1
|
Sugiura N, Agata K. FGF-stimulated tendon cells embrace a chondrogenic fate with BMP7 in newt tissue culture. Dev Growth Differ 2024; 66:182-193. [PMID: 38342985 PMCID: PMC11457504 DOI: 10.1111/dgd.12913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 02/13/2024]
Abstract
Newts can regenerate functional elbow joints after amputation at the joint level. Previous studies have suggested the potential contribution of cells from residual tendon tissues to joint cartilage regeneration. A serum-free tissue culture system for tendons was established to explore cell dynamics during joint regeneration. Culturing isolated tendons in this system, stimulated by regeneration-related factors, such as fibroblast growth factor (FGF) and platelet-derived growth factor, led to robust cell migration and proliferation. Moreover, cells proliferating in an FGF-rich environment differentiated into Sox9-positive chondrocytes upon BMP7 introduction. These findings suggest that FGF-stimulated cells from tendons may aid in joint cartilage regeneration during functional elbow joint regeneration in newts.
Collapse
Affiliation(s)
- Nao Sugiura
- Department of Basic BiologyThe Graduate University for Advanced Studies (SOKENDAI)OkazakiJapan
- Laboratory for Regenerative BiologyNational Institute for Basic Biology (NIBB)OkazakiJapan
| | - Kiyokazu Agata
- Department of Basic BiologyThe Graduate University for Advanced Studies (SOKENDAI)OkazakiJapan
- Laboratory for Regenerative BiologyNational Institute for Basic Biology (NIBB)OkazakiJapan
| |
Collapse
|
2
|
Tsissios G, Theodoroudis-Rapp G, Chen W, Sallese A, Smucker B, Ernst L, Chen J, Xu Y, Ratvasky S, Wang H, Del Rio-Tsonis K. Characterizing the lens regeneration process in Pleurodeles waltl. Differentiation 2023; 132:15-23. [PMID: 37055300 PMCID: PMC10493237 DOI: 10.1016/j.diff.2023.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/06/2023] [Accepted: 02/21/2023] [Indexed: 03/13/2023]
Abstract
BACKGROUND Aging and regeneration are heavily linked processes. While it is generally accepted that regenerative capacity declines with age, some vertebrates, such as newts, can bypass the deleterious effects of aging and successfully regenerate a lens throughout their lifetime. RESULTS Here, we used Spectral-Domain Optical Coherence Tomography (SD-OCT) to monitor the lens regeneration process of larvae, juvenile, and adult newts. While all three life stages were able to regenerate a lens through transdifferentiation of the dorsal iris pigment epithelial cells (iPECs), an age-related change in the kinetics of the regeneration process was observed. Consistent with these findings, iPECs from older animals exhibited a delay in cell cycle re-entry. Furthermore, it was observed that clearance of the extracellular matrix (ECM) was delayed in older organisms. CONCLUSIONS Collectively, our results suggest that although lens regeneration capacity does not decline throughout the lifespan of newts, the intrinsic and extrinsic cellular changes associated with aging alter the kinetics of this process. By understanding how these changes affect lens regeneration in newts, we can gain important insights for restoring the age-related regeneration decline observed in most vertebrates.
Collapse
Affiliation(s)
- Georgios Tsissios
- Department of Biology Miami University, Oxford, OH, USA; Center for Visual Sciences at Miami University, Oxford, OH, USA; Cellular Molecular and Structural Biology Program, Miami University, Oxford, OH, USA
| | | | - Weihao Chen
- Center for Visual Sciences at Miami University, Oxford, OH, USA; Cellular Molecular and Structural Biology Program, Miami University, Oxford, OH, USA; Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, OH, USA
| | - Anthony Sallese
- Department of Biology Miami University, Oxford, OH, USA; Center for Visual Sciences at Miami University, Oxford, OH, USA
| | - Byran Smucker
- Center for Visual Sciences at Miami University, Oxford, OH, USA; Department of Statistics, Miami University, Oxford, OH, USA
| | - Lake Ernst
- Department of Biology Miami University, Oxford, OH, USA
| | - Junfan Chen
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, USA
| | - Yiqi Xu
- Department of Biology Miami University, Oxford, OH, USA
| | - Sophia Ratvasky
- Department of Biology Miami University, Oxford, OH, USA; Center for Visual Sciences at Miami University, Oxford, OH, USA; Cellular Molecular and Structural Biology Program, Miami University, Oxford, OH, USA
| | - Hui Wang
- Center for Visual Sciences at Miami University, Oxford, OH, USA; Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, OH, USA
| | - Katia Del Rio-Tsonis
- Department of Biology Miami University, Oxford, OH, USA; Center for Visual Sciences at Miami University, Oxford, OH, USA; Cellular Molecular and Structural Biology Program, Miami University, Oxford, OH, USA.
| |
Collapse
|
3
|
Uemasu H, Ikuta H, Igawa T, Suzuki M, Kyakuno M, Iwata Y, Tazawa I, Ogino H, Satoh Y, Takeuchi T, Namba N, Hayashi T. Cryo-injury procedure-induced cardiac regeneration shows unique gene expression profiles in the newt Pleurodeles waltl. Dev Dyn 2021; 251:864-876. [PMID: 34964213 DOI: 10.1002/dvdy.450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Cardiac regeneration in the adult mouse is not substantial. Some vertebrates, such as newts and zebrafish, regenerate the heart throughout their lives. To understand how regenerative abilities differ among animal species, comparative research has been conducted in animals like mouse, zebrafish, and newt. For those purposes, cryo-injury is suitable as an experimental model for the pathological condition of human myocardial infarction. In fact, cryo-injury procedures are common in mouse and zebrafish. RESULTS In the present study, we induced cryo-damage on the ventricle in Iberian ribbed newts using a liquid nitrogen-chilled probe. We observed that the injured area recovered within 8 weeks, with remodeling of scar tissue and proliferation of cardiomyocytes. We investigated the subsequent recovery of cryo-injured and amputated tissues by comparative analysis of the gene expression profiles following these two procedures. CONCLUSION Notably, we established a cryo-injury procedure for the newt and confirmed that regeneration of the cryo-damaged myocardial tissue is achieved by changes in gene expression that are milder than those observed in the amputation model. Our results suggest that the cryo-injury method is suitable for comparing the process of cardiac regeneration in the newt with that in other animal models. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hitoshi Uemasu
- Division of Pediatrics and Perinatology, School of Medicine, Faculty of Medicine, Tottori University Yonago, Tottori, Japan
| | - Hiromi Ikuta
- Amphibian Research Center, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan.,Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Takeshi Igawa
- Amphibian Research Center, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan.,Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Makoto Suzuki
- Amphibian Research Center, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan.,Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Mitsuki Kyakuno
- Amphibian Research Center, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan.,Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Yui Iwata
- Amphibian Research Center, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan.,Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Ichiro Tazawa
- Amphibian Research Center, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan.,Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Hajime Ogino
- Amphibian Research Center, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan.,Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Yukio Satoh
- Department of Biomedical Sciences, School of Life Sciences, Faculty of Medicine, Tottori University, Yonago, Tottori, Japan
| | - Takashi Takeuchi
- Department of Biomedical Sciences, School of Life Sciences, Faculty of Medicine, Tottori University, Yonago, Tottori, Japan
| | - Noriyuki Namba
- Division of Pediatrics and Perinatology, School of Medicine, Faculty of Medicine, Tottori University Yonago, Tottori, Japan
| | - Toshinori Hayashi
- Amphibian Research Center, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan.,Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| |
Collapse
|
4
|
Matsunami M, Suzuki M, Haramoto Y, Fukui A, Inoue T, Yamaguchi K, Uchiyama I, Mori K, Tashiro K, Ito Y, Takeuchi T, Suzuki KIT, Agata K, Shigenobu S, Hayashi T. A comprehensive reference transcriptome resource for the Iberian ribbed newt Pleurodeles waltl, an emerging model for developmental and regeneration biology. DNA Res 2019; 26:217-229. [PMID: 31006799 PMCID: PMC6589553 DOI: 10.1093/dnares/dsz003] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 02/28/2019] [Indexed: 12/14/2022] Open
Abstract
Urodele newts have unique biological properties, notably including prominent regeneration ability. The Iberian ribbed newt, Pleurodeles waltl, is a promising model amphibian distinguished by ease of breeding and efficient transgenic and genome editing methods. However, limited genetic information is available for P. waltl. We conducted an intensive transcriptome analysis of P. waltl using RNA-sequencing to build and annotate gene models. We generated 1.2 billion Illumina reads from a wide variety of samples across 12 different tissues/organs, unfertilized egg, and embryos at eight different developmental stages. These reads were assembled into 1,395,387 contigs, from which 202,788 non-redundant ORF models were constructed. The set is expected to cover a large fraction of P. waltl protein-coding genes, as confirmed by BUSCO analysis, where 98% of universal single-copy orthologs were identified. Ortholog analyses revealed the gene repertoire evolution of urodele amphibians. Using the gene set as a reference, gene network analysis identified regeneration-, developmental-stage-, and tissue-specific co-expressed gene modules. Our transcriptome resource is expected to enhance future research employing this emerging model animal for regeneration research as well as for investigations in other areas including developmental biology, stem cell biology, and cancer research. These data are available via our portal website, iNewt (http://www.nibb.ac.jp/imori/main/).
Collapse
Affiliation(s)
- Masatoshi Matsunami
- Department of Advanced Genomics and Laboratory Medicine, Graduate School of Medicine, University of the Ryukyus, Nishihara-Cho, Okinawa, Japan
| | - Miyuki Suzuki
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashihiroshima, Hiroshima, Japan
| | - Yoshikazu Haramoto
- Biotechnology Research Institute for Drug Discovery, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Akimasa Fukui
- Department of Biological Sciences, Faculty of Science and Engineering, Chuo University, Bunkyo-Ku, Tokyo, Japan
| | - Takeshi Inoue
- Department of Life Science, Faculty of Science, Gakushuin University, Toshima-Ku, Tokyo, Japan
| | - Katsushi Yamaguchi
- Functional Genomics Facility, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Ikuo Uchiyama
- NIBB Core Research Facilities, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Kazuki Mori
- Computational Bio Big-Data Open Innovation Lab. (CBBD-OIL), Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Shinjuku-Ku, Tokyo, Japan
| | - Kosuke Tashiro
- Laboratory of Molecular Gene Technology, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Fukuoka, Japan
| | - Yuzuru Ito
- Biotechnology Research Institute for Drug Discovery, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Takashi Takeuchi
- Department of Biomedical Sciences, School of Life Science, Faculty of Medicine, Tottori University, Yonago, Tottori, Japan
| | - Ken-ichi T Suzuki
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashihiroshima, Hiroshima, Japan
- Center for the Development of New Model Organisms, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Kiyokazu Agata
- Department of Life Science, Faculty of Science, Gakushuin University, Toshima-Ku, Tokyo, Japan
| | - Shuji Shigenobu
- NIBB Core Research Facilities, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Toshinori Hayashi
- Department of Biomedical Sciences, School of Life Science, Faculty of Medicine, Tottori University, Yonago, Tottori, Japan
| |
Collapse
|
5
|
Suzuki M, Hayashi T, Inoue T, Agata K, Hirayama M, Suzuki M, Shigenobu S, Takeuchi T, Yamamoto T, Suzuki KIT. Cas9 ribonucleoprotein complex allows direct and rapid analysis of coding and noncoding regions of target genes in Pleurodeles waltl development and regeneration. Dev Biol 2018; 443:127-136. [DOI: 10.1016/j.ydbio.2018.09.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 09/07/2018] [Accepted: 09/07/2018] [Indexed: 12/14/2022]
|
6
|
Abstract
In this review, we compare and contrast the three different forms of vertebrate lens regeneration: Wolffian lens regeneration, cornea-lens regeneration, and lens regeneration from lens epithelial cells. An examination of the diverse cellular origins of these lenses, their unique phylogenetic distribution, and the underlying molecular mechanisms, suggests that these different forms of lens regeneration evolved independently and utilize neither conserved nor convergent mechanisms to regulate these processes.
Collapse
Affiliation(s)
- Jonathan J Henry
- Department of Cell and Developmental Biology, University of Illinois, Urbana, IL
| | | |
Collapse
|
7
|
Nakajima K, Nakajima T, Yaoita Y. Generation of Albino Cynops pyrrhogaster by Genomic Editing of the tyrosinase Gene. Zoolog Sci 2016; 33:290-4. [PMID: 27268983 DOI: 10.2108/zs150203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Albino animals are useful for in situ hybridization experiments that demonstrate gene expression in embryos and organs, for the immunological rejection of skin grafts transplanted to host animals, and to identify tissues with regenerative ability during limbs and retina regeneration processes. Cynops pyrrhogaster has extensive regenerating capacities. To facilitate regenerative research, in the present study, we produced albino C. pyrrhogaster using genomic editing. The DNA fragment containing part of the tyrosinase gene from C. pyrrhogaster was amplified using degenerate primers corresponding to evolutionarily conserved nucleotide sequences among several species, and the nucleotide sequence was determined. We designed a transcription activator-like effector nuclease (TALEN) that targets a candidate of the C. pyrrhogaster tyrosinase gene. Fertilized eggs were injected with TALEN mRNA, and albinos of C. pyrrhogaster were obtained. The results of the present study demonstrated that TALEN can be used effectively for genomic editing in C. pyrrhogaster and that the candidates of the tyrosinase gene that were cloned by us are essential for melanin synthesis. The albino newts created in the present study can be used as versatile experimental material.
Collapse
Affiliation(s)
| | - Taeko Nakajima
- Division of Embryology and Genetics, Institute for Amphibian Biology, Graduate School of Science, Hiroshima University, 1-3-1, Kagamiyama, Higashihiroshima, Hiroshima 739-8526, Japan
| | - Yoshio Yaoita
- Division of Embryology and Genetics, Institute for Amphibian Biology, Graduate School of Science, Hiroshima University, 1-3-1, Kagamiyama, Higashihiroshima, Hiroshima 739-8526, Japan
| |
Collapse
|
8
|
Jarrin M, Young L, Wu W, Girkin JM, Quinlan RA. In vivo, Ex Vivo, and In Vitro Approaches to Study Intermediate Filaments in the Eye Lens. Methods Enzymol 2016; 568:581-611. [DOI: 10.1016/bs.mie.2015.09.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
9
|
Tsutsumi R, Inoue T, Yamada S, Agata K. Reintegration of the regenerated and the remaining tissues during joint regeneration in the newt Cynops pyrrhogaster. ACTA ACUST UNITED AC 2015; 2:26-36. [PMID: 27499865 PMCID: PMC4895332 DOI: 10.1002/reg2.28] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 01/09/2015] [Accepted: 01/09/2015] [Indexed: 02/05/2023]
Abstract
Urodele amphibians, such as newts, can regenerate a functional limb, including joints, after amputation at any level along the proximal−distal axis of the limb. The blastema can regenerate the limb morphology largely independently of the stump after proximal−distal identity has been established, but the remaining and regenerated tissues must be structurally reintegrated (matched in size and shape). Here we used newt joint regeneration as a model to investigate reintegration, because a functionally interlocking joint requires structural integration between its opposing skeletal elements. After forelimbs were amputated at the elbow joint, the joint was regenerated between the remaining and regenerated skeletal elements. The regenerated cartilage was thick around the amputated joint to make a reciprocally interlocking joint structure with the remaining bone. Furthermore, during regeneration, the extracellular matrix of the remaining tissues was lost, suggesting that the remaining tissues might contribute to the morphogenesis of regenerating cartilage. Our results showed that the area of the regenerated cartilage matched the area of the apposed remaining cartilage, thus contributing to formation of a functional structure.
Collapse
Affiliation(s)
- Rio Tsutsumi
- Department of Biophysics Graduate School of Science Kyoto University Kyoto Japan
| | - Takeshi Inoue
- Department of Biophysics Graduate School of Science Kyoto University Kyoto Japan
| | - Shigehito Yamada
- Human Health Science Graduate School of Medicine Kyoto University Kyoto Japan; Congenital Anomaly Research Center Graduate School of Medicine Kyoto University Kyoto Japan
| | - Kiyokazu Agata
- Department of Biophysics Graduate School of Science Kyoto University Kyoto Japan
| |
Collapse
|
10
|
Wassmer S, Beddaoui M, Rajai P, Munger R, Tsilfidis C. A focus on the optical properties of the regenerated newt lens. PLoS One 2013; 8:e70845. [PMID: 23990914 PMCID: PMC3750027 DOI: 10.1371/journal.pone.0070845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 06/25/2013] [Indexed: 11/30/2022] Open
Abstract
Lens regeneration studies in the adult newt suggest that molecular aspects of lens regeneration are complete within 5 weeks of lentectomy. However, very little is known about the optical properties of the regenerated lens. In an aquatic environment, the lens accounts for almost all of the refractive power of the eye, and thus, a fully functional lens is critical. We compared the optical properties of 9- and 26-week regenerated lenses in the red spotted newt, Notophthalmus viridescens, with the original lenses removed from the same eyes. At 9 weeks, the regenerated lenses are smaller than the original lenses and are histologically immature, with a lower density of lens proteins. The 9 week lenses have greater light transmission, but significantly reduced focal length and refractive index than the original lenses. This suggests that following 9 weeks of regeneration, the lenses have not recovered the functionality of the original lens. By 26 weeks, the transmission of light in the more mature lens is reduced, but the optical parameters of the lens have recovered enough to allow functional vision.
Collapse
Affiliation(s)
- Sarah Wassmer
- Ottawa Hospital Research Institute, Vision Research Program, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Margaret Beddaoui
- Ottawa Hospital Research Institute, Vision Research Program, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Payman Rajai
- Ottawa Hospital Research Institute, Vision Research Program, Ottawa, Ontario, Canada
- Department of Physics, University of Ottawa, Ottawa, Ontario, Canada
| | - Réjean Munger
- Ottawa Hospital Research Institute, Vision Research Program, Ottawa, Ontario, Canada
- Department of Physics, University of Ottawa, Ottawa, Ontario, Canada
- Department of Ophthalmology, University of Ottawa, Ottawa, Ontario, Canada
| | - Catherine Tsilfidis
- Ottawa Hospital Research Institute, Vision Research Program, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Department of Ophthalmology, University of Ottawa, Ottawa, Ontario, Canada
- * E-mail:
| |
Collapse
|