1
|
Huang N, Zhang H, Huang Z, Wu X, Zhang N, Jiang Y, Chen C, Zhuang J. Whole Exome Sequencing Revealing a Novel PBX1 Gene Variant in a Chinese Family Causing Recurrent Neonatal Death. Birth Defects Res 2024; 116:e2396. [PMID: 39189629 DOI: 10.1002/bdr2.2396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/04/2024] [Accepted: 08/15/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND Causative mutations of PBX1 are associated with congenital abnormalities of the kidney and urinary tract (CAKUT), often accompanied by hearing loss, abnormal ear morphology, or developmental delay. The aim of the present investigation was to introduce a novel variant in the PBX1 gene identified in a Chinese family, leading to recurrent neonatal mortality. METHODS A pregnant woman (gravida 5, para 0), who had experienced recurrent neonatal deaths, sought genetic etiology diagnosis. Whole exome sequencing (WES) was conducted to identify sequence variants and copy number variants in the fetus presenting with posterior nuchal cystic hygroma and fetal hydrops. RESULTS A novel NM_002585.4:c.694G>C(p.D232H) in PBX1 was identified in the fetus through trio whole exome sequencing (WES), revealing a paternal mosaic PBX1 variant in blood at 11.54% (6/52 variants reads). Subsequent parental Sanger sequencing confirmed the variant detected by WES. Ultimately, the variant was classified as likely pathogenic, leading the family to elect pregnancy termination at 17 weeks gestation. CONCLUSION The novel variant in the PBX1 gene appears to be a significant factor contributing to recurrent neonatal deaths in the Chinese family. Such findings expand the spectrum of PBX1 gene variants and provide valuable perinatal guidance for diagnosing fetuses with PBX1 mutations.
Collapse
Affiliation(s)
- Nan Huang
- The Teaching and Research Office of Clinical Laboratory Medicine, Quanzhou Medical College, Quanzhou, China
| | - Hegan Zhang
- Department of Gynecology, Quanzhou Women's and Children's Hospital, Quanzhou, China
| | - Zhengping Huang
- Department of Neurology, Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Xiaoxia Wu
- Prenatal Diagnosis Center, Quanzhou Women's and Children's Hospital, Quanzhou, China
| | - Na Zhang
- Prenatal Diagnosis Center, Quanzhou Women's and Children's Hospital, Quanzhou, China
| | - Yuying Jiang
- Prenatal Diagnosis Center, Quanzhou Women's and Children's Hospital, Quanzhou, China
| | - Chunnuan Chen
- Department of Neurology, Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Jianlong Zhuang
- Prenatal Diagnosis Center, Quanzhou Women's and Children's Hospital, Quanzhou, China
| |
Collapse
|
2
|
Schnitzler CE, Chang ES, Waletich J, Quiroga-Artigas G, Wong WY, Nguyen AD, Barreira SN, Doonan L, Gonzalez P, Koren S, Gahan JM, Sanders SM, Bradshaw B, DuBuc TQ, Febrimarsa, de Jong D, Nawrocki EP, Larson A, Klasfeld S, Gornik SG, Moreland RT, Wolfsberg TG, Phillippy AM, Mullikin JC, Simakov O, Cartwright P, Nicotra M, Frank U, Baxevanis AD. The genome of the colonial hydroid Hydractinia reveals their stem cells utilize a toolkit of evolutionarily shared genes with all animals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.25.554815. [PMID: 37786714 PMCID: PMC10541594 DOI: 10.1101/2023.08.25.554815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Hydractinia is a colonial marine hydroid that exhibits remarkable biological properties, including the capacity to regenerate its entire body throughout its lifetime, a process made possible by its adult migratory stem cells, known as i-cells. Here, we provide an in-depth characterization of the genomic structure and gene content of two Hydractinia species, H. symbiolongicarpus and H. echinata, placing them in a comparative evolutionary framework with other cnidarian genomes. We also generated and annotated a single-cell transcriptomic atlas for adult male H. symbiolongicarpus and identified cell type markers for all major cell types, including key i-cell markers. Orthology analyses based on the markers revealed that Hydractinia's i-cells are highly enriched in genes that are widely shared amongst animals, a striking finding given that Hydractinia has a higher proportion of phylum-specific genes than any of the other 41 animals in our orthology analysis. These results indicate that Hydractinia's stem cells and early progenitor cells may use a toolkit shared with all animals, making it a promising model organism for future exploration of stem cell biology and regenerative medicine. The genomic and transcriptomic resources for Hydractinia presented here will enable further studies of their regenerative capacity, colonial morphology, and ability to distinguish self from non-self.
Collapse
Affiliation(s)
- Christine E Schnitzler
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL 32080, USA
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - E Sally Chang
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20892, USA
| | - Justin Waletich
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL 32080, USA
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Gonzalo Quiroga-Artigas
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL 32080, USA
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), Université de Montpellier, Centre National de la Recherche Scientifique, 34293 Montpellier CEDEX 05, France
| | - Wai Yee Wong
- Department of Molecular Evolution and Development, Faculty of Life Science, University of Vienna, A-1090 Vienna, Austria
| | - Anh-Dao Nguyen
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sofia N Barreira
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Liam Doonan
- Centre for Chromosome Biology, College of Science and Engineering, University of Galway, Galway, Ireland
| | - Paul Gonzalez
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sergey Koren
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - James M Gahan
- Centre for Chromosome Biology, College of Science and Engineering, University of Galway, Galway, Ireland
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Steven M Sanders
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Pittsburgh Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Brian Bradshaw
- Centre for Chromosome Biology, College of Science and Engineering, University of Galway, Galway, Ireland
| | - Timothy Q DuBuc
- Centre for Chromosome Biology, College of Science and Engineering, University of Galway, Galway, Ireland
- Swarthmore College, Swarthmore, PA 19081, USA
| | - Febrimarsa
- Centre for Chromosome Biology, College of Science and Engineering, University of Galway, Galway, Ireland
| | - Danielle de Jong
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL 32080, USA
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Eric P Nawrocki
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alexandra Larson
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL 32080, USA
| | - Samantha Klasfeld
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sebastian G Gornik
- Centre for Chromosome Biology, College of Science and Engineering, University of Galway, Galway, Ireland
- Centre for Organismal Studies, University of Heidelberg, Germany
| | - R Travis Moreland
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tyra G Wolfsberg
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Adam M Phillippy
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - James C Mullikin
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
- NIH Intramural Sequencing Center, Rockville, MD 20852, USA
| | - Oleg Simakov
- Department of Molecular Evolution and Development, Faculty of Life Science, University of Vienna, A-1090 Vienna, Austria
| | - Paulyn Cartwright
- Department of Evolution and Ecology, University of Kansas, Lawrence, KS 66045, USA
| | - Matthew Nicotra
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Pittsburgh Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Uri Frank
- Centre for Chromosome Biology, College of Science and Engineering, University of Galway, Galway, Ireland
| | - Andreas D Baxevanis
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
3
|
Abstract
Hox genes encode evolutionarily conserved transcription factors that are essential for the proper development of bilaterian organisms. Hox genes are unique because they are spatially and temporally regulated during development in a manner that is dictated by their tightly linked genomic organization. Although their genetic function during embryonic development has been interrogated, less is known about how these transcription factors regulate downstream genes to direct morphogenetic events. Moreover, the continued expression and function of Hox genes at postnatal and adult stages highlights crucial roles for these genes throughout the life of an organism. Here, we provide an overview of Hox genes, highlighting their evolutionary history, their unique genomic organization and how this impacts the regulation of their expression, what is known about their protein structure, and their deployment in development and beyond.
Collapse
Affiliation(s)
- Katharine A. Hubert
- Program in Genetics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Deneen M. Wellik
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| |
Collapse
|
4
|
Zhang Y, Lin W, Jiang W, Wang Z. MicroRNA-18 facilitates the stemness of gastric cancer by downregulating HMGB3 though targeting Meis2. Bioengineered 2022; 13:9959-9972. [PMID: 35416122 PMCID: PMC9161930 DOI: 10.1080/21655979.2022.2062529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
The recurrence and metastasis of gastric cancer are related to the stemness of gastric cancer cells. Researches have shown that miR-18 level is negatively correlated to the occurrence and development of certain cancer types. However, the effects of miR-18 on the stemness of gastric cancer remain uncertain. In this research, gastric cancer cell lines with stable overexpression of miR-18 were constructed through lentivirus infection. CCK-8 assay, RT-qPCR, Western blot, flow cytometry, and in vivo tumorigenesis assays were performed to evaluate the effects of miR-18 on the stemness of gastric cancer cells. Moreover, luciferase reporter assays found that Meis2 was the target of miR-18. Furthermore, we also found that the low-expressed oncogene HMGB3 is involved in this miR-18/Meis2 axis to further promote the stemness of gastric cancer cells. These findings suggest that the miR-18/Meis2/HMGB3 axis may be potential prognostic indicators for patients with gastric cancer.
Collapse
Affiliation(s)
- Yingjun Zhang
- Oncology Department of Radiotherapy, Zhongshan Hospital of Xiamen University, Xiamen, Fujian China
| | - Weijian Lin
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, Xiamen, Fujian, China
| | - Weiping Jiang
- Oncology Department of Radiotherapy, Zhongshan Hospital of Xiamen University, Xiamen, Fujian China
| | - Zhenfa Wang
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
5
|
Safgren SL, Olson RJ, Pinto E Vairo F, Bothun ED, Hanna C, Klee EW, Schimmenti LA. De novo PBX1 variant in a patient with glaucoma, kidney anomalies, and developmental delay: An expansion of the CAKUTHED phenotype. Am J Med Genet A 2022; 188:919-925. [PMID: 34797033 DOI: 10.1002/ajmg.a.62576] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/05/2021] [Accepted: 11/02/2021] [Indexed: 01/22/2023]
Abstract
An infant was referred for evaluation of congenital glaucoma and corneal clouding. In addition, he had a pelvic kidney, hypotonia, patent ductus arteriosus, abnormal pinnae, and developmental delay. Exome sequencing identified a previously unpublished de novo single nucleotide insertion in PBX1 c.400dupG (NM_002585.3), predicted to cause a frameshift resulting in a truncated protein with loss of function (p.Ala134Glyfs*65). Identification of this loss of function variant supports the diagnosis of congenital anomalies of the kidney and urinary tract syndrome with or without hearing loss, abnormal ears, or developmental delay (CAKUTHED). Here, we propose glaucoma as an extra-renal manifestation associated with PBX1-related disease due to the relationship of PBX1 with MEIS1, MEIS2, and FOXC1 transcription factors associated with eye development.
Collapse
Affiliation(s)
- Stephanie L Safgren
- Department of Quantitative Health Sciences, Division of Computational Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Rory J Olson
- Center of Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Filippo Pinto E Vairo
- Center of Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota, USA
| | - Erick D Bothun
- Department of Ophthalmology, Mayo Clinic, Rochester, Minnesota, USA
| | - Christian Hanna
- Department of Pediatric Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Eric W Klee
- Department of Quantitative Health Sciences, Division of Computational Biology, Mayo Clinic, Rochester, Minnesota, USA
- Center of Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota, USA
| | - Lisa A Schimmenti
- Department of Ophthalmology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Otorhinolaryngology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
6
|
Parker HJ, De Kumar B, Pushel I, Bronner ME, Krumlauf R. Analysis of lamprey meis genes reveals that conserved inputs from Hox, Meis and Pbx proteins control their expression in the hindbrain and neural tube. Dev Biol 2021; 479:61-76. [PMID: 34310923 DOI: 10.1016/j.ydbio.2021.07.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 06/10/2021] [Accepted: 07/22/2021] [Indexed: 11/23/2022]
Abstract
Meis genes are known to play important roles in the hindbrain and neural crest cells of jawed vertebrates. To explore the roles of Meis genes in head development during evolution of vertebrates, we have identified four meis genes in the sea lamprey genome and characterized their patterns of expression and regulation, with a focus on the hindbrain and pharynx. Each of the lamprey meis genes displays temporally and spatially dynamic patterns of expression, some of which are coupled to rhombomeric domains in the developing hindbrain and select pharyngeal arches. Studies of Meis loci in mouse and zebrafish have identified enhancers that are bound by Hox and TALE (Meis and Pbx) proteins, implicating these factors in the direct regulation of Meis expression. We examined the lamprey meis loci and identified a series of cis-elements conserved between lamprey and jawed vertebrate meis genes. In transgenic reporter assays we demonstrated that these elements act as neural enhancers in lamprey embryos, directing reporter expression in appropriate domains when compared to expression of their associated endogenous meis gene. Sequence alignments reveal that these conserved elements are in similar relative positions of the meis loci and contain a series of consensus binding motifs for Hox and TALE proteins. This suggests that ancient Hox and TALE-responsive enhancers regulated expression of ancestral vertebrate meis genes in segmental domains in the hindbrain and have been retained in the meis loci during vertebrate evolution. The presence of conserved Meis, Pbx and Hox binding sites in these lamprey enhancers links Hox and TALE factors to regulation of lamprey meis genes in the developing hindbrain, indicating a deep ancestry for these regulatory interactions prior to the divergence of jawed and jawless vertebrates.
Collapse
Affiliation(s)
- Hugo J Parker
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Bony De Kumar
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Irina Pushel
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Robb Krumlauf
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA; Department of Anatomy and Cell Biology, Kansas University Medical Center, Kansas City, KS, 66160, USA.
| |
Collapse
|
7
|
Durán Alonso MB, Vendrell V, López-Hernández I, Alonso MT, Martin DM, Giráldez F, Carramolino L, Giovinazzo G, Vázquez E, Torres M, Schimmang T. Meis2 Is Required for Inner Ear Formation and Proper Morphogenesis of the Cochlea. Front Cell Dev Biol 2021; 9:679325. [PMID: 34124068 PMCID: PMC8194062 DOI: 10.3389/fcell.2021.679325] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 04/29/2021] [Indexed: 02/05/2023] Open
Abstract
Meis genes have been shown to control essential processes during development of the central and peripheral nervous system. Here we have explored the roles of the Meis2 gene during vertebrate inner ear induction and the formation of the cochlea. Meis2 is expressed in several tissues required for inner ear induction and in non-sensory tissue of the cochlear duct. Global inactivation of Meis2 in the mouse leads to a severely reduced size of the otic vesicle. Tissue-specific knock outs of Meis2 reveal that its expression in the hindbrain is essential for otic vesicle formation. Inactivation of Meis2 in the inner ear itself leads to an aberrant coiling of the cochlear duct. By analyzing transcriptomes obtained from Meis2 mutants and ChIPseq analysis of an otic cell line, we define candidate target genes for Meis2 which may be directly or indirectly involved in cochlear morphogenesis. Taken together, these data show that Meis2 is essential for inner ear formation and provide an entry point to unveil the network underlying proper coiling of the cochlear duct.
Collapse
Affiliation(s)
- María Beatriz Durán Alonso
- Instituto de Biología y Genética Molecular, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas, Valladolid, Spain
| | - Victor Vendrell
- Instituto de Biología y Genética Molecular, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas, Valladolid, Spain
| | - Iris López-Hernández
- Instituto de Biología y Genética Molecular, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas, Valladolid, Spain
| | - María Teresa Alonso
- Instituto de Biología y Genética Molecular, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas, Valladolid, Spain
| | - Donna M Martin
- Departments of Pediatrics and Human Genetics, University of Michigan, Ann Arbor, MI, United States
| | - Fernando Giráldez
- CEXS, Universitat Pompeu Fabra, Parc de Recerca Biomédica de Barcelona, Barcelona, Spain
| | - Laura Carramolino
- Cardiovascular Development Program, Centro Nacional de Investigaciones Cardiovasculares, CNIC, Madrid, Spain
| | - Giovanna Giovinazzo
- Cardiovascular Development Program, Centro Nacional de Investigaciones Cardiovasculares, CNIC, Madrid, Spain
| | - Enrique Vázquez
- Cardiovascular Development Program, Centro Nacional de Investigaciones Cardiovasculares, CNIC, Madrid, Spain
| | - Miguel Torres
- Cardiovascular Development Program, Centro Nacional de Investigaciones Cardiovasculares, CNIC, Madrid, Spain
| | - Thomas Schimmang
- Instituto de Biología y Genética Molecular, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas, Valladolid, Spain
| |
Collapse
|
8
|
Wanner E, Thoppil H, Riabowol K. Senescence and Apoptosis: Architects of Mammalian Development. Front Cell Dev Biol 2021; 8:620089. [PMID: 33537310 PMCID: PMC7848110 DOI: 10.3389/fcell.2020.620089] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/30/2020] [Indexed: 12/11/2022] Open
Abstract
Mammalian development involves an exquisite choreography of cell division, differentiation, locomotion, programmed cell death, and senescence that directs the transformation of a single cell zygote to a mature organism containing on the order of 40 trillion cells in humans. How a single totipotent zygote undergoes the rapid stages of embryonic development to form over 200 different cell types is complex in the extreme and remains the focus of active research. Processes such as programmed cell death or apoptosis has long been known to occur during development to help sculpt organs and tissue systems. Other processes such as cellular senescence, long thought to only occur in pathologic states such as aging and tumorigenesis have been recently reported to play a vital role in development. In this review, we focus on apoptosis and senescence; the former as an integral mechanism that plays a critical role not only in mature organisms, but that is also essential in shaping mammalian development. The latter as a well-defined feature of aging for which some reports indicate a function in development. We will dissect the dual roles of major gene families, pathways such as Hox, Rb, p53, and epigenetic regulators such as the ING proteins in both early and the late stages and how they play antagonistic roles by increasing fitness and decreasing mortality early in life but contribute to deleterious effects and pathologies later in life.
Collapse
Affiliation(s)
- Emma Wanner
- Department of Biology, Faculty of Science, University of Calgary, Calgary, AB, Canada
| | - Harikrishnan Thoppil
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Karl Riabowol
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
9
|
Kruse K, Hug CB, Vaquerizas JM. FAN-C: a feature-rich framework for the analysis and visualisation of chromosome conformation capture data. Genome Biol 2020; 21:303. [PMID: 33334380 PMCID: PMC7745377 DOI: 10.1186/s13059-020-02215-9] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 11/30/2020] [Indexed: 01/01/2023] Open
Abstract
Chromosome conformation capture data, particularly from high-throughput approaches such as Hi-C, are typically very complex to analyse. Existing analysis tools are often single-purpose, or limited in compatibility to a small number of data formats, frequently making Hi-C analyses tedious and time-consuming. Here, we present FAN-C, an easy-to-use command-line tool and powerful Python API with a broad feature set covering matrix generation, analysis, and visualisation for C-like data ( https://github.com/vaquerizaslab/fanc ). Due to its compatibility with the most prevalent Hi-C storage formats, FAN-C can be used in combination with a large number of existing analysis tools, thus greatly simplifying Hi-C matrix analysis.
Collapse
Affiliation(s)
- Kai Kruse
- Max Planck Institute for Molecular Biomedicine, Roentgenstrasse 20, 48149, Muenster, Germany
| | - Clemens B Hug
- Max Planck Institute for Molecular Biomedicine, Roentgenstrasse 20, 48149, Muenster, Germany
| | - Juan M Vaquerizas
- Max Planck Institute for Molecular Biomedicine, Roentgenstrasse 20, 48149, Muenster, Germany.
- MRC London Institute of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
10
|
Sarkar RK, Sen Sharma S, Mandal K, Wadhwa N, Kunj N, Gupta A, Pal R, Rai U, Majumdar SS. Homeobox transcription factor Meis1 is crucial to Sertoli cell mediated regulation of male fertility. Andrology 2020; 9:689-699. [PMID: 33145986 DOI: 10.1111/andr.12941] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 10/27/2020] [Accepted: 11/02/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Infertility has become a global phenomenon and constantly declining sperm count in males in modern world pose a major threat to procreation of humans. Male fertility is critically dependent on proper functioning of testicular Sertoli cells. Defective Sertoli cell proliferation and/or impaired functional maturation may be one of the underlying causes of idiopathic male infertility. Using high-throughput "omics" approach, we found binding sites for homeobox transcription factor MEIS1 on the promoters of several genes up-regulated in pubertal (mature) Sertoli cells, indicating that MEIS1 may be crucial for Sertoli cell-mediated regulation of spermatogenesis at and after puberty. OBJECTIVE To decipher the role of transcription factor MEIS1 in Sertoli cell maturation and spermatogenesis. MATERIALS AND METHODS Sc-specific Meis1 knockdown (KD) transgenic mice were generated using pronuclear microinjection. Morphometric and histological analysis of the testes from transgenic mice was performed to identify defects in spermatogenesis. Epididymal sperm count and litter size were analyzed to determine the effect of Meis1 knockdown on fertility. RESULTS Sertoli cell (Sc)-specific Meis1 KD led to massive germ cell loss due to apoptosis and impaired spermatogenesis. Unlike normal pubertal Sc, the levels of SOX9 in pubertal Sc of Meis1 KD were significantly high, like immature Sc. A significant reduction in epididymal sperm count was observed in these mice. The mice were found to be infertile or sub-fertile (with reduced litter size), depending on the extent of Meis1 inhibition. DISCUSSION The results of this study demonstrated for the first time, a role of Meis1 in Sc maturation and normal spermatogenic progression. Inhibition of Meis1 in Sc was associated with deregulated spermatogenesis and a consequent decline in fertility of the transgenic mice. CONCLUSIONS Our results provided substantial evidence that suboptimal Meis1 expression in Sc may be one of the underlying causes of idiopathic infertility.
Collapse
Affiliation(s)
- Rajesh K Sarkar
- Cellular Endocrinology Lab, National Institute of Immunology, New Delhi, India.,Reproductive Physiology Lab, Department of Zoology, University of Delhi, New Delhi, India
| | - Souvik Sen Sharma
- Cellular Endocrinology Lab, National Institute of Immunology, New Delhi, India
| | - Kamal Mandal
- Cellular Endocrinology Lab, National Institute of Immunology, New Delhi, India
| | - Neerja Wadhwa
- Embryo Biotechnology Lab, National Institute of Immunology, New Delhi, India
| | - Neetu Kunj
- Embryo Biotechnology Lab, National Institute of Immunology, New Delhi, India
| | - Alka Gupta
- Cellular Endocrinology Lab, National Institute of Immunology, New Delhi, India
| | - Rahul Pal
- Cellular Endocrinology Lab, National Institute of Immunology, New Delhi, India
| | - Umesh Rai
- Reproductive Physiology Lab, Department of Zoology, University of Delhi, New Delhi, India
| | - Subeer S Majumdar
- Cellular Endocrinology Lab, National Institute of Immunology, New Delhi, India.,National Institute of Animal Biotechnology, Hyderabad, India
| |
Collapse
|
11
|
Doti N, Monti A, Bruckmann C, Calvanese L, Smaldone G, Caporale A, Falcigno L, D'Auria G, Blasi F, Ruvo M, Vitagliano L. Identification and characterization of cytotoxic amyloid-like regions in human Pbx-regulating protein-1. Int J Biol Macromol 2020; 163:618-629. [PMID: 32634512 DOI: 10.1016/j.ijbiomac.2020.06.271] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/19/2020] [Accepted: 06/30/2020] [Indexed: 01/05/2023]
Abstract
The ability of many proteins to fold into well-defined structures has been traditionally considered a prerequisite for fulfilling their functions. Protein folding is also regarded as a valuable loophole to escape uncontrolled and harmful aggregations. Here we show that the PBX-regulating protein-1 (PREP1), an important homeodomain transcription factor involved in cell growth and differentiation during embryogenesis, is endowed with an uncommon thermostability. Indeed, circular dichroism analyses indicate that it retains most of its secondary structure at very high temperatures. These findings have important implications for PREP1 functions since it is a stabilizing factor of its partner PBX1. Predictive analyses suggest that the observed PREP1 thermostability could be related to the presence of aggregation-prone regions. Interestingly, synthetic peptides corresponding to these regions exhibit a remarkable propensity to form toxic β-rich amyloid-like aggregates in physiological conditions. On this basis, we suggest that PREP1 stability is an effective way to prevent or limit the formation of harmful aggregates. Notably, one of these PREP1 fragments (residues 117-132) is able to reversibly switch from α-helical to β-rich states depending on the environmental conditions. The chameleon conformational behavior of this peptide makes it an ideal system to study this intriguing and widespread structural transition.
Collapse
Affiliation(s)
- Nunzianna Doti
- Institute of Biostructures and Bioimaging (IBB)-CNR, Via Mezzocannone 16, 80134 Naples, Italy
| | - Alessandra Monti
- Institute of Biostructures and Bioimaging (IBB)-CNR, Via Mezzocannone 16, 80134 Naples, Italy; Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy
| | - Chiara Bruckmann
- IFOM, Foundation FIRC (Italian Foundation for Cancer Research), Institute of Molecular Oncology, Milan, Italy
| | - Luisa Calvanese
- Institute of Biostructures and Bioimaging (IBB)-CNR, Via Mezzocannone 16, 80134 Naples, Italy
| | | | - Andrea Caporale
- Institute of Biostructures and Bioimaging (IBB)-CNR, Via Mezzocannone 16, 80134 Naples, Italy
| | - Lucia Falcigno
- Institute of Biostructures and Bioimaging (IBB)-CNR, Via Mezzocannone 16, 80134 Naples, Italy; Department of Pharmacy, University of Naples "Federico II", via Mezzocannone 16, 80134 Naples, Italy
| | - Gabriella D'Auria
- Institute of Biostructures and Bioimaging (IBB)-CNR, Via Mezzocannone 16, 80134 Naples, Italy; Department of Pharmacy, University of Naples "Federico II", via Mezzocannone 16, 80134 Naples, Italy
| | - Francesco Blasi
- IFOM, Foundation FIRC (Italian Foundation for Cancer Research), Institute of Molecular Oncology, Milan, Italy
| | - Menotti Ruvo
- Institute of Biostructures and Bioimaging (IBB)-CNR, Via Mezzocannone 16, 80134 Naples, Italy.
| | - Luigi Vitagliano
- Institute of Biostructures and Bioimaging (IBB)-CNR, Via Mezzocannone 16, 80134 Naples, Italy.
| |
Collapse
|
12
|
Parker HJ, Krumlauf R. A Hox gene regulatory network for hindbrain segmentation. Curr Top Dev Biol 2020; 139:169-203. [DOI: 10.1016/bs.ctdb.2020.03.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
13
|
Kavouras M, Malandrakis EE, Danis T, Blom E, Anastassiadis K, Panagiotaki P, Exadactylos A. Hox Genes Polymorphism Depicts Developmental Disruption of Common Sole Eggs. Open Life Sci 2019; 14:549-563. [PMID: 33817191 PMCID: PMC7874752 DOI: 10.1515/biol-2019-0061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 11/22/2019] [Indexed: 12/31/2022] Open
Abstract
In sole aquaculture production, consistency in the quality of produced eggs throughout the year is unpredictable. Hox genes have a crucial role in controlling embryonic development and their genetic variation could alter the phenotype dramatically. In teleosts genome duplication led paralog hox genes to become diverged. Direct association of polymorphism in hoxa1a, hoxa2a & hoxa2b of Solea solea with egg viability indicates hoxa2b as a potential genetic marker. High Resolution Melt (HRM) analysis was carried out in 52 viable and 61 non-viable eggs collected at 54±6 hours post fertilization (hpf). Allelic and genotypic frequencies of polymorphism were analyzed and results illustrated a significantly increased risk for non-viability for minor alleles and their homozygous genotypes. Haplotype analysis demonstrated a significant recessive effect on the risk of non-viability, by increasing the odds of disrupting embryonic development up to three-fold. Phylogenetic analysis showed that the paralog genes hoxa2a and hoxa2b, are separated distinctly in two clades and presented a significant ω variation, revealing their diverged evolutionary rate.
Collapse
Affiliation(s)
| | - Emmanouil E. Malandrakis
- Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Fytokou str, Volos, Greece
| | - Theodoros Danis
- Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Fytokou str, Volos, Greece
| | - Ewout Blom
- Wageningen Marine Research, Wageningen University & Research, IJmuiden, The Netherlands
| | | | - Panagiota Panagiotaki
- Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Fytokou str, Volos, Greece
| | | |
Collapse
|
14
|
Guan L, Li T, Ai N, Wang W, He B, Bai Y, Yu Z, Li M, Dong S, Zhu Q, Ding XX, Zhang S, Li M, Tang G, Xia X, Zhao J, Lin S, Yao S, Zhang L, Chen G, Liu FE, Li X, Zhang H. MEIS2C and MEIS2D promote tumor progression via Wnt/β-catenin and hippo/YAP signaling in hepatocellular carcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:417. [PMID: 31623651 PMCID: PMC6796342 DOI: 10.1186/s13046-019-1417-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 09/09/2019] [Indexed: 01/14/2023]
Abstract
Background MEIS2 has been identified as one of the key transcription factors in the gene regulatory network in the development and pathogenesis of human cancers. Our study aims to identify the regulatory mechanisms of MEIS2 in hepatocellular carcinoma (HCC), which could be targeted to develop new therapeutic strategies. Methods The variation of MEIS2 levels were assayed in a cohort of HCC patients. The proliferation, clone-formation, migration, and invasion abilities of HCC cells were measured to analyze the effects of MEIS2C and MEIS2D (MEIS2C/D) knockdown with small hairpin RNAs in vitro and in vivo. Chromatin immunoprecipitation (ChIP) was performed to identify MEIS2 binding site. Immunoprecipitation and immunofluorescence assays were employed to detect proteins regulated by MEIS2. Results The expression of MEIS2C/D was increased in the HCC specimens when compared with the adjacent noncancerous liver (ANL) tissues. Moreover, MEIS2C/D expression negatively correlated with the prognosis of HCC patients. On the other hand, knockdown of MEIS2C/D could inhibit proliferation and diminish migration and invasion of hepatoma cells in vitro and in vivo. Mechanistically, MESI2C activated Wnt/β-catenin pathway in cooperation with Parafibromin (CDC73), while MEIS2D suppressed Hippo pathway by promoting YAP nuclear translocation via miR-1307-3p/LATS1 axis. Notably, CDC73 could directly either interact with MEIS2C/β-catenin or MEIS2D/YAP complex, depending on its tyrosine-phosphorylation status. Conclusions Our studies indicate that MEISC/D promote HCC development via Wnt/β-catenin and Hippo/YAP signaling pathways, highlighting the complex molecular network of MEIS2C/D in HCC pathogenesis. These results suggest that MEISC/D may serve as a potential novel therapeutic target for HCC.
Collapse
Affiliation(s)
- Lei Guan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, 28, Xianning West Road, Xi'an, 710049, Shaanxi, People's Republic of China
| | - Ting Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, 28, Xianning West Road, Xi'an, 710049, Shaanxi, People's Republic of China
| | - Nanping Ai
- Department of Ophthalmology, Chinese PLA General Hospital, Beijing, 100853, People's Republic of China
| | - Wei Wang
- Department of Immunology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, China
| | - Bing He
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, 28, Xianning West Road, Xi'an, 710049, Shaanxi, People's Republic of China.,Department of Clinical Pharmacy, University of Michigan, Ann Arbor, MI, USA
| | - Yanxia Bai
- Department of Otolaryngology-Head-Neck Surgery, The First Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Zhaocai Yu
- Department of Medical Oncology. Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Mingyue Li
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, 712 Stellar-Chance Laboratories, 422 Curie Blvd, Philadelphia, PA, 19104, USA
| | - Shanshan Dong
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, 28, Xianning West Road, Xi'an, 710049, Shaanxi, People's Republic of China
| | - Qingge Zhu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, 28, Xianning West Road, Xi'an, 710049, Shaanxi, People's Republic of China
| | - Xiao Xiao Ding
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, 28, Xianning West Road, Xi'an, 710049, Shaanxi, People's Republic of China
| | - Shiming Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, 28, Xianning West Road, Xi'an, 710049, Shaanxi, People's Republic of China
| | - Ming Li
- School of Electronics and Information Engineering, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Guangbo Tang
- Medical College, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Xiaochun Xia
- Department of Medical Technology, Xiamen Medical College, Xiamen, 361023, People's Republic of China
| | - Jing Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, 28, Xianning West Road, Xi'an, 710049, Shaanxi, People's Republic of China
| | - Song Lin
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, 28, Xianning West Road, Xi'an, 710049, Shaanxi, People's Republic of China
| | - Shi Yao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, 28, Xianning West Road, Xi'an, 710049, Shaanxi, People's Republic of China
| | - Lei Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, 28, Xianning West Road, Xi'an, 710049, Shaanxi, People's Republic of China.,Department of General Surgery, 967 Hospital of PLA, Dalian, 116041, People's Republic of China
| | - Geng Chen
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, 28, Xianning West Road, Xi'an, 710049, Shaanxi, People's Republic of China
| | - Fang-E Liu
- Medical College, Xi'an Peihua University, Xi'an, People's Republic of China
| | - Xinyuan Li
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, 712 Stellar-Chance Laboratories, 422 Curie Blvd, Philadelphia, PA, 19104, USA.
| | - Huqin Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, 28, Xianning West Road, Xi'an, 710049, Shaanxi, People's Republic of China.
| |
Collapse
|
15
|
Schulte D, Geerts D. MEIS transcription factors in development and disease. Development 2019; 146:146/16/dev174706. [PMID: 31416930 DOI: 10.1242/dev.174706] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 06/28/2019] [Indexed: 12/12/2022]
Abstract
MEIS transcription factors are key regulators of embryonic development and cancer. Research on MEIS genes in the embryo and in stem cell systems has revealed novel and surprising mechanisms by which these proteins control gene expression. This Primer summarizes recent findings about MEIS protein activity and regulation in development, and discusses new insights into the role of MEIS genes in disease, focusing on the pathogenesis of solid cancers.
Collapse
Affiliation(s)
- Dorothea Schulte
- Institute of Neurology (Edinger Institute), University Hospital Frankfurt, Goethe University, 60528 Frankfurt, Germany
| | - Dirk Geerts
- Department of Medical Biology L2-109, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
16
|
Selleri L, Zappavigna V, Ferretti E. 'Building a perfect body': control of vertebrate organogenesis by PBX-dependent regulatory networks. Genes Dev 2019; 33:258-275. [PMID: 30824532 PMCID: PMC6411007 DOI: 10.1101/gad.318774.118] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Pbx genes encode transcription factors that belong to the TALE (three-amino-acid loop extension) superclass of homeodomain proteins. We have witnessed a surge in information about the roles of this gene family as leading actors in the transcriptional control of development. PBX proteins represent a clear example of how transcription factors can regulate developmental processes by combinatorial properties, acting within multimeric complexes to implement activation or repression of transcription depending on their interaction partners. Here, we revisit long-emphasized functions of PBX transcription factors as cofactors for HOX proteins, major architects of the body plan. We further discuss new knowledge on roles of PBX proteins in different developmental contexts as upstream regulators of Hox genes-as factors that interact with non-HOX proteins and can work independently of HOX-as well as potential pioneer factors. Committed to building a perfect body, PBX proteins govern regulatory networks that direct essential morphogenetic processes and organogenesis in vertebrate development. Perturbations of PBX-dependent networks can cause human congenital disease and cancer.
Collapse
Affiliation(s)
- Licia Selleri
- Program in Craniofacial Biology, University of California at San Francisco, San Francisco, California 94143, USA
- Institute of Human Genetics, University of California at San Francisco, San Francisco, California 94143, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California at San Francisco, San Francisco, California 94143, USA
- Department of Orofacial Sciences, University of California at San Francisco, San Francisco, California 94143, USA
- Department of Anatomy, University of California at San Francisco, San Francisco, California 94143, USA
| | - Vincenzo Zappavigna
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Elisabetta Ferretti
- The Novo Nordisk Foundation Center for Stem Cell Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark
| |
Collapse
|
17
|
Frank D, Sela-Donenfeld D. Hindbrain induction and patterning during early vertebrate development. Cell Mol Life Sci 2019; 76:941-960. [PMID: 30519881 PMCID: PMC11105337 DOI: 10.1007/s00018-018-2974-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 11/19/2018] [Accepted: 11/21/2018] [Indexed: 12/28/2022]
Abstract
The hindbrain is a key relay hub of the central nervous system (CNS), linking the bilaterally symmetric half-sides of lower and upper CNS centers via an extensive network of neural pathways. Dedicated neural assemblies within the hindbrain control many physiological processes, including respiration, blood pressure, motor coordination and different sensations. During early development, the hindbrain forms metameric segmented units known as rhombomeres along the antero-posterior (AP) axis of the nervous system. These compartmentalized units are highly conserved during vertebrate evolution and act as the template for adult brainstem structure and function. TALE and HOX homeodomain family transcription factors play a key role in the initial induction of the hindbrain and its specification into rhombomeric cell fate identities along the AP axis. Signaling pathways, such as canonical-Wnt, FGF and retinoic acid, play multiple roles to initially induce the hindbrain and regulate Hox gene-family expression to control rhombomeric identity. Additional transcription factors including Krox20, Kreisler and others act both upstream and downstream to Hox genes, modulating their expression and protein activity. In this review, we will examine the earliest embryonic signaling pathways that induce the hindbrain and subsequent rhombomeric segmentation via Hox and other gene expression. We will examine how these signaling pathways and transcription factors interact to activate downstream targets that organize the segmented AP pattern of the embryonic vertebrate hindbrain.
Collapse
Affiliation(s)
- Dale Frank
- Department of Biochemistry, Faculty of Medicine, The Rappaport Family Institute for Research in the Medical Sciences, Technion-Israel Institute of Technology, 31096, Haifa, Israel.
| | - Dalit Sela-Donenfeld
- Koret School of Veterinary Medicine, The Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 76100, Rehovot, Israel.
| |
Collapse
|
18
|
Kavouras M, Malandrakis EE, Golomazou E, Konstantinidis I, Blom E, Palstra AP, Anastassiadis K, Panagiotaki P, Exadactylos A. Hox gene expression profiles during embryonic development of common sole. ANIM BIOL 2019. [DOI: 10.1163/15707563-17000123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
Common sole (Solea solea) aquaculture production is based mostly on wild-caught breeders. Recently, the successful reproduction of first-generation fish that were reared in captivity was accomplished. A consistent good quality and quantity of produced eggs throughout the year, and of next-generation broodstock, is important for reducing the overall cost of production. Hox genes play a pivotal role in normal embryonic development and alterations of their temporal expression level may be important for egg viability. Expression profile analysis of five hox genes (hoxa1a, hoxa2a, hoxa2b, hoxb1a and hoxb1b) involved in early embryonic development and of hoxa13a, which is involved in late stages, was carried out. Results revealed a premature and/or maternal expression of hoxa13a in sole embryos, and the detection of hoxa2a and hoxa2b genes as members of paralog group 2. Principal Component Analysis of hox gene expression in 54 ± 6 hours post fertilization embryos coming from wild-caught broodstock and a first-generation one reared in the hatchery, unveiled that these broodstocks are clearly distinct. In addition, their pairwise comparison revealed significant differences in the expression levels of hoxb1a and hoxb1b genes. Hox gene regulation during embryonic development could give valuable insight into rearing sole broodstocks with different origin in concert, and also into gaining a steady mass production of eggs, either in quality or quantity, all year round.
Collapse
Affiliation(s)
- Menelaos Kavouras
- 1Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Fytokou Str., Volos, Greece
| | - Emmanouil E. Malandrakis
- 1Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Fytokou Str., Volos, Greece
| | - Eleni Golomazou
- 1Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Fytokou Str., Volos, Greece
| | - Ioannis Konstantinidis
- 1Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Fytokou Str., Volos, Greece
| | - Ewout Blom
- 2Wageningen Marine Research, Wageningen University & Research, IJmuiden, The Netherlands
| | - Arjan P. Palstra
- 3Wageningen University & Research, Animal Breeding and Genomics, Wageningen Livestock Research, Wageningen, The Netherlands
| | | | - Panagiota Panagiotaki
- 1Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Fytokou Str., Volos, Greece
| | - Athanasios Exadactylos
- 1Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Fytokou Str., Volos, Greece
| |
Collapse
|
19
|
Groß A, Schulz C, Kolb J, Koster J, Wehner S, Czaplinski S, Khilan A, Rohrer H, Harter PN, Klingebiel T, Langer JD, Geerts D, Schulte D. Tumorigenic and Antiproliferative Properties of the TALE-Transcription Factors MEIS2D and MEIS2A in Neuroblastoma. Cancer Res 2018; 78:1935-1947. [DOI: 10.1158/0008-5472.can-17-1860] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 11/15/2017] [Accepted: 01/24/2018] [Indexed: 11/16/2022]
|
20
|
De Kumar B, Parker HJ, Paulson A, Parrish ME, Pushel I, Singh NP, Zhang Y, Slaughter BD, Unruh JR, Florens L, Zeitlinger J, Krumlauf R. HOXA1 and TALE proteins display cross-regulatory interactions and form a combinatorial binding code on HOXA1 targets. Genome Res 2017; 27:1501-1512. [PMID: 28784834 PMCID: PMC5580710 DOI: 10.1101/gr.219386.116] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 07/24/2017] [Indexed: 01/02/2023]
Abstract
Hoxa1 has diverse functional roles in differentiation and development. We identify and characterize properties of regions bound by HOXA1 on a genome-wide basis in differentiating mouse ES cells. HOXA1-bound regions are enriched for clusters of consensus binding motifs for HOX, PBX, and MEIS, and many display co-occupancy of PBX and MEIS. PBX and MEIS are members of the TALE family and genome-wide analysis of multiple TALE members (PBX, MEIS, TGIF, PREP1, and PREP2) shows that nearly all HOXA1 targets display occupancy of one or more TALE members. The combinatorial binding patterns of TALE proteins define distinct classes of HOXA1 targets, which may create functional diversity. Transgenic reporter assays in zebrafish confirm enhancer activities for many HOXA1-bound regions and the importance of HOX-PBX and TGIF motifs for their regulation. Proteomic analyses show that HOXA1 physically interacts on chromatin with PBX, MEIS, and PREP family members, but not with TGIF, suggesting that TGIF may have an independent input into HOXA1-bound regions. Therefore, TALE proteins appear to represent a wide repertoire of HOX cofactors, which may coregulate enhancers through distinct mechanisms. We also discover extensive auto- and cross-regulatory interactions among the Hoxa1 and TALE genes, indicating that the specificity of HOXA1 during development may be regulated though a complex cross-regulatory network of HOXA1 and TALE proteins. This study provides new insight into a regulatory network involving combinatorial interactions between HOXA1 and TALE proteins.
Collapse
Affiliation(s)
- Bony De Kumar
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Hugo J Parker
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Ariel Paulson
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Mark E Parrish
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Irina Pushel
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | | | - Ying Zhang
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Brian D Slaughter
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Jay R Unruh
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Laurence Florens
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Julia Zeitlinger
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA.,Department of Pathology
| | - Robb Krumlauf
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA.,Department of Anatomy and Cell Biology, Kansas University Medical Center, Kansas City, Kansas 66160, USA
| |
Collapse
|
21
|
Peretz Y, Eren N, Kohl A, Hen G, Yaniv K, Weisinger K, Cinnamon Y, Sela-Donenfeld D. A new role of hindbrain boundaries as pools of neural stem/progenitor cells regulated by Sox2. BMC Biol 2016; 14:57. [PMID: 27392568 PMCID: PMC4938926 DOI: 10.1186/s12915-016-0277-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 06/21/2016] [Indexed: 01/28/2023] Open
Abstract
Background Compartment boundaries are an essential developmental mechanism throughout evolution, designated to act as organizing centers and to regulate and localize differently fated cells. The hindbrain serves as a fascinating example for this phenomenon as its early development is devoted to the formation of repetitive rhombomeres and their well-defined boundaries in all vertebrates. Yet, the actual role of hindbrain boundaries remains unresolved, especially in amniotes. Results Here, we report that hindbrain boundaries in the chick embryo consist of a subset of cells expressing the key neural stem cell (NSC) gene Sox2. These cells co-express other neural progenitor markers such as Transitin (the avian Nestin), GFAP, Pax6 and chondroitin sulfate proteoglycan. The majority of the Sox2+ cells that reside within the boundary core are slow-dividing, whereas nearer to and within rhombomeres Sox2+ cells are largely proliferating. In vivo analyses and cell tracing experiments revealed the contribution of boundary Sox2+ cells to neurons in a ventricular-to-mantle manner within the boundaries, as well as their lateral contribution to proliferating Sox2+ cells in rhombomeres. The generation of boundary-derived neurospheres from hindbrain cultures confirmed the typical NSC behavior of boundary cells as a multipotent and self-renewing Sox2+ cell population. Inhibition of Sox2 in boundaries led to enhanced and aberrant neural differentiation together with inhibition in cell-proliferation, whereas Sox2 mis-expression attenuated neurogenesis, confirming its significant function in hindbrain neuronal organization. Conclusions Data obtained in this study deciphers a novel role of hindbrain boundaries as repetitive pools of neural stem/progenitor cells, which provide proliferating progenitors and differentiating neurons in a Sox2-dependent regulation. Electronic supplementary material The online version of this article (doi:10.1186/s12915-016-0277-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuval Peretz
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Noa Eren
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Ayelet Kohl
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Gideon Hen
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Karina Yaniv
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Karen Weisinger
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Yuval Cinnamon
- Institute of Animal Sciences, Department of Poultry and Aquaculture Sciences, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel
| | - Dalit Sela-Donenfeld
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel.
| |
Collapse
|
22
|
Linares AJ, Lin CH, Damianov A, Adams KL, Novitch BG, Black DL. The splicing regulator PTBP1 controls the activity of the transcription factor Pbx1 during neuronal differentiation. eLife 2015; 4:e09268. [PMID: 26705333 PMCID: PMC4755740 DOI: 10.7554/elife.09268] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Accepted: 12/22/2015] [Indexed: 12/13/2022] Open
Abstract
The RNA-binding proteins PTBP1 and PTBP2 control programs of alternative splicing during neuronal development. PTBP2 was found to maintain embryonic splicing patterns of many synaptic and cytoskeletal proteins during differentiation of neuronal progenitor cells (NPCs) into early neurons. However, the role of the earlier PTBP1 program in embryonic stem cells (ESCs) and NPCs was not clear. We show that PTBP1 controls a program of neuronal gene expression that includes the transcription factor Pbx1. We identify exons specifically regulated by PTBP1 and not PTBP2 as mouse ESCs differentiate into NPCs. We find that PTBP1 represses Pbx1 exon 7 and the expression of the neuronal Pbx1a isoform in ESCs. Using CRISPR-Cas9 to delete regulatory elements for exon 7, we induce Pbx1a expression in ESCs, finding that this activates transcription of neuronal genes. Thus, PTBP1 controls the activity of Pbx1 to suppress its neuronal transcriptional program prior to induction of NPC development. DOI:http://dx.doi.org/10.7554/eLife.09268.001 The neurons that transmit information around the nervous system develop in several stages. Embryonic stem cells specialize to form neuronal progenitor cells, which then develop into neurons. These cell types have different characteristics, in part because they make different proteins or different versions of the same proteins. To make a protein, the DNA sequence of a gene is used to build a molecule of ribonucleic acid (RNA) that acts as a template for the protein. However, not all of this sequence codes for the protein. The non-coding regions must be removed from the RNA, and the remaining “exons” joined together to form the final “mRNA” template. Not all of the exons are necessarily included in the final mRNA molecule. By joining together different combinations of exons, several different versions of a protein can be produced from a single gene. This process is known as alternative splicing. One way that alternative splicing is controlled is through proteins that bind to RNA and determine which exons are included or excluded from the final mRNA molecule. PTBP1 is an RNA-binding protein that controls alternative splicing in embryonic stem cells and neuronal progenitor cells. Embryonic stem cells have the ability to develop into all the cells of the body. In contrast, neuronal progenitor cells are restricted in their development and only give rise to specialized cells of the nervous system. The role of PTBP1 in these properties was not clear. Linares et al. have now used a range of techniques to study the RNA molecules produced in these two cell types and how these RNAs change when PTBP1 is removed. This identified many RNAs whose splicing is regulated by PTBP1, including mRNAs of the gene that produces a protein called Pbx1, which is an important regulator of neuronal development. Further investigation revealed that PTBP1 prevents a particular exon being included in the mRNA template for Pbx1. This creates an embryonic stem cell form of Pbx1 that does not affect neuronal genes. Removal of PTBP1 allows splicing of the Pbx1 exon and produces a version of Pbx1 that is found in neuronal progenitor cells and which turns on neuronal genes. Thus, through its action on Pbx1, one role of PTBP1 is to enable stem cells to maintain their non-neuronal properties and prevent their premature development into neuronal progenitor cells. The gene for Pbx1 is only one of many genes controlled by PTBP1 at the level of splicing. One challenge for the future will be to understand how these genes work together in a common program that determines the properties of stem cells. Another question regards how the different Pbx1 proteins in stem cells and in neuronal progenitors can exert different effects in the cells where they are made. DOI:http://dx.doi.org/10.7554/eLife.09268.002
Collapse
Affiliation(s)
- Anthony J Linares
- Molecular Biology Institute Graduate Program, University of California, Los Angeles, Los Angeles, United States
| | - Chia-Ho Lin
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, United States
| | - Andrey Damianov
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, United States
| | - Katrina L Adams
- Molecular Biology Institute Graduate Program, University of California, Los Angeles, Los Angeles, United States.,Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States
| | - Bennett G Novitch
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States
| | - Douglas L Black
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, United States.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States
| |
Collapse
|
23
|
Bürglin TR, Affolter M. Homeodomain proteins: an update. Chromosoma 2015; 125:497-521. [PMID: 26464018 PMCID: PMC4901127 DOI: 10.1007/s00412-015-0543-8] [Citation(s) in RCA: 268] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 09/20/2015] [Accepted: 09/21/2015] [Indexed: 12/17/2022]
Abstract
Here, we provide an update of our review on homeobox genes that we wrote together with Walter Gehring in 1994. Since then, comprehensive surveys of homeobox genes have become possible due to genome sequencing projects. Using the 103 Drosophila homeobox genes as example, we present an updated classification. In animals, there are 16 major classes, ANTP, PRD, PRD-LIKE, POU, HNF, CUT (with four subclasses: ONECUT, CUX, SATB, and CMP), LIM, ZF, CERS, PROS, SIX/SO, plus the TALE superclass with the classes IRO, MKX, TGIF, PBC, and MEIS. In plants, there are 11 major classes, i.e., HD-ZIP (with four subclasses: I to IV), WOX, NDX, PHD, PLINC, LD, DDT, SAWADEE, PINTOX, and the two TALE classes KNOX and BEL. Most of these classes encode additional domains apart from the homeodomain. Numerous insights have been obtained in the last two decades into how homeodomain proteins bind to DNA and increase their specificity by interacting with other proteins to regulate cell- and tissue-specific gene expression. Not only protein-DNA base pair contacts are important for proper target selection; recent experiments also reveal that the shape of the DNA plays a role in specificity. Using selected examples, we highlight different mechanisms of homeodomain protein-DNA interaction. The PRD class of homeobox genes was of special interest to Walter Gehring in the last two decades. The PRD class comprises six families in Bilateria, and tinkers with four different motifs, i.e., the PAIRED domain, the Groucho-interacting motif EH1 (aka Octapeptide or TN), the homeodomain, and the OAR motif. Homologs of the co-repressor protein Groucho are also present in plants (TOPLESS), where they have been shown to interact with small amphipathic motives (EAR), and in yeast (TUP1), where we find an EH1-like motif in MATα2.
Collapse
Affiliation(s)
- Thomas R. Bürglin
- />Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
- />Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland
| | - Markus Affolter
- />Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| |
Collapse
|
24
|
Marcos S, González-Lázaro M, Beccari L, Carramolino L, Martin-Bermejo MJ, Amarie O, Martín DMS, Torroja C, Bogdanović O, Doohan R, Puk O, de Angelis MH, Graw J, Gomez-Skarmeta JL, Casares F, Torres M, Bovolenta P. Meis1 coordinates a network of genes implicated in eye development and microphthalmia. Development 2015; 142:3009-20. [DOI: 10.1242/dev.122176] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 07/17/2015] [Indexed: 01/08/2023]
Abstract
Microphthalmos is a rare congenital anomaly characterized by reduced eye size and visual deficits of variable degrees. Sporadic and hereditary microphthalmos has been associated to heterozygous mutations in genes fundamental for eye development. Yet, many cases are idiopathic or await the identification of molecular causes. Here we show that haploinsufficiency of Meis1, a transcription factor with an evolutionary conserved expression in the embryonic trunk, brain and sensory organs, including the eye, causes microphthalmic traits and visual impairment, in adult mice. By combining the analysis of Meis1 loss-of-function and conditional Meis1 functional rescue with ChIP-seq and RNA-seq approaches we show that, in contrast to Meis1 preferential association with Hox-Pbx binding sites in the trunk, Meis1 binds to Hox/Pbx-independent sites during optic cup development. In the eye primordium, Meis1 coordinates, in a dose-dependent manner, retinal proliferation and differentiation by regulating genes responsible for human microphthalmia and components the Notch signalling pathway. In addition, Meis1 is required for eye patterning by controlling a set of eye territory-specific transcription factors, so that in Meis1−/− embryos boundaries among the different eye territories are shifted or blurred. We thus propose that Meis1 is at the core of a genetic network implicated in eye patterning/microphthalmia, itself representing an additional candidate for syndromic cases of these ocular malformations.
Collapse
Affiliation(s)
- Séverine Marcos
- Centro de Biología Molecular “Severo Ochoa”, CSIC-UAM, c/ Nicolás Cabrera, 1, E-28049 Madrid, Spain
- CIBER de Enfermedades Raras (CIBERER), c/ Nicolás Cabrera, 1, E-28049 Madrid, Spain
| | - Monica González-Lázaro
- Departamento de Desarrollo y Reparación Cardiovascular, Centro Nacional de Investigaciones Cardiovasculares (CNIC), c/ Melchor Fernández Almagro, 3, E-28029 Madrid, Spain
| | - Leonardo Beccari
- Centro de Biología Molecular “Severo Ochoa”, CSIC-UAM, c/ Nicolás Cabrera, 1, E-28049 Madrid, Spain
- CIBER de Enfermedades Raras (CIBERER), c/ Nicolás Cabrera, 1, E-28049 Madrid, Spain
| | - Laura Carramolino
- Departamento de Desarrollo y Reparación Cardiovascular, Centro Nacional de Investigaciones Cardiovasculares (CNIC), c/ Melchor Fernández Almagro, 3, E-28029 Madrid, Spain
| | - Maria Jesus Martin-Bermejo
- Centro de Biología Molecular “Severo Ochoa”, CSIC-UAM, c/ Nicolás Cabrera, 1, E-28049 Madrid, Spain
- CIBER de Enfermedades Raras (CIBERER), c/ Nicolás Cabrera, 1, E-28049 Madrid, Spain
| | - Oana Amarie
- Institute of Developmental Genetics Helmholtz Center Munich; D-85764 Neuherberg, Germany
| | - Daniel Mateos-San Martín
- Departamento de Desarrollo y Reparación Cardiovascular, Centro Nacional de Investigaciones Cardiovasculares (CNIC), c/ Melchor Fernández Almagro, 3, E-28029 Madrid, Spain
| | - Carlos Torroja
- Bioinformatics Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC), c/ Melchor Fernández Almagro, 3, E-28029 Madrid, Spain
| | - Ozren Bogdanović
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-UPO, Carretera de Utrera Km1, E-41013 Sevilla, Spain
- ARC Center of Excellence in Plant Energy Biology, School of Chemistry and Biochemistry, Faculty of Science, The University of Western Australia, Perth, WA 6009, Australia
| | - Roisin Doohan
- Departamento de Desarrollo y Reparación Cardiovascular, Centro Nacional de Investigaciones Cardiovasculares (CNIC), c/ Melchor Fernández Almagro, 3, E-28029 Madrid, Spain
| | - Oliver Puk
- Institute of Developmental Genetics Helmholtz Center Munich; D-85764 Neuherberg, Germany
| | | | - Jochen Graw
- Institute of Developmental Genetics Helmholtz Center Munich; D-85764 Neuherberg, Germany
| | - Jose Luis Gomez-Skarmeta
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-UPO, Carretera de Utrera Km1, E-41013 Sevilla, Spain
| | - Fernando Casares
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-UPO, Carretera de Utrera Km1, E-41013 Sevilla, Spain
| | - Miguel Torres
- Departamento de Desarrollo y Reparación Cardiovascular, Centro Nacional de Investigaciones Cardiovasculares (CNIC), c/ Melchor Fernández Almagro, 3, E-28029 Madrid, Spain
| | - Paola Bovolenta
- Centro de Biología Molecular “Severo Ochoa”, CSIC-UAM, c/ Nicolás Cabrera, 1, E-28049 Madrid, Spain
- CIBER de Enfermedades Raras (CIBERER), c/ Nicolás Cabrera, 1, E-28049 Madrid, Spain
| |
Collapse
|
25
|
Schulte D. Meis: New friends of Pax. NEUROGENESIS 2014; 1:e976014. [PMID: 27502016 PMCID: PMC4973581 DOI: 10.4161/23262133.2014.976014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 08/04/2014] [Accepted: 10/08/2014] [Indexed: 12/27/2022]
Abstract
The generation of neuronal diversity in the mammalian brain is a multistep process, beginning with the regional patterning of neural stem- and progenitor cell domains, the commitment of these cells toward a general neuronal fate, followed by the selection of a particular neuronal subtype and the differentiation of postmitotic neurons. Each of these steps as well as the transitions between them require precisely controlled changes in transcriptional programs. Although a large number of transcription factors are known to regulate neurogenesis in the embryonic and adult central nervous system, the sheer number of neuronal cell types in the brain and the complexity of the cellular processes that accompany their production suggest that transcription factors act cooperatively to control individual steps in neurogenesis. In fact, combinatorial regulation by sets of transcription factors has emerged as a versatile mode to control cell fate specification. Here, I discuss our recent finding that members of the MEIS-subfamily of TALE-transcription factors, originally identified as HOX cofactors in non-neural tissues, function in concert with PAX-proteins in the regulation of cell fate specification and neuronal differentiation in the embryonic and adult brain.
Collapse
Affiliation(s)
- Dorothea Schulte
- Institute of Neurology (Edinger Institute); University Hospital Goethe University ; Frankfurt, Germany
| |
Collapse
|