1N4
| | - Dong Zhuo Wang
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada T2N 1N4
| | - Stanley Chu
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada T2N 1N4
| | - Troy J Pells
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada T2N 1N4
| | - Peter D Vize
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada T2N 1N4
| | - Veronica F Hinman
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Charles A Ettensohn
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| |
Collapse
|
4
|
Stoeltje L, Luc JK, Haddad T, Schrankel CS. The roles of ABCB1/P-glycoprotein drug transporters in regulating gut microbes and inflammation: insights from animal models, old and new. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230074. [PMID: 38497255 PMCID: PMC10945405 DOI: 10.1098/rstb.2023.0074] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/13/2024] [Indexed: 03/19/2024] Open
Abstract
Commensal enteric bacteria have evolved systems that enable growth in the ecologic niche of the host gastrointestinal tract. Animals evolved parallel mechanisms to survive the constant exposure to bacteria and their metabolic by-products. We propose that drug transporters encompass a crucial system to managing the gut microbiome. Drug transporters are present in the apical surface of gut epithelia. They detoxify cells from small molecules and toxins (xenobiotics) in the lumen. Here, we review what is known about commensal structure in the absence of the transporter ABCB1/P-glycoprotein in mammalian models. Knockout or low-activity alleles of ABCB1 lead to dysbiosis, Crohn's disease and ulcerative colitis in mammals. However, the exact function of ABCB1 in these contexts remain unclear. We highlight emerging models-the zebrafish Danio rerio and sea urchin Lytechinus pictus-that are poised to help dissect the fundamental mechanisms of ATP-binding cassette (ABC) transporters in the tolerance of commensal and pathogenic communities in the gut. We and others hypothesize that ABCB1 plays a direct role in exporting inflammatory bacterial products from host epithelia. Interdisciplinary work in this research area will lend novel insight to the transporter-mediated pathways that impact microbiome community structure and accelerate the pathogenesis of inflammatory bowel disease when perturbed. This article is part of the theme issue 'Sculpting the microbiome: how host factors determine and respond to microbial colonization'.
Collapse
Affiliation(s)
- Lauren Stoeltje
- Department of Biology, San Diego State University, 5500 Campanile Drive, Life Sciences North, Room 321, San Diego, CA 92182, USA
| | - Jenna K. Luc
- Department of Biology, San Diego State University, 5500 Campanile Drive, Life Sciences North, Room 321, San Diego, CA 92182, USA
| | - Timothaus Haddad
- Department of Biology, San Diego State University, 5500 Campanile Drive, Life Sciences North, Room 321, San Diego, CA 92182, USA
| | - Catherine S. Schrankel
- Department of Biology, San Diego State University, 5500 Campanile Drive, Life Sciences North, Room 321, San Diego, CA 92182, USA
| |
Collapse
|
5
|
Lee Y, Tjeerdema E, Kling S, Chang N, Hamdoun A. Solute carrier (SLC) expression reveals skeletogenic cell diversity. Dev Biol 2023; 503:68-82. [PMID: 37611888 DOI: 10.1016/j.ydbio.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/11/2023] [Accepted: 08/18/2023] [Indexed: 08/25/2023]
Abstract
Within the developing embryo is a microcosm of cell type diversity. Single cell RNA-sequencing (scRNA-seq) is used to reveal cell types, typically by grouping cells according to their gene regulatory states. However, both across and within these regulatory states are additional layers of cellular diversity represented by the differential expression of genes that govern cell function. Here, we analyzed scRNA-seq data representing the late gastrula stage of Strongylocentrotus purpuratus (purple sea urchin) to understand the patterning of transporters belonging to the ABC and SLC families. These transporters handle diverse substrates from amino acids to signaling molecules, nutrients and xenobiotics. Using transporter-based clustering, we identified unique transporter patterns that are both shared across cell lineages, as well as those that were unique to known cell types. We further explored three patterns of transporter expression in mesodermal cells including secondary mesenchyme cells (pigment cells and blastocoelar cells) and skeletogenic cells (primary mesenchyme cells). The results revealed the enrichment of SMTs potentially involved in nutrient absorption (SLC5A9, SLC7A11, SLC35F3, and SLC52A3) and skeletogenesis (SLC9A3, SLC13A2/3/5, and SLC39A13) in pigment cells and blastocoelar cells respectively. The results indicated that the strategy of clustering by cellular activity can be useful for discovering cellular populations that would otherwise remain obscured.
Collapse
Affiliation(s)
- Yoon Lee
- Center for Marine Biology and Biomedicine Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92037, USA
| | - Evan Tjeerdema
- Center for Marine Biology and Biomedicine Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92037, USA
| | - Svenja Kling
- Center for Marine Biology and Biomedicine Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92037, USA
| | - Nathan Chang
- Center for Marine Biology and Biomedicine Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92037, USA
| | - Amro Hamdoun
- Center for Marine Biology and Biomedicine Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92037, USA.
| |
Collapse
|
6
|
Yu S, Qiao X, Yang Y, Gu X, Sun W, Liu X, Zhang D, Wang L, Song L. An ATP-binding cassette transporter G2 (CgABCG2) regulates the haemocyte proliferation by modulating the G1/S phase transition of cell cycle in oyster Crassostrea gigas. FISH & SHELLFISH IMMUNOLOGY 2023; 136:108441. [PMID: 36403705 DOI: 10.1016/j.fsi.2022.11.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
ATP-binding cassette transporter G2 (ABCG2) is a half-transporter of the G subfamily in ATP-binding cassette transporters (ABC transporter), which is involved in the regulation of multidrug-resistant, cell cycle, and cell proliferation. In the present study, a homologue of ABCG2 (named as CgABCG2) with the conserved AAA domain and ABC2 membrane domain was identified from the Pacific oyster Crassostrea gigas. The open reading frame (ORF) of CgABCG2 was of 1956 bp encoding a predicted polypeptide of 652 amino acids, which shared 56.7%-65.7% sequence similarities with previously identified ABCG2s from other animals. The mRNA transcripts of CgABCG2 were detected in all the tested tissues with higher expression levels in gonad and haemocytes (19.31-fold and 11.23-fold of that in adductor muscle respectively, p < 0.05). CgABCG2 was mainly distributed on the cell membrane of the haemocytes with a partial distribution in the cytoplasm and nucleus. After Vibrio splendidus stimulation, the mRNA expression level of CgABCG2 in haemocytes was significantly up-regulated at 3 h and 6 h, which was 5.22-fold and 8.60-fold (p < 0.05) of that in control, respectively. After the expression of CgABCG2 was interfered by RNAi, the number of cells with EdU positive signals was reduced in both haemocytes and the potential hematopoietic sites. And the mRNA expression level of CgPCNA, CgGATA3, CgRunx, CgSCL and CgC-kit decreased significantly (p < 0.05), which were about 0.66-, 0.37-, 0.32-, 0.50-, and 0.50-fold of that in the negative control group, respectively. While the mRNA expression level of CgCDK2 increased significantly (1.84-fold to that in control, p < 0.05) and that of stem cell-related factor CgSOX2 did not change significantly in the si-CgABCG2 oysters. Moreover, the cell cycle of haemocytes was detected by flow cytometry, which was arrested at G0/G1 phase in the si-CgABCG2 oysters. All the results collectively suggested that CgABCG2 might involve the proliferation of haemocytes by regulating the expression of haematopoiesis related transcription factors and the G1/S phase transition of the cell cycle in oyster C. gigas.
Collapse
Affiliation(s)
- Simiao Yu
- School of Life Science, Liaoning Normal University, Dalian, 116029, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Xue Qiao
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Ying Yang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Xiaoyu Gu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Wending Sun
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Xiyang Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Dan Zhang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
7
|
Yamakawa S, Yamazaki A, Morino Y, Wada H. Early expression onset of tissue-specific effector genes during the specification process in sea urchin embryos. EvoDevo 2023; 14:7. [PMID: 37101206 PMCID: PMC10131483 DOI: 10.1186/s13227-023-00210-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/01/2023] [Indexed: 04/28/2023] Open
Abstract
BACKGROUND In the course of animal developmental processes, various tissues are differentiated through complex interactions within the gene regulatory network. As a general concept, differentiation has been considered to be the endpoint of specification processes. Previous works followed this view and provided a genetic control scheme of differentiation in sea urchin embryos: early specification genes generate distinct regulatory territories in an embryo to express a small set of differentiation driver genes; these genes eventually stimulate the expression of tissue-specific effector genes, which provide biological identity to differentiated cells, in each region. However, some tissue-specific effector genes begin to be expressed in parallel with the expression onset of early specification genes, raising questions about the simplistic regulatory scheme of tissue-specific effector gene expression and the current concept of differentiation itself. RESULTS Here, we examined the dynamics of effector gene expression patterns during sea urchin embryogenesis. Our transcriptome-based analysis indicated that many tissue-specific effector genes begin to be expressed and accumulated along with the advancing specification GRN in the distinct cell lineages of embryos. Moreover, we found that the expression of some of the tissue-specific effector genes commences before cell lineage segregation occurs. CONCLUSIONS Based on this finding, we propose that the expression onset of tissue-specific effector genes is controlled more dynamically than suggested in the previously proposed simplistic regulation scheme. Thus, we suggest that differentiation should be conceptualized as a seamless process of accumulation of effector expression along with the advancing specification GRN. This pattern of effector gene expression may have interesting implications for the evolution of novel cell types.
Collapse
Affiliation(s)
- Shumpei Yamakawa
- Institute of Zoology and Evolutionary Research, Friedrich-Shiller University Jena, Erbertstraße 1, 07747, Jena, Germany.
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan.
| | - Atsuko Yamazaki
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Yoshiaki Morino
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Hiroshi Wada
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| |
Collapse
|
8
|
Vyas H, Schrankel CS, Espinoza JA, Mitchell KL, Nesbit KT, Jackson E, Chang N, Lee Y, Warner J, Reitzel A, Lyons DC, Hamdoun A. Generation of a homozygous mutant drug transporter (ABCB1) knockout line in the sea urchin Lytechinus pictus. Development 2022; 149:275601. [PMID: 35666622 PMCID: PMC9245184 DOI: 10.1242/dev.200644] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/05/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Sea urchins are premier model organisms for the study of early development. However, the lengthy generation times of commonly used species have precluded application of stable genetic approaches. Here, we use the painted sea urchin Lytechinus pictus to address this limitation and to generate a homozygous mutant sea urchin line. L. pictus has one of the shortest generation times of any currently used sea urchin. We leveraged this advantage to generate a knockout mutant of the sea urchin homolog of the drug transporter ABCB1, a major player in xenobiotic disposition for all animals. Using CRISPR/Cas9, we generated large fragment deletions of ABCB1 and used these readily detected deletions to rapidly genotype and breed mutant animals to homozygosity in the F2 generation. The knockout larvae are produced according to expected Mendelian distribution, exhibit reduced xenobiotic efflux activity and can be grown to maturity. This study represents a major step towards more sophisticated genetic manipulation of the sea urchin and the establishment of reproducible sea urchin animal resources.
Collapse
Affiliation(s)
- Himanshu Vyas
- Center for Marine Biotechnology and Biomedicine 1 , , , La Jolla, CA 92093-0202 , USA
- Scripps Institution of Oceanography 1 , , , La Jolla, CA 92093-0202 , USA
- University of California San Diego 1 , , , La Jolla, CA 92093-0202 , USA
| | - Catherine S. Schrankel
- Center for Marine Biotechnology and Biomedicine 1 , , , La Jolla, CA 92093-0202 , USA
- Scripps Institution of Oceanography 1 , , , La Jolla, CA 92093-0202 , USA
- University of California San Diego 1 , , , La Jolla, CA 92093-0202 , USA
| | - Jose A. Espinoza
- Center for Marine Biotechnology and Biomedicine 1 , , , La Jolla, CA 92093-0202 , USA
- Scripps Institution of Oceanography 1 , , , La Jolla, CA 92093-0202 , USA
- University of California San Diego 1 , , , La Jolla, CA 92093-0202 , USA
| | - Kasey L. Mitchell
- Center for Marine Biotechnology and Biomedicine 1 , , , La Jolla, CA 92093-0202 , USA
- Scripps Institution of Oceanography 1 , , , La Jolla, CA 92093-0202 , USA
- University of California San Diego 1 , , , La Jolla, CA 92093-0202 , USA
| | - Katherine T. Nesbit
- Center for Marine Biotechnology and Biomedicine 1 , , , La Jolla, CA 92093-0202 , USA
- Scripps Institution of Oceanography 1 , , , La Jolla, CA 92093-0202 , USA
- University of California San Diego 1 , , , La Jolla, CA 92093-0202 , USA
| | - Elliot Jackson
- Center for Marine Biotechnology and Biomedicine 1 , , , La Jolla, CA 92093-0202 , USA
- Scripps Institution of Oceanography 1 , , , La Jolla, CA 92093-0202 , USA
- University of California San Diego 1 , , , La Jolla, CA 92093-0202 , USA
| | - Nathan Chang
- Center for Marine Biotechnology and Biomedicine 1 , , , La Jolla, CA 92093-0202 , USA
- Scripps Institution of Oceanography 1 , , , La Jolla, CA 92093-0202 , USA
- University of California San Diego 1 , , , La Jolla, CA 92093-0202 , USA
| | - Yoon Lee
- Center for Marine Biotechnology and Biomedicine 1 , , , La Jolla, CA 92093-0202 , USA
- Scripps Institution of Oceanography 1 , , , La Jolla, CA 92093-0202 , USA
- University of California San Diego 1 , , , La Jolla, CA 92093-0202 , USA
| | - Jacob Warner
- University of North Carolina Wilmington 2 Department of Biology and Marine Biology , , Wilmington, NC 28403-5915 , USA
| | - Adam Reitzel
- University of North Carolina Charlotte 3 Department of Biological Sciences , , Charlotte, NC 28223-0001 , USA
| | - Deirdre C. Lyons
- Center for Marine Biotechnology and Biomedicine 1 , , , La Jolla, CA 92093-0202 , USA
- Scripps Institution of Oceanography 1 , , , La Jolla, CA 92093-0202 , USA
- University of California San Diego 1 , , , La Jolla, CA 92093-0202 , USA
| | - Amro Hamdoun
- Center for Marine Biotechnology and Biomedicine 1 , , , La Jolla, CA 92093-0202 , USA
- Scripps Institution of Oceanography 1 , , , La Jolla, CA 92093-0202 , USA
- University of California San Diego 1 , , , La Jolla, CA 92093-0202 , USA
| |
Collapse
|
9
|
Lee Y, Yoon DS, Lee YH, Kwak JI, An YJ, Lee JS, Park JC. Combined exposure to microplastics and zinc produces sex-specific responses in the water flea Daphnia magna. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126652. [PMID: 34329117 DOI: 10.1016/j.jhazmat.2021.126652] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 05/07/2023]
Abstract
Microplastics are ubiquitous environmental pollutants and a great threat to the aquatic environment. Due to their small size (ranging from 1 µm to 5 mm), microplastics be easily ingested by a wide range of organisms and can serve as a vector for various contaminants. In this study, additive or possible synergistic effects of microplastics and zinc were demonstrated through sex-specific alterations in behavior, redox status, and modulation of detoxification-related genes in Daphnia magna, with males being more sensitive than females with stronger modulations of antioxidant responses, particularly on glutathione S-transferases expressions. Furthermore, we demonstrated microplastics may act as vectors for metals (Zn2+) in the aquatic environment in D. magna, with reduced bio-concentration of the total Zn concentration, inducing greater toxicity. Our findings demonstrated synergistic toxicity of the heavy metal Zn and microplastics and could contribute to greater understanding of sex-specific effects of microplastics in aquatic organisms.
Collapse
Affiliation(s)
- Yoseop Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Deok-Seo Yoon
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Young Hwan Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jin Il Kwak
- Department of Environmental Health Science, Sanghuh College of Life Sciences, Konkuk University, Seoul 05029, South Korea
| | - Youn-Joo An
- Department of Environmental Health Science, Sanghuh College of Life Sciences, Konkuk University, Seoul 05029, South Korea
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Jun Chul Park
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
10
|
Warner JF, Lord JW, Schreiter SA, Nesbit KT, Hamdoun A, Lyons DC. Chromosomal-Level Genome Assembly of the Painted Sea Urchin Lytechinus pictus: A Genetically Enabled Model System for Cell Biology and Embryonic Development. Genome Biol Evol 2021; 13:evab061. [PMID: 33769486 PMCID: PMC8085125 DOI: 10.1093/gbe/evab061] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2021] [Indexed: 02/06/2023] Open
Abstract
The painted urchin Lytechinus pictus is a sea urchin in the family Toxopneustidae and one of several sea urchin species that are routinely used as an experimental research organism. Recently, L. pictus has emerged as a tractable model system for establishing transgenic sea urchin lines due to its amenability to long term laboratory culture. We present the first published genome of L. pictus. This chromosomal-level assembly was generated using Illumina sequencing in conjunction with Oxford Nanopore Technologies long read sequencing and HiC chromatin conformation capture sequencing. The 998.9-Mb assembly exhibits high contiguity and has a scaffold length N50 of 46.0 Mb with 97% of the sequence assembled into 19 chromosomal-length scaffolds. These 19 scaffolds exhibit a high degree of synteny compared with the 19 chromosomes of a related species Lytechinus variegatus. Ab initio and transcript evidence gene modeling, combined with sequence homology, identified 28,631 gene models that capture 92% of BUSCO orthologs. This annotation strategy was validated by manual curation of gene models for the ABC transporter superfamily, which confirmed the completeness and accuracy of the annotations. Thus, this genome assembly, in conjunction with recent high contiguity assemblies of related species, positions L. pictus as an exceptional model system for comparative functional genomics and it will be a key resource for the developmental, toxicological, and ecological biology scientific communities.
Collapse
Affiliation(s)
- Jacob F Warner
- Department of Biology and Marine Biology, University of North Carolina Wilmington, North Carolina, USA
| | - James W Lord
- Department of Biology and Marine Biology, University of North Carolina Wilmington, North Carolina, USA
| | - Samantha A Schreiter
- Department of Biology and Marine Biology, University of North Carolina Wilmington, North Carolina, USA
| | - Katherine T Nesbit
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Amro Hamdoun
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Deirdre C Lyons
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
11
|
Fleming TJ, Schrankel CS, Vyas H, Rosenblatt HD, Hamdoun A. CRISPR/Cas9 mutagenesis reveals a role for ABCB1 in gut immune responses to Vibrio diazotrophicus in sea urchin larvae. J Exp Biol 2021; 224:jeb232272. [PMID: 33653719 PMCID: PMC8077557 DOI: 10.1242/jeb.232272] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 02/08/2021] [Indexed: 12/16/2022]
Abstract
The ABC transporter ABCB1 plays an important role in the disposition of xenobiotics. Embryos of most species express high levels of this transporter in early development as a protective mechanism, but its native substrates are not known. Here, we used larvae of the sea urchin Strongylocentrotus purpuratus to characterize the early life expression and role of Sp-ABCB1a, a homolog of ABCB1. The results indicate that while Sp-ABCB1a is initially expressed ubiquitously, it becomes enriched in the developing gut. Using optimized CRISPR/Cas9 gene editing methods to achieve high editing efficiency in the F0 generation, we generated ABCB1a crispant embryos with significantly reduced transporter efflux activity. When infected with the opportunistic pathogen Vibrio diazotrophicus, Sp-ABCB1a crispant larvae demonstrated significantly stronger gut inflammation, immunocyte migration and cytokine Sp-IL-17 induction, as compared with infected control larvae. The results suggest an ancestral function of ABCB1 in host-microbial interactions, with implications for the survival of invertebrate larvae in the marine microbial environment.
Collapse
Affiliation(s)
- Travis J. Fleming
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, USA
- Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115, USA
| | - Catherine S. Schrankel
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, USA
| | - Himanshu Vyas
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, USA
| | - Hannah D. Rosenblatt
- Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Amro Hamdoun
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
12
|
Schrankel CS, Hamdoun A. Early patterning of ABCB, ABCC, and ABCG transporters establishes unique territories of small molecule transport in embryonic mesoderm and endoderm. Dev Biol 2021; 472:115-124. [PMID: 33460641 DOI: 10.1016/j.ydbio.2020.12.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 12/08/2020] [Accepted: 12/22/2020] [Indexed: 01/16/2023]
Abstract
Directed intercellular movement of diverse small molecules, including metabolites, signal molecules and xenobiotics, is a key feature of multicellularity. Networks of small molecule transporters (SMTs), including several ATP Binding Cassette (ABC) transporters, are central to this process. While small molecule transporters are well described in differentiated organs, little is known about their patterns of expression in early embryogenesis. Here we report the pattern of ABC-type SMT expression and activity during the early development of sea urchins. Of the six major ABCs in this embryo (ABCB1, -B4, -C1, -C4, -C5 and -G2), three expression patterns were observed: 1) ABCB1 and ABCC1 are first expressed ubiquitously, and then become enriched in endoderm and ectoderm-derived structures. 2) ABCC4 and ABCC5 are restricted to a ring of mesoderm in the blastula and ABCC4 is later expressed in the coelomic pouches, the embryonic niche of the primordial germ cells. 3) ABCB4 and ABCG2 are expressed exclusively in endoderm-fated cells. Assays with fluorescent substrates and inhibitors of transporters revealed a ring of ABCC4 efflux activity emanating from ABCC4+ mesodermal cells. Similarly, ABCB1 and ABCB4 efflux activity was observed in the developing gut, prior to the onset of feeding. This study reveals the early establishment of unique territories of small molecule transport during embryogenesis. A pattern of ABCC4/C5 expression is consistent with signaling functions during gut invagination and germ line development, while a later pattern of ABCB1/B4 and ABCG2 is consistent with roles in the embryonic gut. This work provides a conceptual framework with which to examine the function and evolution of SMT networks and to define the specific developmental pathways that drive the expression of these genes.
Collapse
Affiliation(s)
- Catherine S Schrankel
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego. 9500 Gilman Drive, La Jolla, CA, 92093-0202, USA
| | - Amro Hamdoun
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego. 9500 Gilman Drive, La Jolla, CA, 92093-0202, USA.
| |
Collapse
|
13
|
Nicklisch SC, Hamdoun A. Disruption of small molecule transporter systems by Transporter-Interfering Chemicals (TICs). FEBS Lett 2020; 594:4158-4185. [PMID: 33222203 PMCID: PMC8112642 DOI: 10.1002/1873-3468.14005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/17/2020] [Accepted: 11/17/2020] [Indexed: 12/25/2022]
Abstract
Small molecule transporters (SMTs) in the ABC and SLC families are important players in disposition of diverse endo- and xenobiotics. Interactions of environmental chemicals with these transporters were first postulated in the 1990s, and since validated in numerous in vitro and in vivo scenarios. Recent results on the co-crystal structure of ABCB1 with the flame-retardant BDE-100 demonstrate that a diverse range of man-made and natural toxic molecules, hereafter termed transporter-interfering chemicals (TICs), can directly bind to SMTs and interfere with their function. TIC-binding modes mimic those of substrates, inhibitors, modulators, inducers, and possibly stimulants through direct and allosteric mechanisms. Similarly, the effects could directly or indirectly agonize, antagonize or perhaps even prime the SMT system to alter transport function. Importantly, TICs are distinguished from drugs and pharmaceuticals that interact with transporters in that exposure is unintended and inherently variant. Here, we review the molecular mechanisms of environmental chemical interaction with SMTs, the methodological considerations for their evaluation, and the future directions for TIC discovery.
Collapse
Affiliation(s)
- Sascha C.T. Nicklisch
- Department of Environmental Toxicology, University of California, Davis, Davis, CA 95616
| | - Amro Hamdoun
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093-0202
| |
Collapse
|
14
|
Srikant S. Evolutionary history of ATP-binding cassette proteins. FEBS Lett 2020; 594:3882-3897. [PMID: 33145769 DOI: 10.1002/1873-3468.13985] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/01/2020] [Accepted: 10/15/2020] [Indexed: 12/11/2022]
Abstract
ATP-binding cassette (ABC) proteins are found in every sequenced genome and evolved deep in the phylogenetic tree of life. ABC proteins form one of the largest homologous protein families, with most being involved in substrate transport across biological membranes, and a few cytoplasmic members regulating in essential processes like translation. The predominant ABC protein classification scheme is derived from human members, but the increasing number of fully sequenced genomes permits to reevaluate this paradigm in the light of the evolutionary history the ABC-protein superfamily. As we study the diversity of substrates, mechanisms, and physiological roles of ABC proteins, knowledge of the evolutionary relationships highlights similarities and differences that can be attributed to specific branches in protein divergence. While alignments and trees built on natural sequence variation account for the evolutionary divergence of ABC proteins, high-throughput experiments and next-generation sequencing creating experimental sequence variation are instrumental in identifying functional constraints. The combination of natural and experimentally produced sequence variation allows a broader and more rational study of the function and physiological roles of ABC proteins.
Collapse
Affiliation(s)
- Sriram Srikant
- Department of Biology, Massachusetts Institute of Technology
| |
Collapse
|
15
|
Perillo M, Oulhen N, Foster S, Spurrell M, Calestani C, Wessel G. Regulation of dynamic pigment cell states at single-cell resolution. eLife 2020; 9:e60388. [PMID: 32812865 PMCID: PMC7455242 DOI: 10.7554/elife.60388] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/15/2020] [Indexed: 12/12/2022] Open
Abstract
Cells bearing pigment have diverse roles and are often under strict evolutionary selection. Here, we explore the regulation of pigmented cells in the purple sea urchin Strongylocentrotus purpuratus, an emerging model for diverse pigment function. We took advantage of single cell RNA-seq (scRNAseq) technology and discovered that pigment cells in the embryo segregated into two distinct populations, a mitotic cluster and a post-mitotic cluster. Gcm is essential for expression of several genes important for pigment function, but is only transiently expressed in these cells. We discovered unique genes expressed by pigment cells and test their expression with double fluorescence in situ hybridization. These genes include new members of the fmo family that are expressed selectively in pigment cells of the embryonic and in the coelomic cells of the adult - both cell-types having immune functions. Overall, this study identifies nodes of molecular intersection ripe for change by selective evolutionary pressures.
Collapse
Affiliation(s)
- Margherita Perillo
- Department of Molecular and Cellular Biology Division of Biology and Medicine Brown UniversityProvidenceUnited States
| | - Nathalie Oulhen
- Department of Molecular and Cellular Biology Division of Biology and Medicine Brown UniversityProvidenceUnited States
| | - Stephany Foster
- Department of Molecular and Cellular Biology Division of Biology and Medicine Brown UniversityProvidenceUnited States
| | - Maxwell Spurrell
- Department of Molecular and Cellular Biology Division of Biology and Medicine Brown UniversityProvidenceUnited States
| | | | - Gary Wessel
- Department of Molecular and Cellular Biology Division of Biology and Medicine Brown UniversityProvidenceUnited States
| |
Collapse
|
16
|
Finoshin AD, Adameyko KI, Mikhailov KV, Kravchuk OI, Georgiev AA, Gornostaev NG, Kosevich IA, Mikhailov VS, Gazizova GR, Shagimardanova EI, Gusev OA, Lyupina YV. Iron metabolic pathways in the processes of sponge plasticity. PLoS One 2020; 15:e0228722. [PMID: 32084159 PMCID: PMC7034838 DOI: 10.1371/journal.pone.0228722] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 01/21/2020] [Indexed: 12/11/2022] Open
Abstract
The ability to regulate oxygen consumption evolved in ancestral animals and is intrinsically linked to iron metabolism. The iron pathways have been intensively studied in mammals, whereas data on distant invertebrates are limited. Sea sponges represent the oldest animal phylum and have unique structural plasticity and capacity to reaggregate after complete dissociation. We studied iron metabolic factors and their expression during reaggregation in the White Sea cold-water sponges Halichondria panicea and Halisarca dujardini. De novo transcriptomes were assembled using RNA-Seq data, and evolutionary trends were analyzed with bioinformatic tools. Differential expression during reaggregation was studied for H. dujardini. Enzymes of the heme biosynthesis pathway and transport globins, neuroglobin (NGB) and androglobin (ADGB), were identified in sponges. The globins mutate at higher evolutionary rates than the heme synthesis enzymes. Highly conserved iron-regulatory protein 1 (IRP1) presumably interacts with the iron-responsive elements (IREs) found in mRNAs of ferritin (FTH1) and a putative transferrin receptor NAALAD2. The reaggregation process is accompanied by increased expression of IRP1, the antiapoptotic factor BCL2, the inflammation factor NFκB (p65), FTH1 and NGB, as well as by an increase in mitochondrial density. Our data indicate a complex mechanism of iron regulation in sponge structural plasticity and help to better understand general mechanisms of morphogenetic processes in multicellular species.
Collapse
Affiliation(s)
- Alexander D. Finoshin
- N.K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Kim I. Adameyko
- N.K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Kirill V. Mikhailov
- A.N. Belozersky Institute of Physical and Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| | - Oksana I. Kravchuk
- N.K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | | | - Nicolay G. Gornostaev
- N.K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | | | - Victor S. Mikhailov
- N.K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | | | | | - Oleg A. Gusev
- Kazan Federal University, Kazan, Russia
- KFU-RIKEN Translational Genomics Unit, RIKEN National Science Institute, Yokohama, Japan
| | - Yulia V. Lyupina
- N.K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
17
|
Liu Y, Ding R, Pan B, Wang L, Liu S, Nie X. Simvastatin affect the expression of detoxification-related genes and enzymes in Daphnia magna and alter its life history parameters. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 182:109389. [PMID: 31272027 DOI: 10.1016/j.ecoenv.2019.109389] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/26/2019] [Accepted: 06/25/2019] [Indexed: 06/09/2023]
Abstract
Simvastatin (SV), as an hypocholesterolaemic drug, has been detected in various aquatic environment. However, limited information is available on the effects of SV on freshwater invertebrates. In the present study, we investigated the toxic effects of SV on Daphnia. magna (D. magna) through measuring the physiological changes (e.g., survival, growth rate, and reproduction) in a 21-d chronic toxicity test We also determined the expression of seven detoxification and reproduction-related genes (i.e. HR96, P-gp, CYP360A8, GST, CYP314, EcR and Vtg) and several enzymes (i.e. APND, ERND, GST and CAT) in a acute test (24 h). Results showed that high concentration (e.g. 50 μg L-1) of SV for short time exposure (e.g. 24 h) significantly induced the expression of HR96 and P-gp (e.g. up to 2.5 folds)and enzymes (e.g. increasing 4.0 folds for ERND and GST activity) in D. magna.. The long-term chronic exposure (21 days) may cause the changes of life history parameters such as decreasing total egg production number per individual and intrinsic growth rates etc. SV may act as a potential endocrine disruptor to D. magna and the reproduction parameters were more sensitive endpoints than the survival and growth for evaluating SV exposure.
Collapse
Affiliation(s)
- Yang Liu
- Department of Ecology/Institute of Hydrobiology, Jinan University, Guangzhou, 510632, China
| | - Rui Ding
- Department of Ecology/Institute of Hydrobiology, Jinan University, Guangzhou, 510632, China
| | - Benben Pan
- Department of Ecology/Institute of Hydrobiology, Jinan University, Guangzhou, 510632, China
| | - Lan Wang
- Department of Ecology/Institute of Hydrobiology, Jinan University, Guangzhou, 510632, China
| | - Sijia Liu
- Department of Ecology/Institute of Hydrobiology, Jinan University, Guangzhou, 510632, China
| | - Xiangping Nie
- Department of Ecology/Institute of Hydrobiology, Jinan University, Guangzhou, 510632, China; Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
18
|
Functional characterization of two ABC transporters in Sinonovacula constricta gills and their barrier action in response to pathogen infection. Int J Biol Macromol 2019; 121:443-453. [DOI: 10.1016/j.ijbiomac.2018.10.047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/11/2018] [Accepted: 10/11/2018] [Indexed: 11/21/2022]
|
19
|
de Sá LC, Oliveira M, Ribeiro F, Rocha TL, Futter MN. Studies of the effects of microplastics on aquatic organisms: What do we know and where should we focus our efforts in the future? THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 645:1029-1039. [PMID: 30248828 DOI: 10.1016/j.scitotenv.2018.07.207] [Citation(s) in RCA: 678] [Impact Index Per Article: 96.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 07/16/2018] [Accepted: 07/16/2018] [Indexed: 05/18/2023]
Abstract
The effects of microplastics (MP) on aquatic organisms are currently the subject of intense research. Here, we provide a critical perspective on published studies of MP ingestion by aquatic biota. We summarize the available research on MP presence, behaviour and effects on aquatic organisms monitored in the field and on laboratory studies of the ecotoxicological consequences of MP ingestion. We consider MP polymer type, shape, size as well as group of organisms studied and type of effect reported. Specifically, we evaluate whether or not the available laboratory studies of MP are representative of the types of MPs found in the environment and whether or not they have reported on relevant groups or organisms. Analysis of the available data revealed that 1) despite their widespread detection in field-based studies, polypropylene, polyester and polyamide particles were under-represented in laboratory studies; 2) fibres and fragments (800-1600 μm) are the most common form of MPs reported in animals collected from the field; 3) to date, most studies have been conducted on fish; knowledge is needed about the effects of MPs on other groups of organisms, especially invertebrates. Furthermore, there are significant mismatches between the types of MP most commonly found in the environment or reported in field studies and those used in laboratory experiments. Finally, there is an overarching need to understand the mechanism of action and ecotoxicological effects of environmentally relevant concentrations of MPs on aquatic organism health.
Collapse
Affiliation(s)
| | - Miguel Oliveira
- University of Aveiro, Department of Biology, CESAM, Portugal
| | - Francisca Ribeiro
- Queensland Alliance for Environmental Health Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiás, Brazil
| | | |
Collapse
|
20
|
Lee YH, Kang HM, Kim MS, Lee JS, Jeong CB, Lee JS. The protective role of multixenobiotic resistance (MXR)-mediated ATP-binding cassette (ABC) transporters in biocides-exposed rotifer Brachionus koreanus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 195:129-136. [PMID: 29306793 DOI: 10.1016/j.aquatox.2017.12.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 12/27/2017] [Accepted: 12/29/2017] [Indexed: 06/07/2023]
Abstract
P-glycoprotein (P-gp) and multidrug resistance-associated protein (MRP) are ATP-binding cassette (ABC) transporters that confer multixenobiotic resistance (MXR) via their efflux activity, which enables a variety of xenobiotics to be expelled from cells. MXR has been proposed as the first line of defense against xenobiotics. In this study, the protective roles of P-gp and MRP in the rotifer Brachionus koreanus were examined in response to four biocides (alachlor, chlorpyrifos, endosulfan, and molinate) using fluorescent substrates and inhibitors specific to P-gp and MRP. Exposure of rotifers to the four biocides resulted in increased P-gp and MRP activity. Moreover, the rotifers became more sensitive to the biocides with a reduced tendency in survival and slower population growth rates, when P-gp or MRP was inhibited. These findings suggest that P-gp and MRP are involved in the defense system in response to biocide exposure. Furthermore, the transcriptional levels of the genes encoding P-gp and MRP were examined to uncover the mechanism by which MXR is regulated. Our results demonstrate a crucial role of the MXR efflux system in the defense response to biocides, thereby providing a better understanding of rotifer defense mechanisms on the molecular level.
Collapse
Affiliation(s)
- Young Hwan Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Hye-Min Kang
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Min-Sub Kim
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jin-Sol Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea; Department of Chemistry, College of Natural Sciences, Dongduk Women's University, Seoul 02748, South Korea
| | - Chang-Bum Jeong
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
21
|
Marques-Santos LF, Hégaret H, Lima-Santos L, Queiroga FR, da Silva PM. ABCB1 and ABCC1-like transporters in immune system cells from sea urchins Echinometra lucunter and Echinus esculentus and oysters Crassostrea gasar and Crassostrea gigas. FISH & SHELLFISH IMMUNOLOGY 2017; 70:195-203. [PMID: 28882804 DOI: 10.1016/j.fsi.2017.09.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/29/2017] [Accepted: 09/03/2017] [Indexed: 06/07/2023]
Abstract
ABC transporters activity and expression have been associated with the multixenobiotic resistance phenotype (MXR). The activity of these proteins leads to a reduction in the intracellular concentration of several xenobiotics, thus reducing their toxicity. However, little attention has been given to the expression of ABC transporters in marine invertebrates and few studies have investigated their role in immune system cells of sea urchins and shellfish bivalves. The aim of the present study was to investigate the activity of the ABC transporters ABCB1 and ABCC1 in immune system cells of sea urchins (coelomocytes) and oysters (hemocytes) from different climatic regions (Brazil and France). Sea urchins and oysters were collected at Paraíba coast; Brazil (Echinometra lucunter and Crassostrea gasar) and Rade of Brest; France (Echinus esculentus and Crassostrea gigas). Coelomocytes and hemocytes were stained with the ABC transporter substrate calcein-AM and dye accumulation analyzed under flow cytometry. Reversin 205 (ABCB1 transporter blocker) and MK571 (ABCC1 transporter blocker) were used as pharmacological tools to investigate ABC transporter activity. A different pattern of calcein accumulation was observed in coelomocytes: phagocytes > colorless spherulocytes > vibrate cells > red spherulocytes. The treatment with MK571 increased calcein fluorescence levels in coelomocytes from both species. However, reversin 205 treatment was not able to increase calcein fluorescence in E. esculentus coelomocytes. These data suggest that ABCC1-like transporter activity is present in both sea urchin species, but ABCB1-like transporter activity might only be present in E. lucunter coelomocytes. The activity of ABCC1-like transporter was observed in all cell types from both bivalve species. However, reversin 205 only increased calcein accumulation in hyalinocytes of the oyster C. gasar, suggesting the absence of ABCB1-like transporter activity in all other cell types, including hyalinocytes from the oyster C. gigas. Additionally, our results showed that C. gigas exhibited higher activity of ABCC1-like transporter in all hemocyte types than C. gasar. The present work is the first to characterize ABCB1 and ABCC1-like transporter activity in the immune system cells of sea urchins E. lucunter and E. esculentus and oysters. Our findings encourage the performing studies regarding ABC transporters activity/expression in immune system cells form marine invertebrates under stress conditions and the possible use of ABC transporters as biomarkers.
Collapse
Affiliation(s)
- Luis Fernando Marques-Santos
- Laboratório de Biologia Celular e do Desenvolvimento (LABID), Departamento de Biologia Molecular, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil.
| | - Hélène Hégaret
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS UBO IRD IFREMER, Institut Universitaire Européen de la Mer, Technopôle Brest-Iroise, Rue Dumont d'Urville, 29280 Plouzané, France
| | - Leonardo Lima-Santos
- Laboratório de Biologia Celular e do Desenvolvimento (LABID), Departamento de Biologia Molecular, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
| | - Fernando Ramos Queiroga
- Laboratório de Imunologia e Patologia de Invertebrados (LABIPI), Departamento de Biologia Molecular, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
| | - Patricia Mirella da Silva
- Laboratório de Imunologia e Patologia de Invertebrados (LABIPI), Departamento de Biologia Molecular, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
| |
Collapse
|
22
|
Franzellitti S, Striano T, Pretolani F, Fabbri E. Investigating appearance and regulation of the MXR phenotype in early embryo stages of the Mediterranean mussel (Mytilus galloprovincialis). Comp Biochem Physiol C Toxicol Pharmacol 2017; 199:1-10. [PMID: 27965169 DOI: 10.1016/j.cbpc.2016.11.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/21/2016] [Accepted: 11/30/2016] [Indexed: 11/27/2022]
Abstract
Multixenobiotic resistance (MXR) efflux transporters constitute a broad-spectrum physiological defense system allowing marine bivalves to cope with environmental challenges. There is, however, scarce information on the type and role that different MXR transporters may have in embryos, which represent the most sensitive stages of bivalves to environmental stress. In this study regulation of MXR-related transporters was investigated in early developmental stages of the Mediterranean mussel (Mytilus galloprovincialis). In vitro fertilization experiments using gametes from naturally-spawning broodstocks were performed to follow embryo development from fertilized eggs (30min post fertilization, pf) to fully developed D-shape veligers (48hpf). Quantitative PCR analyses indicated that ABCB and ABCC transcripts encoding the MXR-related transporters P-glycoproteins (P-gp) and Multidrug resistance proteins (Mrp), respectively, were expressed soon after 30minpf, with ABCC being more expressed than ABCB. Copy numbers of both transcripts were increased in trochophorae and D-veligers. MXR efflux activity assessed using the fluorescent substrate rhodamine 123 and selective P-gp or Mrp inhibitors showed that the P-gp mediated efflux was detected only in D-veligers, while a significant Mrp mediated efflux was detected soon after 30minpf and remained almost unchanged in trochophorae and D-veligers. MXR modulation by propranolol and carbamazepine showed that the pharmaceuticals may act as transcriptional regulators and substrates. Results reported lead to hypothesize that while P-gp aids in xenobiotic efflux performing a prominent protective role, Mrp could be a dual-functioning transporter performing both protective and physiological functions in mussel development.
Collapse
Affiliation(s)
- Silvia Franzellitti
- Department of Biological, Geological and Environmental Sciences, University of Bologna, via S. Alberto 163, 48123 Ravenna, Italy; Interdepartment Centre for Environmental Sciences Research, University of Bologna, via S. Alberto 163, 48123 Ravenna, Italy.
| | - Teresa Striano
- Department of Biological, Geological and Environmental Sciences, University of Bologna, via S. Alberto 163, 48123 Ravenna, Italy; Interdepartment Centre for Environmental Sciences Research, University of Bologna, via S. Alberto 163, 48123 Ravenna, Italy
| | - Francesco Pretolani
- Department of Biological, Geological and Environmental Sciences, University of Bologna, via S. Alberto 163, 48123 Ravenna, Italy; Interdepartment Centre for Environmental Sciences Research, University of Bologna, via S. Alberto 163, 48123 Ravenna, Italy
| | - Elena Fabbri
- Department of Biological, Geological and Environmental Sciences, University of Bologna, via S. Alberto 163, 48123 Ravenna, Italy; Interdepartment Centre for Environmental Sciences Research, University of Bologna, via S. Alberto 163, 48123 Ravenna, Italy
| |
Collapse
|
23
|
Jeong CB, Kim HS, Kang HM, Lee JS. ATP-binding cassette (ABC) proteins in aquatic invertebrates: Evolutionary significance and application in marine ecotoxicology. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 185:29-39. [PMID: 28183065 DOI: 10.1016/j.aquatox.2017.01.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 01/23/2017] [Indexed: 06/06/2023]
Abstract
The ATP-binding cassette (ABC) protein superfamily is known to play a fundamental role in biological processes and is highly conserved across animal taxa. The ABC proteins function as active transporters for multiple substrates across the cellular membrane by ATP hydrolysis. As this superfamily is derived from a common ancestor, ABC genes have evolved via lineage-specific duplications through the process of adaptation. In this review, we summarized information about the ABC gene families in aquatic invertebrates, considering their evolution and putative functions in defense mechanisms. Phylogenetic analysis was conducted to examine the evolutionary significance of ABC gene families in aquatic invertebrates. Particularly, a massive expansion of multixenobiotic resistance (MXR)-mediated efflux transporters was identified in the absence of the ABCG2 (BCRP) gene in Ecdysozoa and Platyzoa, suggesting that a loss of Abcg2 gene occurred sporadically in these species during divergence of Protostome to Lophotrochozoa. Furthermore, in aquatic invertebrates, the ecotoxicological significance of MXR is discussed while considering the role of MXR-mediated efflux transporters in response to various environmental pollutants.
Collapse
Affiliation(s)
- Chang-Bum Jeong
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Hui-Su Kim
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Hye-Min Kang
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
24
|
Liu Y, Wang L, Pan B, Wang C, Bao S, Nie X. Toxic effects of diclofenac on life history parameters and the expression of detoxification-related genes in Daphnia magna. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 183:104-113. [PMID: 28043021 DOI: 10.1016/j.aquatox.2016.12.020] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 12/20/2016] [Accepted: 12/23/2016] [Indexed: 05/24/2023]
Abstract
Diclofenac (DCF), as a widely used drug, has been detected in various environmental media such as municipal wastewater effluent. However, there is little information on the effects of DCF on freshwater invertebrates potentially exposing to its residues in surface water. In the present study, we investigated the toxic effects of DCF on the physiological parameters (e.g., survival, growth rate, and reproduction) of a crustacean, Daphnia magna, via a 21-d chronic toxicity test, and we also evaluated the effects of DCF on the expression of the genes related to the detoxification metabolism, growth, development and reproduction (e.g., HR96, P-gp, CYP360A8, CYP314, GST, EcR and Vtg) in acute exposure (up to 96h) with RT-PCR. Significant toxic effects of DCF to D. magna were observed at 50μgL-1, the expression of these selected genes was inhibited with 24h of exposure, and induced after 48h to some extents. The expression of Vtg was induced at high concentrations of DCF (500μgL-1 and 5000μgL-1) after 24h and 48h of exposure, but also significantly induced at low concentration (50μgL-1) after 96h of exposure. Dose- and time-dependent relationships were observed for gene expression of the seven selected genes. In the 21-d chronic toxicity test, the days to the first brood and the days to the first egg production were both significantly delayed at 50μgL-1. However, there were no significant differences observed among the molting frequency, number of eggs produced in the first brood, total number of eggs per individual, total number of broods per individual, body length and intrinsic growth rate. Our results suggested that the reproduction parameters are more sensitive endpoints than the survival and growth for evaluating the toxicity of DCF to aquatic invertebrates.
Collapse
Affiliation(s)
- Yang Liu
- Department of Ecology/Institute of Hydrobiology, Jinan University, Guangzhou 510632, China
| | - Lan Wang
- Department of Ecology/Institute of Hydrobiology, Jinan University, Guangzhou 510632, China
| | - Benben Pan
- Department of Ecology/Institute of Hydrobiology, Jinan University, Guangzhou 510632, China
| | - Chao Wang
- Department of Ecology/Institute of Hydrobiology, Jinan University, Guangzhou 510632, China
| | - Shuang Bao
- Department of Ecology/Institute of Hydrobiology, Jinan University, Guangzhou 510632, China
| | - Xiangping Nie
- Department of Ecology/Institute of Hydrobiology, Jinan University, Guangzhou 510632, China; Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
25
|
Georgantzopoulou A, Cambier S, Serchi T, Kruszewski M, Balachandran YL, Grysan P, Audinot JN, Ziebel J, Guignard C, Gutleb AC, Murk AJ. Inhibition of multixenobiotic resistance transporters (MXR) by silver nanoparticles and ions in vitro and in Daphnia magna. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 569-570:681-689. [PMID: 27376922 DOI: 10.1016/j.scitotenv.2016.06.157] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/19/2016] [Accepted: 06/20/2016] [Indexed: 06/06/2023]
Abstract
The P-glycoprotein (P-gp, ABCB1) and multidrug resistance associated protein 1 (MRP1), important members of the ABC (ATP-binding cassette) transporters, protect cells and organisms via efflux of xenobiotics and are responsible for the phenomenon of multidrug or multixenobiotic resistance (MXR). In this study we first evaluated, in vitro, the interaction of silver nanoparticles (Ag NPs, 20, 23 and 27nm), Ag 200nm particles and Ag ions (AgNO3) with MXR efflux transporters using MDCKII and the P-gp over-expressing MDCKII-MDR1 cells and calcein-AM as a substrate of the transporters. Next the in vivo modulation of MXR activity was studied in Daphnia magna juveniles with the model P-gp and MRP1 inhibitors verapamil-HCl and MK571, respectively. The common environmental contaminants perfluorooctane sulfonate and bisphenol A, previously observed to interfere with the P-gp in vitro, also inhibited the efflux of calcein in vivo. Small-sized Ag NPs (with biomolecules present on the surface) and AgNO3 inhibited the MXR activity in daphnids and MDCKII-MDR1 cells, but abcb1 gene expression remained unchanged. Both Ag NPs and dissolved ions contributed to the effects. This study provides evidence of the interference of Ag NPs and AgNO3 with the MXR activity both in vitro and in D. magna, and should be taken into account when Ag NP toxicity is assessed.
Collapse
Affiliation(s)
- Anastasia Georgantzopoulou
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 5 avenue des Hauts-Forneaux, L-4362 Esch-sur-Alzette, Luxembourg
| | - Sébastien Cambier
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 5 avenue des Hauts-Forneaux, L-4362 Esch-sur-Alzette, Luxembourg
| | - Tommaso Serchi
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 5 avenue des Hauts-Forneaux, L-4362 Esch-sur-Alzette, Luxembourg
| | - Marcin Kruszewski
- Faculty of Medicine, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland; Institute of Nuclear Chemistry and Technology, Centre for Radiobiology and Biological Dosimetry, Dorodna 16, 03-195 Warszawa, Poland
| | | | - Patrick Grysan
- Materials Research and Technology Department (MRT), Luxembourg Institute of Science and Technology (LIST), 5 avenue des Hauts-Forneaux, L-4362 Esch-sur-Alzette, Luxembourg
| | - Jean-Nicolas Audinot
- Materials Research and Technology Department (MRT), Luxembourg Institute of Science and Technology (LIST), 5 avenue des Hauts-Forneaux, L-4362 Esch-sur-Alzette, Luxembourg
| | - Johanna Ziebel
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 5 avenue des Hauts-Forneaux, L-4362 Esch-sur-Alzette, Luxembourg
| | - Cédric Guignard
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 5 avenue des Hauts-Forneaux, L-4362 Esch-sur-Alzette, Luxembourg
| | - Arno C Gutleb
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 5 avenue des Hauts-Forneaux, L-4362 Esch-sur-Alzette, Luxembourg.
| | - AlberTinka J Murk
- Marine Animal Ecology Group, Wageningen University, Wageningen, The Netherlands; Wageningen Institute for Marine Resources & Ecosystem Studies, IMARES, IJmuiden, The Netherlands.
| |
Collapse
|
26
|
Franzellitti S, Striano T, Valbonesi P, Fabbri E. Insights into the regulation of the MXR response in haemocytes of the Mediterranean mussel (Mytilus galloprovincialis). FISH & SHELLFISH IMMUNOLOGY 2016; 58:349-358. [PMID: 27670084 DOI: 10.1016/j.fsi.2016.09.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/18/2016] [Accepted: 09/22/2016] [Indexed: 06/06/2023]
Abstract
This study investigated functional and transcriptional modulation of the Multixenobiotic resistance (MXR) system as a cytoprotective mechanism contributing to the physiological chemoresistance of haemocytes in the Mediterranean mussel. Basal transport activity was assessed using the model substrate rhodamine 123 and specific inhibitors for the MXR-related transporters P-glycoprotein (ABCB mRNA) and Multidrug resistance-related protein (ABCC mRNA). Results showed that MXR activity in mussel haemocytes was mainly supported by the Mrp-mediated efflux. In agreement, ABCC was expressed at higher levels than ABCB. Activation of the cyclic-AMP (cAMP) dependent protein kinase A (PKA) resulted in increased rhodamine efflux, which was counteracted by the selective PKA inhibitor H89. Although serotonin, a physiological modulator of cAMP/PKA signaling and ABCB transcription in haemocytes, did not affect basal MXR transport, the environmental pharmaceuticals fluoxetine, propranolol, and carbamazepine, which interact in different ways with the adrenergic and serotoninergic pathways, were showed to act as modulators and substrates of MXR-related transporters and to affect cell viability. While the increased MXR activity may have lowered the cytotoxic effects of propranolol and carbamazepine, the lack of MXR efflux induction by fluoxetine may play a role in the observed cytotoxicity of the compound.
Collapse
Affiliation(s)
- Silvia Franzellitti
- Department of Biological, Geological and Environmental Sciences, University of Bologna, via S. Alberto 163, 48123, Ravenna, Italy; Interdepartment Centre for Environmental Sciences Research, University of Bologna, via S. Alberto 163, 48123, Ravenna, Italy.
| | - Teresa Striano
- Department of Biological, Geological and Environmental Sciences, University of Bologna, via S. Alberto 163, 48123, Ravenna, Italy; Interdepartment Centre for Environmental Sciences Research, University of Bologna, via S. Alberto 163, 48123, Ravenna, Italy
| | - Paola Valbonesi
- Department of Biological, Geological and Environmental Sciences, University of Bologna, via S. Alberto 163, 48123, Ravenna, Italy; Interdepartment Centre for Environmental Sciences Research, University of Bologna, via S. Alberto 163, 48123, Ravenna, Italy
| | - Elena Fabbri
- Department of Biological, Geological and Environmental Sciences, University of Bologna, via S. Alberto 163, 48123, Ravenna, Italy; Interdepartment Centre for Environmental Sciences Research, University of Bologna, via S. Alberto 163, 48123, Ravenna, Italy
| |
Collapse
|
27
|
Kropf C, Segner H, Fent K. ABC transporters and xenobiotic defense systems in early life stages of rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol C Toxicol Pharmacol 2016; 185-186:45-56. [PMID: 26945521 DOI: 10.1016/j.cbpc.2016.02.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 02/11/2016] [Accepted: 02/28/2016] [Indexed: 12/17/2022]
Abstract
Embryos of oviparous fish, in contrast to (ovo) viviparous species, develop in the aquatic environment, and therefore need solute transport systems at their body surfaces for maintaining internal homeostasis and defending against potentially harmful substances. We hypothesized that solute transporters undergo changes in tissue distribution from the embryo to the larval stage. We therefore studied the mRNA profiles of eight ABC transporters (abcb1a, abcb1b, abcc1, abcc2, abcc3, abcc4, abcc5, abcg2) and three solute carriers (oatp1d, putative oatp2 putative, mate1) in different body regions (head, yolk sac epithelium, abdominal viscera, skin/muscles) of developing rainbow trout. Additionally, we investigated mRNA levels of phase I (cyp1a, cyp3a) and phase II (gstp, putative ugt1, putative ugt2) biotransformation enzymes. The study covered the developmental period from the eleuthero-embryo stage to the first-feeding larval stage (1-20days post-hatch, dph). At 1dph, transcripts of abcc2, abcc4, abcg2, cyp3a, gstp, putative mate1, and putative oatp2 occurred primarily in the yolk sac epithelium, whereas at later stages expression of these genes was predominantly observed in the abdominal viscera. The functional activity of ABC transporters in fish early life stages was assessed by rhodamine B accumulation assays. Finally, we investigated the potential impact of xenobiotics (clotrimazole, clofibric acid) on the ABC and biotransformation systems of trout early life stages. While clofibric acid had no effect, clotrimazole lead to an increased rhodamine B accumulation. The results provide evidence that the transition from the eleuthero-embryo to the larval stage is accompanied by a major alteration in tissue expression of ABC transporters.
Collapse
Affiliation(s)
- Christian Kropf
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz, Switzerland; Centre for Fish and Wildlife Health, University of Bern, Länggassstrasse 122, CH-3012 Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Switzerland
| | - Helmut Segner
- Centre for Fish and Wildlife Health, University of Bern, Länggassstrasse 122, CH-3012 Bern, Switzerland
| | - Karl Fent
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz, Switzerland; Swiss Federal Institute of Technology, ETH Zürich, Institute of Biogeochemistry and Pollution Dynamics, CH-8092 Zürich.
| |
Collapse
|
28
|
Gökirmak T, Campanale JP, Reitzel AM, Shipp LE, Moy GW, Hamdoun A. Functional diversification of sea urchin ABCC1 (MRP1) by alternative splicing. Am J Physiol Cell Physiol 2016; 310:C911-20. [PMID: 27053522 DOI: 10.1152/ajpcell.00029.2016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 04/01/2016] [Indexed: 11/22/2022]
Abstract
The multidrug resistance protein (MRP) family encodes a diverse repertoire of ATP-binding cassette (ABC) transporters with multiple roles in development, disease, and homeostasis. Understanding MRP evolution is central to unraveling their roles in these diverse processes. Sea urchins occupy an important phylogenetic position for understanding the evolution of vertebrate proteins and have been an important invertebrate model system for study of ABC transporters. We used phylogenetic analyses to examine the evolution of MRP transporters and functional approaches to identify functional forms of sea urchin MRP1 (also known as SpABCC1). SpABCC1, the only MRP homolog in sea urchins, is co-orthologous to human MRP1, MRP3, and MRP6 (ABCC1, ABCC3, and ABCC6) transporters. However, efflux assays revealed that alternative splicing of exon 22, a region critical for substrate interactions, could diversify functions of sea urchin MRP1. Phylogenetic comparisons also indicate that while MRP1, MRP3, and MRP6 transporters potentially arose from a single transporter in basal deuterostomes, alternative splicing appears to have been the major mode of functional diversification in invertebrates, while duplication may have served a more important role in vertebrates. These results provide a deeper understanding of the evolutionary origins of MRP transporters and the potential mechanisms used to diversify their functions in different groups of animals.
Collapse
Affiliation(s)
- Tufan Gökirmak
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California; and
| | - Joseph P Campanale
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California; and
| | - Adam M Reitzel
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina
| | - Lauren E Shipp
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California; and
| | - Gary W Moy
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California; and
| | - Amro Hamdoun
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California; and
| |
Collapse
|
29
|
Varrella S, Romano G, Ruocco N, Ianora A, Bentley MG, Costantini M. First Morphological and Molecular Evidence of the Negative Impact of Diatom-Derived Hydroxyacids on the Sea Urchin Paracentrotus lividus. Toxicol Sci 2016; 151:419-33. [PMID: 26984781 PMCID: PMC4880139 DOI: 10.1093/toxsci/kfw053] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Oxylipins (including polyunsaturated aldehydes [PUAs], hydoxyacids, and epoxyalcohols) are the end-products of a lipoxygenase/hydroperoxide lyase metabolic pathway in diatoms. To date, very little information is available on oxylipins other than PUAs, even though they represent the most common oxylipins produced by diatoms. Here, we report, for the first time, on the effects of 2 hydroxyacids, 5- and 15-HEPE, which have never been tested before, using the sea urchin Paracentrotus lividus as a model organism. We show that HEPEs do induce developmental malformations but at concentrations higher when compared with PUAs. Interestingly, HEPEs also induced a marked developmental delay in sea urchin embryos, which has not hitherto been reported for PUAs. Recovery experiments revealed that embryos do not recover following treatment with HEPEs. Finally, we report the expression levels of 35 genes (involved in stress, development, differentiation, skeletogenesis, and detoxification processes) to identify the molecular targets affected by HEPEs. We show that the 2 HEPEs have very few common molecular targets, specifically affecting different classes of genes and at different times of development. In particular, 15-HEPE switched on fewer genes than 5-HEPE, upregulating mainly stress-related genes at a later pluteus stage of development. 5-HEPE was stronger than 15-HEPE, targeting 24 genes, mainly at the earliest stages of embryo development (at the blastula and swimming blastula stages). These findings highlight the differences between HEPEs and PUAs and also have important ecological implications because many diatom species do not produce PUAs, but rather these other chemicals are derived from the oxidation of fatty acids.
Collapse
Affiliation(s)
| | - Giovanna Romano
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Napoli, 80121, Italy
| | - Nadia Ruocco
- *Department of Biology and Evolution of Marine Organisms
| | - Adrianna Ianora
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Napoli, 80121, Italy
| | - Matt G Bentley
- Faculty of Science and Technology, Bournemouth University, Dorset, BH12 5BB, United Kingdom
| | | |
Collapse
|
30
|
Shipp LE, Hill RZ, Moy GW, Gökırmak T, Hamdoun A. ABCC5 is required for cAMP-mediated hindgut invagination in sea urchin embryos. Development 2015; 142:3537-48. [PMID: 26395488 DOI: 10.1242/dev.126144] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 08/14/2015] [Indexed: 12/31/2022]
Abstract
ATP-binding cassette (ABC) transporters are evolutionarily conserved proteins that pump diverse substrates across membranes. Many are known to efflux signaling molecules and are extensively expressed during development. However, the role of transporters in moving extracellular signals that regulate embryogenesis is largely unexplored. Here, we show that a mesodermal ABCC (MRP) transporter is necessary for endodermal gut morphogenesis in sea urchin embryos. This transporter, Sp-ABCC5a (C5a), is expressed in pigment cells and their precursors, which are a subset of the non-skeletogenic mesoderm (NSM) cells. C5a expression depends on Delta/Notch signaling from skeletogenic mesoderm and is downstream of Gcm in the aboral NSM gene regulatory network. Long-term imaging of development reveals that C5a knockdown embryos gastrulate, but ∼90% develop a prolapse of the hindgut by the late prism stage (∼8 h after C5a protein expression normally peaks). Since C5a orthologs efflux cyclic nucleotides, and cAMP-dependent protein kinase (Sp-CAPK/PKA) is expressed in pigment cells, we examined whether C5a could be involved in gastrulation through cAMP transport. Consistent with this hypothesis, membrane-permeable pCPT-cAMP rescues the prolapse phenotype in C5a knockdown embryos, and causes archenteron hyper-invagination in control embryos. In addition, the cAMP-producing enzyme soluble adenylyl cyclase (sAC) is expressed in pigment cells, and its inhibition impairs gastrulation. Together, our data support a model in which C5a transports sAC-derived cAMP from pigment cells to control late invagination of the hindgut. Little is known about the ancestral functions of ABCC5/MRP5 transporters, and this study reveals a novel role for these proteins in mesoderm-endoderm signaling during embryogenesis.
Collapse
Affiliation(s)
- Lauren E Shipp
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0202, USA
| | - Rose Z Hill
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0202, USA
| | - Gary W Moy
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0202, USA
| | - Tufan Gökırmak
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0202, USA
| | - Amro Hamdoun
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0202, USA
| |
Collapse
|
31
|
Abstract
Potential drug-drug interactions mediated by the ATP-binding cassette (ABC) transporter and solute carrier (SLC) transporter families are of clinical and regulatory concern. However, the endogenous functions of these drug transporters are not well understood. Discussed here is evidence for the roles of ABC and SLC transporters in the handling of diverse substrates, including metabolites, antioxidants, signalling molecules, hormones, nutrients and neurotransmitters. It is suggested that these transporters may be part of a larger system of remote communication ('remote sensing and signalling') between cells, organs, body fluid compartments and perhaps even separate organisms. This broader view may help to clarify disease mechanisms, drug-metabolite interactions and drug effects relevant to diabetes, chronic kidney disease, metabolic syndrome, hypertension, gout, liver disease, neuropsychiatric disorders, inflammatory syndromes and organ injury, as well as prenatal and postnatal development.
Collapse
Affiliation(s)
- Sanjay K Nigam
- Departments of Pediatrics, Medicine, and Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0693, USA
| |
Collapse
|
32
|
Bošnjak I, Borra M, Iamunno F, Benvenuto G, Ujević I, Bušelić I, Roje-Busatto R, Mladineo I. Effect of bisphenol A on P-glycoprotein-mediated efflux and ultrastructure of the sea urchin embryo. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 156:21-9. [PMID: 25127357 DOI: 10.1016/j.aquatox.2014.07.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 07/20/2014] [Accepted: 07/24/2014] [Indexed: 05/04/2023]
Abstract
Usage of bisphenol A (BPA) in production of polycarbonate plastics has resulted in global distribution of BPA in the environment. These high concentrations cause numerous negative effects to the aquatic biota, among which the most known is the induction of endocrine disruption. The focus of this research was to determine the effects of two experimentally determined concentrations of BPA (100nM and 4μM) on cellular detoxification mechanisms during the embryonic development (2-cell, pluteus) of the rocky sea urchin (Paracentrotus lividus), primarily the potential involvement of multidrug efflux transport in the BPA intercellular efflux. The results of transport assay, measurements of the intracellular BPA and gene expression surveys, for the first time indicate the importance of P-glycoprotein (P-gp/ABCB1) in defense against BPA. Cytotoxic effects of BPA, validated by the immunohistochemistry (IHC) and the transmission electron microscopy (TEM), induced the aberrant karyokinesis, and consequently, the impairment of embryo development through the first cell division and retardation.
Collapse
Affiliation(s)
- Ivana Bošnjak
- Laboratory for Biology and Microbial Genetics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, Pierottijeva 6, Zagreb, Croatia
| | - Marco Borra
- Molecular Biology Service, Stazione Zoologica Anton Dohrn, Villa Comunale 80121, Napoli, Italy
| | - Franco Iamunno
- Electron Microscopy Service, Stazione Zoologica Anton Dohrn, Villa Comunale 80121, Napoli, Italy
| | - Giovanna Benvenuto
- Electron Microscopy Service, Stazione Zoologica Anton Dohrn, Villa Comunale 80121, Napoli, Italy
| | - Ivana Ujević
- Laboratory of Plankton and Shellfish Toxicity, Institute of Oceanography and Fisheries, Setaliste Ivana Mestrovica 63, 21000 Split, Croatia
| | - Ivana Bušelić
- Laboratory for Aquaculture, Institute of Oceanography and Fisheries, Setaliste Ivana Mestrovica 63, 21000 Split, Croatia
| | - Romana Roje-Busatto
- Laboratory of Plankton and Shellfish Toxicity, Institute of Oceanography and Fisheries, Setaliste Ivana Mestrovica 63, 21000 Split, Croatia
| | - Ivona Mladineo
- Laboratory for Aquaculture, Institute of Oceanography and Fisheries, Setaliste Ivana Mestrovica 63, 21000 Split, Croatia; Assemble Marine Laboratory, Stazione Zoological Anton Dohrn, Villa Comunale, Naples, Italy.
| |
Collapse
|
33
|
Della Torre C, Bergami E, Salvati A, Faleri C, Cirino P, Dawson KA, Corsi I. Accumulation and embryotoxicity of polystyrene nanoparticles at early stage of development of sea urchin embryos Paracentrotus lividus. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:12302-11. [PMID: 25260196 DOI: 10.1021/es502569w] [Citation(s) in RCA: 386] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Nanoplastic debris, resulted from runoff and weathering breakdown of macro- and microplastics, represents an emerging concern for marine ecosystems. The aim of the present study was to investigate disposition and toxicity of polystyrene nanoparticles (NPs) in early development of sea urchin embryos (Paracentrotus lividus). NPs with two different surface charges where chosen, carboxylated (PS-COOH) and amine (PS-NH2) polystyrene, the latter being a less common variant, known to induce cell death in several in vitro cell systems. NPs stability in natural seawater (NSW) was measured while disposition and embryotoxicity were monitored within 48 h of postfertilization (hpf). Modulation of genes involved in cellular stress response (cas8, 14-3-3ε, p-38 MAPK, Abcb1, Abcc5) was investigated. PS-COOH forms microaggregates (PDI > 0.4) in NSW, whereas PS-NH2 results are better dispersed (89 ± 2 nm) initially, though they also aggregated partially with time. Their respectively anionic and cationic nature was confirmed by ζ-potential measurements. No embryotoxicity was observed for PS-COOH up to 50 μg mL(-1) whereas PS-NH2 caused severe developmental defects (EC50 3.85 μg mL(-1) 24 hpf and EC50 2.61 μg mL(-1) 48 hpf). PS-COOH accumulated inside embryo's digestive tract while PS-NH2 were more dispersed. Abcb1 gene resulted up-regulated at 48 hpf by PS-COOH whereas PS-NH2 induced cas8 gene at 24 hpf, suggesting an apoptotic pathway. In line with the results obtained with the same PS NPs in several human cell lines, also in sea urchin embryos, differences in surface charges and aggregation in seawater strongly affect their embryotoxicity.
Collapse
Affiliation(s)
- C Della Torre
- Department of Physical, Earth and Environmental Sciences, University of Siena , 53100 Siena, Italy
| | | | | | | | | | | | | |
Collapse
|
34
|
Gökirmak T, Shipp LE, Campanale JP, Nicklisch SCT, Hamdoun A. Transport in technicolor: mapping ATP-binding cassette transporters in sea urchin embryos. Mol Reprod Dev 2014; 81:778-93. [PMID: 25156004 DOI: 10.1002/mrd.22357] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 06/27/2014] [Indexed: 12/15/2022]
Abstract
One quarter of eukaryotic genes encode membrane proteins. These include nearly 1,000 transporters that translocate nutrients, signaling molecules, and xenobiotics across membranes. While it is well appreciated that membrane transport is critical for development, the specific roles of many transporters have remained cryptic, in part because of their abundance and the diversity of their substrates. Multidrug resistance ATP-binding cassette (ABC) efflux transporters are one example of cryptic membrane proteins. Although most organisms utilize these ABC transporters during embryonic development, many of these transporters have broad substrate specificity, and their developmental functions remain incompletely understood. Here, we review advances in our understanding of ABC transporters in sea urchin embryos, and methods developed to spatially and temporally map these proteins. These studies reveal that multifunctional transporters are required for signaling, homeostasis, and protection of the embryo, and shed light on how they are integrated into ancestral developmental pathways recapitulated in disease.
Collapse
Affiliation(s)
- Tufan Gökirmak
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California
| | | | | | | | | |
Collapse
|
35
|
Wessel GM, Brayboy L, Fresques T, Gustafson EA, Oulhen N, Ramos I, Reich A, Swartz SZ, Yajima M, Zazueta V. The biology of the germ line in echinoderms. Mol Reprod Dev 2014; 81:679-711. [PMID: 23900765 PMCID: PMC4102677 DOI: 10.1002/mrd.22223] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Accepted: 07/23/2013] [Indexed: 12/16/2022]
Abstract
The formation of the germ line in an embryo marks a fresh round of reproductive potential. The developmental stage and location within the embryo where the primordial germ cells (PGCs) form, however, differs markedly among species. In many animals, the germ line is formed by an inherited mechanism, in which molecules made and selectively partitioned within the oocyte drive the early development of cells that acquire this material to a germ-line fate. In contrast, the germ line of other animals is fated by an inductive mechanism that involves signaling between cells that directs this specialized fate. In this review, we explore the mechanisms of germ-line determination in echinoderms, an early-branching sister group to the chordates. One member of the phylum, sea urchins, appears to use an inherited mechanism of germ-line formation, whereas their relatives, the sea stars, appear to use an inductive mechanism. We first integrate the experimental results currently available for germ-line determination in the sea urchin, for which considerable new information is available, and then broaden the investigation to the lesser-known mechanisms in sea stars and other echinoderms. Even with this limited insight, it appears that sea stars, and perhaps the majority of the echinoderm taxon, rely on inductive mechanisms for germ-line fate determination. This enables a strongly contrasted picture for germ-line determination in this phylum, but one for which transitions between different modes of germ-line determination might now be experimentally addressed.
Collapse
Affiliation(s)
- Gary M. Wessel
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Lynae Brayboy
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Tara Fresques
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Eric A. Gustafson
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Nathalie Oulhen
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Isabela Ramos
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Adrian Reich
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - S. Zachary Swartz
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Mamiko Yajima
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Vanessa Zazueta
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| |
Collapse
|
36
|
Rioult D, Pasquier J, Boulangé-Lecomte C, Poret A, Abbas I, Marin M, Minier C, Le Foll F. The multi-xenobiotic resistance (MXR) efflux activity in hemocytes of Mytilus edulis is mediated by an ATP binding cassette transporter of class C (ABCC) principally inducible in eosinophilic granulocytes. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 153:98-109. [PMID: 24345773 DOI: 10.1016/j.aquatox.2013.11.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 10/22/2013] [Accepted: 11/21/2013] [Indexed: 06/03/2023]
Abstract
In marine and estuarine species, immunotoxic and/or immunomodulatory mechanisms are the crossroad of interactions between xenobiotics, microorganisms and physicochemical variations of the environment. In mussels, immunity relies exclusively on innate responses carried out by cells collectively called hemocytes and found in the open hemolymphatic circulatory system of these organisms. However, hemocytes do not form a homogenous population of immune cells since distinct subtypes of mussel blood cells can be distinguished by cytochemistry, flow cytometry or cell motility analysis. Previous studies have also shown that these cells are able to efflux xenobiotics by means of ATP binding cassette (ABC) transporter activities conferring a multixenobiotic resistance (MXR) phenotype. ABC transporters corresponding to vertebrate class B/P-glycoprotein (P-gp) and to class C/multidrug resistance related protein (MRP) are characterized in Mytilidae. Herein, we have investigated the relative contributions of ABCB- and ABCC-mediated efflux within the different hemocyte subpopulations of Mytilus edulis mussels, collected from areas differentially impacted by chemical contaminants in Normandy (France). RT-PCR analyses provide evidence for the presence of ABCB and ABCC transporters transcripts in hemocytes. Immunodetection of ABCB/P-gp with the monoclonal antibody UIC2 in living hemocytes revealed that expression was restricted to granular structures of spread cells. Efflux transporter activities, with calcein-AM as fluorescent probe, were measured by combining flow cytometry to accurate Coulter cell size measurements in order to get a cell-volume normalized fluorescence concentration. In these conditions, basal fluorescence levels were higher in hemocytes originating from Yport (control site) than in cells collected from the harbor of Le Havre, where mussels are more exposed to with persistent pollutants. By using specific ABCB/P-gp (verapamil, PSC833, zosuquidar) and ABCC/MRP (MK571) blockers, we show that MXR activity is only carried out by MRP-type transporters in M. edulis hemocytes. In addition, cell-type-gated flow cytometry and calculation of the MXR activity factor indicate that ABCC-efflux activity is higher and more inducible in eosinophilic granulocytes than in other hemocyte subtypes. We conclude that, in the hemocytes of M. edulis, MXR phenotype is mediated by an ABCC/MRP-type transporter activity principally supported by eosinophilic granulocytes. A role for ABC transporters in hemocyte migration is discussed.
Collapse
Affiliation(s)
- Damien Rioult
- Laboratory of Ecotoxicology, UPRES EA 3222, IFRMP 23, University of Le Havre, 76058 Le Havre cedex, France.
| | - Jennifer Pasquier
- Laboratory of Ecotoxicology, UPRES EA 3222, IFRMP 23, University of Le Havre, 76058 Le Havre cedex, France
| | - Céline Boulangé-Lecomte
- Laboratory of Ecotoxicology, UPRES EA 3222, IFRMP 23, University of Le Havre, 76058 Le Havre cedex, France
| | - Agnès Poret
- Laboratory of Ecotoxicology, UPRES EA 3222, IFRMP 23, University of Le Havre, 76058 Le Havre cedex, France
| | - Imane Abbas
- Research and Development Department, Lebanese Atomic Energy Commission - CNRS, Beirut, Lebanon
| | - Matthieu Marin
- Laboratoire de Régulation des Signaux de Division, EA 4020, IFR 147, Bât. SN3, Université des Sciences et Technologies de Lille, 59655 Villeneuve d'Ascq Cedex, France
| | - Christophe Minier
- Laboratory of Ecotoxicology, UPRES EA 3222, IFRMP 23, University of Le Havre, 76058 Le Havre cedex, France
| | - Frank Le Foll
- Laboratory of Ecotoxicology, UPRES EA 3222, IFRMP 23, University of Le Havre, 76058 Le Havre cedex, France
| |
Collapse
|
37
|
Transcriptome information of the Arctic green sea urchin and its use in environmental monitoring. Polar Biol 2014. [DOI: 10.1007/s00300-014-1507-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
38
|
Varrella S, Romano G, Ianora A, Bentley MG, Ruocco N, Costantini M. Molecular response to toxic diatom-derived aldehydes in the sea urchin Paracentrotus lividus. Mar Drugs 2014; 12:2089-113. [PMID: 24714125 PMCID: PMC4012444 DOI: 10.3390/md12042089] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 03/21/2014] [Accepted: 03/25/2014] [Indexed: 12/24/2022] Open
Abstract
Diatoms are dominant photosynthetic organisms in the world’s oceans and represent a major food source for zooplankton and benthic filter-feeders. However, their beneficial role in sustaining marine food webs has been challenged after the discovery that they produce secondary metabolites, such as polyunsaturated aldehydes (PUAs), which negatively affect the reproductive success of many invertebrates. Here, we report the effects of two common diatom PUAs, heptadienal and octadienal, which have never been tested before at the molecular level, using the sea urchin, Paracentrotus lividus, as a model organism. We show that both PUAs are able to induce teratogenesis (i.e., malformations), as already reported for decadienal, the better-studied PUA of this group. Moreover, post-recovery experiments show that embryos can recover after treatment with all three PUAs, indicating that negative effects depend both on PUA concentrations and the exposure time of the embryos to these metabolites. We also identify the time range during which PUAs exert the greatest effect on sea urchin embryogenesis. Finally, we report the expression levels of thirty one genes (having a key role in a broad range of functional responses, such as stress, development, differentiation, skeletogenesis and detoxification processes) in order to identify the common targets affected by PUAs and their correlation with morphological abnormalities. This study opens new perspectives for understanding how marine organisms afford protection from environmental toxicants through an integrated network of genes.
Collapse
Affiliation(s)
- Stefano Varrella
- Stazione Zoologica Anton Dohrn, Villa Comunale, Naples 80121, Italy.
| | - Giovanna Romano
- Stazione Zoologica Anton Dohrn, Villa Comunale, Naples 80121, Italy.
| | - Adrianna Ianora
- Stazione Zoologica Anton Dohrn, Villa Comunale, Naples 80121, Italy.
| | - Matt G Bentley
- Dove Marine Laboratory, School of Marine Science and Technology, Newcastle University, Newcastle upon Tyne, UK.
| | - Nadia Ruocco
- Stazione Zoologica Anton Dohrn, Villa Comunale, Naples 80121, Italy.
| | - Maria Costantini
- Stazione Zoologica Anton Dohrn, Villa Comunale, Naples 80121, Italy.
| |
Collapse
|
39
|
Della Torre C, Bocci E, Focardi SE, Corsi I. Differential ABCB and ABCC gene expression and efflux activities in gills and hemocytes of Mytilus galloprovincialis and their involvement in cadmium response. MARINE ENVIRONMENTAL RESEARCH 2014; 93:56-63. [PMID: 23886692 DOI: 10.1016/j.marenvres.2013.06.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 05/31/2013] [Accepted: 06/19/2013] [Indexed: 06/02/2023]
Abstract
The aim of the study was to characterize ABC transport proteins gene expression and efflux activities in gills and hemocytes of the Mediterranean mussel and to evaluate their response to Cd. At basal level a higher expression of abcb-like gene was observed in gills than in hemocytes while abcc-like gene showed similar levels. Both P-gp and MRPs inhibitors (cyclosporine and MK571) blocked efflux activities in gills; hemocytes were sensitive only to MK571. After 120 min in vitro pre-exposure to CdCl2, the efflux activity increased significantly in gills and hemocytes. In vivo exposure to CdCl2 (0.4 μM) increased abcb-like gene expression in gills without affecting efflux activity. In hemocytes abcc-like gene resulted up-regulated and Ca-AM efflux resulted enhanced. An increased uptake of Cd in gills biopsies was observed in the presence of both P-gp and MRPs inhibitors. Our results indicate that ABC transporters seem involved in the first protective response to Cd and this response is tissue-specific.
Collapse
Affiliation(s)
- Camilla Della Torre
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy.
| | - Elena Bocci
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy
| | - Silvano Ettore Focardi
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy
| | - Ilaria Corsi
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy
| |
Collapse
|
40
|
Leite JCDA, de Vasconcelos RB, da Silva SG, de Siqueira-Junior JP, Marques-Santos LF. ATP-binding cassette transporters protect sea urchin gametes and embryonic cells against the harmful effects of ultraviolet light. Mol Reprod Dev 2013; 81:66-83. [PMID: 24254332 DOI: 10.1002/mrd.22283] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 11/14/2013] [Indexed: 12/22/2022]
Abstract
Embryos of marine organisms whose development occurs externally are particularly sensitive to ultraviolet (UV) light (bands A and B, respectively, UVA and UVB). ATP-binding cassette (ABC) transporters are the first line of cellular defense against chemical or physical stress. The present work investigated the involvement of ABC transporters on UVA or UVB effects on eggs, spermatozoa, and embryonic cells of the sea urchin Echinometra lucunter. Gametes or embryos were exposed to UVA (3.6-14.4 kJ m(-2)) or UVB (0.112-14.4 kJ m(-2)), and embryonic development was monitored by optical microscopy at different developmental stages in the presence or absence of the ABC-transporter blockers reversin205 (ABCB1 blocker) or MK571 (ABCC1 blocker). E. lucunter eggs, spermatozoa and embryos were resistant to UVA exposure. Resistance to the harmful effects of UVB was strongly associated to ABC transporter activity (embryos > eggs > spermatozoa). ABCB1 or ABCC1 blockage promoted the injurious effects of UVA on spermatozoa. ABCC1 transporter blockage increased UVB-dependent damage in eggs while ABCB1 transporter inhibition increased harmful effects of UVB in embryonic cells. ABC-transporter activity was not, however, affected by UVB exposure. In conclusion, the present study is the first report on the protective role of ABC transporters against harmful effects of UVA and UVB on sea urchin eggs and embryonic cells.
Collapse
Affiliation(s)
- Jocelmo Cássio de Araujo Leite
- Departamento de Biologia Molecular, Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
| | | | | | | | | |
Collapse
|
41
|
Bošnjak I, Pleić IL, Borra M, Mladineo I. Quantification and in situ localisation of abcb1 and abcc9genes in toxicant-exposed sea urchin embryos. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:8600-8611. [PMID: 23690080 DOI: 10.1007/s11356-013-1819-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 05/09/2013] [Indexed: 06/02/2023]
Abstract
A multixenobiotic resistance (MXR) mechanism mediated by ABC binding cassette (ABC) transport proteins is an efficient chemical defence mechanism in sea urchin embryos. The aim of our work was to evidence whether exposure to sub-lethal doses of specific contaminants (oxybenzone (OXI), mercuric chloride (HgCl2) and trybutiltin (TBT)) would induce MXR transporter activity during embryonic development (from zygote to blastula stage) in purple sea urchin (Paracentrotus lividus) embryos. Further, we present data on molecular identification, transport function, expression levels and gene localisation of two ABC efflux transporters-P-glycoprotein (ABCB1/P-gp) and sulfonylurea-receptor-like protein (ABCC9/SUR-like). Partial cDNA sequences of abcb1 and abcc9 were identified and quantitative PCR (qPCR) evidenced an increase in mRNA transcript levels of both ABC transporters during the two-cell, as well as an overall decrease during the blastulae stage. Calcein-AM efflux activity assay indicated the activation of multidrug resistance-associated protein/ABCC-like transport in the presence of HgCl2 and TBT in exposed blastulae. The in situ hybridisation of the two-cell and blastula stages showed ubiquitous localisation of both transcripts within cells, supporting qPCR data. In conclusion, ABCB1 and ABCC9 are constitutive, as are HgCl2, TBT and OXI-inducible ABC membrane transporters, coexpressed in the zygote, two-cell and blastula stages of the P. lividus. Their ubiquitous cell localisation further fortifies their protective role in early embryonic development.
Collapse
Affiliation(s)
- Ivana Bošnjak
- Laboratory for Biology and Microbial Genetics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, Pierottijeva 6, Zagreb, Croatia
| | | | | | | |
Collapse
|
42
|
Bošnjak I, Zaja R, Klobučar RS, Šver L, Franekić J, Smital T. Identification of ABC transporter genes in gonad tissue of two Mediterranean sea urchin species: black, Arbacia lixula L., and rocky, Paracentrotus lividus L. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2013; 91:415-419. [PMID: 23744482 DOI: 10.1007/s00128-013-1021-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 05/24/2013] [Indexed: 06/02/2023]
Abstract
Multixenobiotic resistance (MXR) represents an important cellular detoxification mechanism in aquatic organisms as it provides them robustness toward natural and man-made contaminants. Several ABC transporters have major roles in the MXR phenotype - P-gp/ABCB1, MRP1-3/ABCC1-3 and BCRP/ABCG2. In this study, we identified the presence of ABC transporters involved in the MXR mechanism of Arbacia lixula and Paracentrotus lividus. AlABCB1/P-gp, AlABCC3/MRP3, AlABCC9/SUR-like and AlABCG-like transcripts were identified in A. lixula; and PlABCC1/P-gp, PlABCC3/MRP3, PlABCC5/MRP5, and PlABCC9/SUR-like transcripts in P. lividus. For each of the new partial sequences, we performed detailed phylogenetic and identity analysis as a first step toward full characterization and understanding of the ecotoxicological role of these ABC transporters.
Collapse
Affiliation(s)
- Ivana Bošnjak
- Laboratory for Biology and Microbial Genetics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000, Zagreb, Croatia,
| | | | | | | | | | | |
Collapse
|
43
|
Deciphering Emerging Toxicological Effects of Pharmaceuticals on Aquatic Organisms by Using Daphnia magna and Danio rerio as Model Organisms. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/b978-0-444-62657-8.00017-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
|
44
|
Gökirmak T, Campanale JP, Shipp LE, Moy GW, Tao H, Hamdoun A. Localization and substrate selectivity of sea urchin multidrug (MDR) efflux transporters. J Biol Chem 2012; 287:43876-83. [PMID: 23124201 DOI: 10.1074/jbc.m112.424879] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this study, we cloned, expressed and functionally characterized Stronglycentrotus purpuratus (Sp) ATP-binding cassette (ABC) transporters. This screen identified three multidrug resistance (MDR) transporters with functional homology to the major types of MDR transporters found in humans. When overexpressed in embryos, the apical transporters Sp-ABCB1a, ABCB4a, and ABCG2a can account for as much as 87% of the observed efflux activity, providing a robust assay for their substrate selectivity. Using this assay, we found that sea urchin MDR transporters export canonical MDR susbtrates such as calcein-AM, bodipy-verapamil, bodipy-vinblastine, and mitoxantrone. In addition, we characterized the impact of nonconservative substitutions in the primary sequences of drug binding domains of sea urchin versus murine ABCB1 by mutation of Sp-ABCB1a and treatment of embryos with stereoisomeric cyclic peptide inhibitors (QZ59 compounds). The results indicated that two substitutions in transmembrane helix 6 reverse stereoselectivity of Sp-ABCB1a for QZ59 enantiomers compared with mouse ABCB1a. This suggests that subtle changes in the primary sequence of transporter drug binding domains could fine-tune substrate specificity through evolution.
Collapse
Affiliation(s)
- Tufan Gökirmak
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, USA
| | | | | | | | | | | |
Collapse
|
45
|
Anselmo HMR, van den Berg JHJ, Rietjens IMCM, Murk AJ. Inhibition of cellular efflux pumps involved in multi xenobiotic resistance (MXR) in echinoid larvae as a possible mode of action for increased ecotoxicological risk of mixtures. ECOTOXICOLOGY (LONDON, ENGLAND) 2012; 21:2276-2287. [PMID: 22868905 DOI: 10.1007/s10646-012-0984-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/17/2012] [Indexed: 06/01/2023]
Abstract
In marine organisms the multi xenobiotic resistance (MXR) mechanism via e.g. P-glycoprotein (P-gp) and multidrug resistance-associated protein (MRP) is an important first line of defense against contaminants by pumping contaminants out of the cells. If compounds would impair the MXR mechanism, this could result in increased intracellular levels of other compounds, thereby potentiating their toxicity. A calcein-AM based larval cellular efflux pump inhibition assay (CEPIA) was developed for echinoid (Psammechinus miliaris) larvae and applied for several contaminants. The larval CEPIA revealed that triclosan (TCS) and the nanoparticles P-85(®) (P-85) were 124 and 155× more potent inhibitors (IC(50) 0.5 ± 0.05 and 0.4 ± 0.1 μM, respectively) of efflux pumps than the model inhibitor Verapamil (VER). PFOS (heptadecafluorooctane sulfonic acid) and pentachlorophenol also were more potent than VER, 24 and 5×, respectively. Bisphenol A and o,p'-dichlorodiphenyltrichloroethane (o,p'-DDT) inhibited efflux pumps with a potency 3× greater than VER. In a 48 h early life stage bioassay with P. miliaris, exposure to a non-lethal concentration of the inhibitors TCS, VER, the model MRP inhibitor MK-571, the nanoparticles P-85 and the model P-gp inhibitor PSC-833, increased the toxicity of the toxic model substrate for efflux pumps vinblastine by a factor of 2, 4, 4, 8 and 16, respectively. Our findings show that several contaminants accumulating in the marine environment inhibit cellular efflux pumps, which could potentiate toxic effects of efflux pumps substrates.
Collapse
Affiliation(s)
- Henrique M R Anselmo
- Sub-department of Toxicology, Wageningen University, Tuinlaan 5, 6703 HE, Wageningen, The Netherlands
| | | | | | | |
Collapse
|
46
|
Silva-Neta HL, Torrezan E, de Araújo Leite JC, Santi-Gadelha T, Marques-Santos LF. Involvement of ABCB1 and ABCC1 transporters in sea urchin Echinometra lucunter fertilization. Mol Reprod Dev 2012; 79:861-9. [PMID: 23070745 DOI: 10.1002/mrd.22125] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 10/09/2012] [Indexed: 12/11/2022]
Abstract
Fertilization is an ordered sequence of cellular interactions that promotes gamete fusion to form a new individual. Since the pioneering work of Oskar Hertwig conducted on sea urchins, echinoderms have contributed to the understanding of cellular and molecular aspects of the fertilization processes. Studies on sea urchin spermatozoa reported the involvement of a plasma membrane protein that belongs to the ABC proteins superfamily in the acrosome reaction. ABC transporters are expressed in membranes of eukaryotic and prokaryotic cells, and are associated with the transport of several compounds or ions across biomembranes. We aimed to investigate ABCB1 and ABCC1 transporter activity in sea urchin spermatozoa and their involvement in fertilization. Our results indicate that Echinometra lucunter spermatozoa exhibit a low intracellular calcein accumulation (18.5% stained cells); however, the ABC blockers reversin205, verapamil, and MK571 increased dye accumulation (93.0-96.6% stained cells). We also demonstrated that pharmacologically blocking ABCB1 and ABCC1 decreased spermatozoa fertilizing capacity (70% inhibition), and this phenotype was independent of extracellular calcium. These data suggest that functional spermatozoa ABCB1 and ABCC1 transporters are crucial for a successful fertilization. Additional studies must be performed to investigate the involvement of membrane lipid homeostasis in the fertilization process.
Collapse
Affiliation(s)
- Helena Lima Silva-Neta
- Departamento de Biologia Molecular, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
| | | | | | | | | |
Collapse
|
47
|
Cheepala S, Hulot JS, Morgan JA, Sassi Y, Zhang W, Naren AP, Schuetz JD. Cyclic nucleotide compartmentalization: contributions of phosphodiesterases and ATP-binding cassette transporters. Annu Rev Pharmacol Toxicol 2012; 53:231-53. [PMID: 23072381 DOI: 10.1146/annurev-pharmtox-010611-134609] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Cyclic nucleotides [e.g., cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP)] are ubiquitous second messengers that affect multiple cell functions from maturation of the egg to cell division, growth, differentiation, and death. The concentration of cAMP can be regulated by processes within membrane domains (local regulation) as well as throughout a cell (global regulation). The phosphodiesterases (PDEs) that degrade cAMP have well-known roles in both these processes. It has recently been discovered that ATP-binding cassette (ABC) transporters contribute to both local and global regulation of cAMP. This regulation may require the formation of macromolecular complexes. Some of these transporters are ubiquitously expressed, whereas others are more tissue restricted. Because some PDE inhibitors are also ABC transporter inhibitors, it is conceivable that the therapeutic benefits of their use result from the combined inhibition of both PDEs and ABC transporters. Deciphering the individual contributions of PDEs and ABC transporters to such drug effects may lead to improved therapeutic benefits.
Collapse
Affiliation(s)
- Satish Cheepala
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Whalen K, Reitzel AM, Hamdoun A. Actin polymerization controls the activation of multidrug efflux at fertilization by translocation and fine-scale positioning of ABCB1 on microvilli. Mol Biol Cell 2012; 23:3663-72. [PMID: 22855533 PMCID: PMC3442413 DOI: 10.1091/mbc.e12-06-0438] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Multidrug efflux is activated at fertilization in sea urchin eggs, but it is unclear how cortical reorganization initiates transport. Using structured illumination microscopy, we found that the multidrug transporter ABCB1a translocates along polymerizing actin filaments to the microvillar tips. This short-range (micrometer scale) translocation is necessary for up-regulation of efflux activity. Fertilization changes the structure and function of the cell surface. In sea urchins, these changes include polymerization of cortical actin and a coincident, switch-like increase in the activity of the multidrug efflux transporter ABCB1a. However, it is not clear how cortical reorganization leads to changes in membrane transport physiology. In this study, we used three-dimensional superresolution fluorescence microscopy to resolve the fine-scale movements of the transporter along polymerizing actin filaments, and we show that efflux activity is established after ABCB1a translocates to the tips of the microvilli. Inhibition of actin polymerization or bundle formation prevents tip localization, resulting in the patching of ABCB1a at the cell surface and decreased efflux activity. In contrast, enhanced actin polymerization promotes tip localization. Finally, interference with Rab11, a regulator of apical recycling, inhibits activation of efflux activity in embryos. Together our results show that actin-mediated, short-range traffic and positioning of transporters at the cell surface regulates multidrug efflux activity and highlight the multifaceted roles of microvilli in the spatial distribution of membrane proteins.
Collapse
Affiliation(s)
- Kristen Whalen
- Marine Biology Research Division, Scripps Institution of Oceanography, La Jolla, CA 92093, USA
| | | | | |
Collapse
|