1
|
Kanlisi RA, Amuzu-Aweh EN, Naazie A, Otsyina HR, Kelly TR, Gallardo RA, Lamont SJ, Zhou H, Dekkers J, Kayang BB. Genetic architecture of body weight, carcass, and internal organs traits of Ghanaian local chickens. Front Genet 2024; 15:1297034. [PMID: 38549860 PMCID: PMC10976558 DOI: 10.3389/fgene.2024.1297034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/26/2024] [Indexed: 11/12/2024] Open
Abstract
Information on the genetic architecture of the production traits of indigenous African chicken is limited. We performed a genome-wide association study using imputed Affymetrix Axiom® 600K SNP-chip genotypes on 1,113 chickens from three agroecological zones of Ghana. After quality control, a total of 382,240 SNPs remained. Variance components and heritabilities for some growth, carcass and internal organ traits were estimated. The genetic and phenotypic correlations among these traits were also estimated. The estimated heritabilities of body weight at week 22 (BW22), average daily gain (ADG), dressed weight, breast weight, thigh weight, wing weight, drumstick weight, and neck weight were high and ranged from 0.50 to 0.69. Estimates of heritabilities for head weight, shank weight, and gizzard weight were moderate (0.31-0.35) while those of liver weight, back weight, dressing percentage, and heart weight were low (0.13-0.21). The estimated heritabilities of dressed weight, breast weight, wing weight, drumstick weight, neck weight, shank weight, and gizzard weight, corrected for BW22, were moderate (0.29-0.38), while the remaining traits had low heritability estimates (0.13-0.21). A total of 58 1-Mb SNP windows on chromosomes 1, 2, 4, 5, 6, 7, 8, 9, 13, 18, and 33 each explained more than 1% of the genetic variance for at least one of these traits. These genomic regions contained many genes previously reported to have effects on growth, carcass, and internal organ traits of chickens, including EMX2, CALCUL1, ACVR1B, CACNB1, RB1, MLNR, FOXO1, NCARPG, LCORL, LAP3, LDB2, KPNA3, and CAB39L. The moderate to high heritability estimates and high positive genetic correlations suggest that BW22, ADG, dressed weight, breast weight, thigh weight, wing weight, drumstick weight, and neck weight could be improved through selective breeding.
Collapse
Affiliation(s)
| | - Esinam N. Amuzu-Aweh
- Department of Animal Science, University of Ghana, Accra, Ghana
- United States Agency for International Development Feed the Future Innovation Lab for Genomics to Improve Poultry, University of California, Davis, CA, United States
| | - Augustine Naazie
- Department of Animal Science, University of Ghana, Accra, Ghana
- United States Agency for International Development Feed the Future Innovation Lab for Genomics to Improve Poultry, University of California, Davis, CA, United States
| | - Hope R. Otsyina
- United States Agency for International Development Feed the Future Innovation Lab for Genomics to Improve Poultry, University of California, Davis, CA, United States
- School of Veterinary Medicine, University of Ghana, Accra, Ghana
| | - Terra R. Kelly
- United States Agency for International Development Feed the Future Innovation Lab for Genomics to Improve Poultry, University of California, Davis, CA, United States
- One Health Institute, University of California, Davis, CA, United States
| | - Rodrigo A. Gallardo
- United States Agency for International Development Feed the Future Innovation Lab for Genomics to Improve Poultry, University of California, Davis, CA, United States
- School of Veterinary Medicine, University of California, Davis, CA, United States
| | - Susan J. Lamont
- United States Agency for International Development Feed the Future Innovation Lab for Genomics to Improve Poultry, University of California, Davis, CA, United States
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Huaijun Zhou
- United States Agency for International Development Feed the Future Innovation Lab for Genomics to Improve Poultry, University of California, Davis, CA, United States
- Department of Animal Science, University of California, Davis, CA, United States
| | - Jack Dekkers
- United States Agency for International Development Feed the Future Innovation Lab for Genomics to Improve Poultry, University of California, Davis, CA, United States
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Boniface B. Kayang
- Department of Animal Science, University of Ghana, Accra, Ghana
- United States Agency for International Development Feed the Future Innovation Lab for Genomics to Improve Poultry, University of California, Davis, CA, United States
| |
Collapse
|
2
|
Hubbard EF, Mashouri P, Pyle WG, Power GA. The effect of gradual ovarian failure on dynamic muscle function and the role of high-intensity interval training on mitigating impairments. Am J Physiol Cell Physiol 2023; 325:C1031-C1045. [PMID: 37661923 DOI: 10.1152/ajpcell.00318.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/05/2023]
Abstract
Skeletal muscle contractile function is impaired in menopause and exercise may mitigate this decline. We used the 4-vinylcyclohexene diepoxide (VCD) model of menopause to investigate the effects of gradual ovarian failure on skeletal muscle contractile function and whether high-intensity interval training (HIIT) can mitigate impairments. Sexually mature female CD-1 mice were assigned to one of three groups: control sedentary (n = 5), VCD-sedentary (n = 5), or VCD-training (n = 5). Following ovarian failure (a 4-mo process), the VCD-training group underwent 8 wk of uphill HIIT. Mice were euthanized 8 wk after ovarian failure, representing late menopause. Single fibers from the soleus (SOL) and extensor digitorum longus (EDL) muscles were dissected, chemically permeabilized, and mechanically tested. Single muscle fibers were maximally activated (pCa 4.5), then isotonic load clamps were performed to evaluate force-velocity-power relationships. Absolute force and peak power were 31.0% and 32.2% lower in VCD-sedentary fibers compared with control fibers, respectively, in both SOL and EDL muscles. Despite reductions in absolute force, there were no concomitant increases in contractile velocity to preserve power production. HIIT attenuated force loss in the VCD-training group such that peak force was not different from the control group across muscles and was partially effective at mitigating power loss (21.7% higher peak power in VCD-training compared with VCD-sedentary) but only in fast-type SOL fibers. These findings indicate that ovarian failure impairs dynamic contractile function-likely through a combination of lower force-generating capacity and slower shortening velocity-and that HIIT may be insufficient to completely counteract the deleterious effects of menopause at the cellular level.NEW & NOTEWORTHY We used the VCD model of menopause to investigate the effects of gradual ovarian failure on skeletal muscle contractile function and whether high-intensity interval training (HIIT) can mitigate impairments. Our findings indicate that ovarian failure impairs dynamic contractile function-likely through a combination of lower force-generating capacity and slower shortening velocity-and that HIIT may be insufficient to completely counteract the deleterious effects of menopause at the cellular level.
Collapse
Affiliation(s)
- Emma F Hubbard
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Parastoo Mashouri
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
| | - W Glen Pyle
- IMPART Network, Dalhousie Medicine, Saint John, New Brunswick, Canada
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Geoffrey A Power
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
3
|
Fomchenko KM, Walsh EM, Yang X, Verma RX, Lin BL, Nieuwenhuis TO, Patil AH, Fox-Talbot K, McCall MN, Kass DA, Rosenberg AZ, Halushka MK. Spatial Proteomic Approach to Characterize Skeletal Muscle Myofibers. J Proteome Res 2020; 20:888-894. [PMID: 33251806 DOI: 10.1021/acs.jproteome.0c00673] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Skeletal muscle myofibers have differential protein expression resulting in functionally distinct slow- and fast-twitch types. While certain protein classes are well-characterized, the depth of all proteins involved in this process is unknown. We utilized the Human Protein Atlas (HPA) and the HPASubC tool to classify mosaic expression patterns of staining across 49,600 unique tissue microarray (TMA) images using a visual proteomic approach. We identified 2164 proteins with potential mosaic expression, of which 1605 were categorized as "likely" or "real." This list included both well-known fiber-type-specific and novel proteins. A comparison of the 1605 mosaic proteins with a mass spectrometry (MS)-derived proteomic dataset of single human muscle fibers led to the assignment of 111 proteins to fiber types. We additionally used a multiplexed immunohistochemistry approach, a multiplexed RNA-ISH approach, and STRING v11 to further assign or suggest fiber types of newly characterized mosaic proteins. This visual proteomic analysis of mature skeletal muscle myofibers greatly expands the known repertoire of twitch-type-specific proteins.
Collapse
Affiliation(s)
- Katherine M Fomchenko
- Department of Pathology, Johns Hopkins University School of Medicine, Ross Bldg. Rm 632B, 720 Rutland Avenue, Baltimore, Maryland 21205, United States
| | - Elise M Walsh
- Department of Pathology, Johns Hopkins University School of Medicine, Ross Bldg. Rm 632B, 720 Rutland Avenue, Baltimore, Maryland 21205, United States
| | - Xiaoping Yang
- Department of Pathology, Johns Hopkins University School of Medicine, Ross Bldg. Rm 632B, 720 Rutland Avenue, Baltimore, Maryland 21205, United States
| | - Rohan X Verma
- Department of Pathology, Johns Hopkins University School of Medicine, Ross Bldg. Rm 632B, 720 Rutland Avenue, Baltimore, Maryland 21205, United States
| | - Brian L Lin
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Tim O Nieuwenhuis
- Department of Pathology, Johns Hopkins University School of Medicine, Ross Bldg. Rm 632B, 720 Rutland Avenue, Baltimore, Maryland 21205, United States
| | - Arun H Patil
- Department of Pathology, Johns Hopkins University School of Medicine, Ross Bldg. Rm 632B, 720 Rutland Avenue, Baltimore, Maryland 21205, United States
| | - Karen Fox-Talbot
- Department of Pathology, Johns Hopkins University School of Medicine, Ross Bldg. Rm 632B, 720 Rutland Avenue, Baltimore, Maryland 21205, United States
| | - Matthew N McCall
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - David A Kass
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Avi Z Rosenberg
- Department of Pathology, Johns Hopkins University School of Medicine, Ross Bldg. Rm 632B, 720 Rutland Avenue, Baltimore, Maryland 21205, United States
| | - Marc K Halushka
- Department of Pathology, Johns Hopkins University School of Medicine, Ross Bldg. Rm 632B, 720 Rutland Avenue, Baltimore, Maryland 21205, United States
| |
Collapse
|
4
|
Endo C, Johnson TA, Morino R, Nakazono K, Kamitsuji S, Akita M, Kawajiri M, Yamasaki T, Kami A, Hoshi Y, Tada A, Ishikawa K, Hine M, Kobayashi M, Kurume N, Tsunemi Y, Kamatani N, Kawashima M. Genome-wide association study in Japanese females identifies fifteen novel skin-related trait associations. Sci Rep 2018; 8:8974. [PMID: 29895819 PMCID: PMC5997657 DOI: 10.1038/s41598-018-27145-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 05/25/2018] [Indexed: 12/27/2022] Open
Abstract
Skin trait variation impacts quality-of-life, especially for females from the viewpoint of beauty. To investigate genetic variation related to these traits, we conducted a GWAS of various skin phenotypes in 11,311 Japanese women and identified associations for age-spots, freckles, double eyelids, straight/curly hair, eyebrow thickness, hairiness, and sweating. In silico annotation with RoadMap Epigenomics epigenetic state maps and colocalization analysis of GWAS and GTEx Project eQTL signals provided information about tissue specificity, candidate causal variants, and functional target genes. Novel signals for skin-spot traits neighboured AKAP1/MSI2 (rs17833789; P = 2.2 × 10-9), BNC2 (rs10810635; P = 2.1 × 10-22), HSPA12A (rs12259842; P = 7.1 × 10-11), PPARGC1B (rs251468; P = 1.3 × 10-21), and RAB11FIP2 (rs10444039; P = 5.6 × 10-21). HSPA12A SNPs were the only protein-coding gene eQTLs identified across skin-spot loci. Double edged eyelid analysis identified that a signal around EMX2 (rs12570134; P = 8.2 × 10-15) was also associated with expression of EMX2 and the antisense-RNA gene EMX2OS in brain putamen basal ganglia tissue. A known hair morphology signal in EDAR was associated with both eyebrow thickness (rs3827760; P = 1.7 × 10-9) and straight/curly hair (rs260643; P = 1.6 × 10-103). Excessive hairiness signals' top SNPs were also eQTLs for TBX15 (rs984225; P = 1.6 × 10-8), BCL2 (rs7226979; P = 7.3 × 10-11), and GCC2 and LIMS1 (rs6542772; P = 2.2 × 10-9). For excessive sweating, top variants in two signals in chr2:28.82-29.05 Mb (rs56089836; P = 1.7 × 10-11) were eQTLs for either PPP1CB or PLB1, while a top chr16:48.26-48.45 Mb locus SNP was a known ABCC11 missense variant (rs6500380; P = 6.8 × 10-10). In total, we identified twelve loci containing sixteen association signals, of which fifteen were novel. These findings will help dermatologic researchers better understand the genetic underpinnings of skin-related phenotypic variation in human populations.
Collapse
Affiliation(s)
- Chihiro Endo
- Department of Dermatology, School of Medicine, Tokyo Women's Medical University, Shinjuku, Tokyo, 162-8666, Japan
| | | | - Ryoko Morino
- EverGene Ltd., Shinjuku-ku, Tokyo, 163-1435, Japan
| | | | | | | | | | - Tatsuya Yamasaki
- Life Science Group, Healthcare Division, Department of Healthcare Business, MTI Ltd., Shinjuku-ku, Tokyo, 163-1435, Japan
| | - Azusa Kami
- EverGene Ltd., Shinjuku-ku, Tokyo, 163-1435, Japan
| | - Yuria Hoshi
- Life Science Group, Healthcare Division, Department of Healthcare Business, MTI Ltd., Shinjuku-ku, Tokyo, 163-1435, Japan
| | - Asami Tada
- EverGene Ltd., Shinjuku-ku, Tokyo, 163-1435, Japan
| | | | - Maaya Hine
- LunaLuna Division, Department of Healthcare Business, MTI Ltd., Shinjuku-ku, Tokyo, 163-1435, Japan
| | - Miki Kobayashi
- LunaLuna Division, Department of Healthcare Business, MTI Ltd., Shinjuku-ku, Tokyo, 163-1435, Japan
| | - Nami Kurume
- LunaLuna Division, Department of Healthcare Business, MTI Ltd., Shinjuku-ku, Tokyo, 163-1435, Japan
| | - Yuichiro Tsunemi
- Department of Dermatology, School of Medicine, Tokyo Women's Medical University, Shinjuku, Tokyo, 162-8666, Japan
| | | | - Makoto Kawashima
- Department of Dermatology, School of Medicine, Tokyo Women's Medical University, Shinjuku, Tokyo, 162-8666, Japan
| |
Collapse
|
5
|
Hatch K, Pabon A, DiMario JX. EMX2 activates slow myosin heavy chain 2 gene expression in embryonic muscle fibers. Mech Dev 2017; 147:8-16. [PMID: 28673691 DOI: 10.1016/j.mod.2017.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 06/23/2017] [Accepted: 06/25/2017] [Indexed: 10/19/2022]
Abstract
Avian myogenesis is partly characterized by commitment of distinct myoblast cell lineages to the formation of specific muscle fiber types. Previous studies have identified the transcription factor EMX2 as a regulator of slow myosin heavy chain 2 (MyHC2) gene expression in fast/slow primary muscle fibers. We report here the interaction of EMX2 with the slow MyHC2 transcriptional regulatory region in fast/slow embryonic muscle fibers. Promoter activity and electromobility shift assays localized the site of interaction of EMX2 with the slow MyHC2 gene within a defined binding site located between 3336 and 3326bp from the 3' end of the cloned slow MyHC2 DNA containing the transcriptional regulatory region. Using clonally-derived myoblasts stably committed to the formation of fast/slow muscle fibers, we also report the effect of altered EMX2 gene expression on genome-wide gene expression within these myoblasts. Increased EMX2 gene expression in fast/slow myoblasts caused altered gene expression of 1185 genes, indicating that EMX2 plays a central role in the gene expression profile of embryonic myoblasts.
Collapse
Affiliation(s)
- Kristina Hatch
- School of Graduate and Postdoctoral Studies and Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Amanda Pabon
- School of Graduate and Postdoctoral Studies and Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Joseph X DiMario
- School of Graduate and Postdoctoral Studies and Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA.
| |
Collapse
|
6
|
C/EBPα represses slow myosin heavy chain 2 gene expression in developing avian myotubes. Biochim Biophys Acta Gen Subj 2016; 1860:2355-2362. [PMID: 27424922 DOI: 10.1016/j.bbagen.2016.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/09/2016] [Accepted: 07/07/2016] [Indexed: 11/24/2022]
Abstract
BACKGROUND The CCAAT/enhancer binding proteins (C/EBP) comprise a family of transcription factors that regulate many cellular processes. Little is known of their function during embryonic and fetal myogenesis. Slow myosin heavy chain 2 (MyHC2) is a marker of the slow avian skeletal muscle fiber type, and slow MyHC2 gene regulation involves molecular pathways that lead to muscle fiber type diversification. METHODS The biological effects of C/EBPα and C/EBPβ expression were analyzed by use of a general C/EBP activity reporter and by slow MyHC2 promoter-reporter constructs transfected into specific myogenic cell lineages. The effects of C/EBPα and C/EBPβ expression were also analyzed by immunocytochemical detection of slow MyHC2. C/EBPα interaction with the slow MyHC2 promoter was assessed by electromobility shift assays. RESULTS C/EBPα and C/EBPβ are present in embryonic fast and fast/slow avian myogenic lineages. Overexpression of C/EBPα cDNA repressed slow MyHC2 promoter activity in embryonic myotubes and in both electrically stimulated fetal myotubes. Deletion analysis of the slow MyHC2 promoter-luciferase reporter demonstrated that the transcriptional repression mediated by C/EBPα occurs within the first 222bp upstream from exon 1 of the slow MyHC2 gene. Electromobility shift assays determined that C/EBPα can bind to a non-canonical C/EBP site within the slow MyHC2 gene, and mutation of this site reduced transcriptional repression of the slow MyHC2 gene. CONCLUSION C/EBPα, but not C/EBPβ, represses slow MyHC2 promoter activity via a non-canonical C/EBP binding element. GENERAL SIGNIFICANCE Members of the C/EBP family of transcription factors differentially regulate genes indicative of distinct muscle fiber types.
Collapse
|