1
|
González-Rojas A, Valencia-Narbona M. Neurodevelopmental Disruptions in Children of Preeclamptic Mothers: Pathophysiological Mechanisms and Consequences. Int J Mol Sci 2024; 25:3632. [PMID: 38612445 PMCID: PMC11012011 DOI: 10.3390/ijms25073632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
Preeclampsia (PE) is a multisystem disorder characterized by elevated blood pressure in the mother, typically occurring after 20 weeks of gestation and posing risks to both maternal and fetal health. PE causes placental changes that can affect the fetus, particularly neurodevelopment. Its key pathophysiological mechanisms encompass hypoxia, vascular and angiogenic dysregulation, inflammation, neuronal and glial alterations, and disruptions in neuronal signaling. Animal models indicate that PE is correlated with neurodevelopmental alterations and cognitive dysfunctions in offspring and in humans, an association between PE and conditions such as cerebral palsy, autism spectrum disorder, attention deficit hyperactivity disorder, and sexual dimorphism has been observed. Considering the relevance for mothers and children, we conducted a narrative literature review to describe the relationships between the pathophysiological mechanisms behind neurodevelopmental alterations in the offspring of PE mothers, along with their potential consequences. Furthermore, we emphasize aspects pertinent to the prevention/treatment of PE in pregnant mothers and alterations observed in their offspring. The present narrative review offers a current, complete, and exhaustive analysis of (i) the pathophysiological mechanisms that can affect neurodevelopment in the children of PE mothers, (ii) the relationship between PE and neurological alterations in offspring, and (iii) the prevention/treatment of PE.
Collapse
Affiliation(s)
- Andrea González-Rojas
- Laboratorio de Neurociencias Aplicadas, Escuela de Kinesiología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2950, Valparaíso 2340025, Chile;
| | | |
Collapse
|
2
|
Middendorf L, Gellhaus A, Iannaccone A, Köninger A, Dathe AK, Bendix I, Reisch B, Felderhoff-Mueser U, Huening B. The Impact of Increased Maternal sFlt-1/PlGF Ratio on Motor Outcome of Preterm Infants. Front Endocrinol (Lausanne) 2022; 13:913514. [PMID: 35846340 PMCID: PMC9279729 DOI: 10.3389/fendo.2022.913514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/02/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The sFlt-1 (soluble fms-like tyrosine kinase-1)/PlGF (placental growth factor) ratio serves as a clinical biomarker to predict the hypertensive, placenta-derived pregnancy disorder pre-eclampsia which is often associated with placental dysfunction and fetal growth restriction. Additionally elevated levels also indicate an increased risk for prematurity. However, its predictive value for subsequent neonatal neurological outcome has not been studied. OBJECTIVE This study aimed to evaluate the correlation of maternal sFlt-1/PlGF ratio with early motor outcome of preterm infants. Design/Methods: 88 preterm infants (gestational age ≤ 34 + 0) born between February 2017 and August 2020 at the Department of Obstetrics and Gynecology, University Hospital Essen in Germany, were included, when the following variables were available: maternal sFlt-1/PlGF levels at parturition and general movement assessment of the infant at the corrected age of 3 to 5 months. The infants were stratified into high and low ratio groups according to maternal sFlt-1/PlGF cut-off values of 85. To investigate the early motor repertoire and quality of spontaneous movements of the infant, the Motor Optimality Score (MOS-R) based on antigravity movements and posture patterns, was applied. In the given age, special attention was paid to the presence of fidgety movements. Linear regressions were run to test differences in infants motor repertoire according to the maternal sFlt-1/PIGF ratio. RESULTS Linear regression analysis showed that the sFlt-1/PlGF ratio does not predict the MOS-R score (β=≤0.001; p=0.282). However, children with birth weight below the 10th percentile scored significantly lower (mean 20.7 vs 22.7; p=0.035). These children were 91% in the group with an increased ratio, which in turn is a known predictor of low birth weight (β= -0.315; p <0.001). In the group with a high sFlt-1/PLGF ratio above 85 the mothers of female infants had a lower average sFlt-1/PlGF ratio compared to a male infant (median: 438 in female vs. 603 in male infant, p=0.145). CONCLUSIONS In our cohort, especially low birth weight, which correlated with an elevated sFlt-1/PlGF ratio, had a negative effect on the outcome in the MOS-R. A direct correlation between an increased ratio and a worse motor outcome was not demonstrated.
Collapse
Affiliation(s)
- Lisa Middendorf
- Department of Pediatrics I, Neonatology, Pediatric Intensive Care and Pediatric Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Alexandra Gellhaus
- Department of Obstetrics and Gynecology, University Hospital Essen, Essen, Germany
| | - Antonella Iannaccone
- Department of Obstetrics and Gynecology, University Hospital Essen, Essen, Germany
| | - Angela Köninger
- Department of Obstetrics and Gynecology, University Hospital Essen, Essen, Germany
- Department of Obstetrics and Gynecology, University of Regensburg, Clinic St Hedwig of the Order of St. John, Regensburg, Germany
| | - Anne-Kathrin Dathe
- Department of Pediatrics I, Neonatology, Pediatric Intensive Care and Pediatric Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Centre for Translational Neuro- and Behavioural Sciences, C-TNBS, Faculty of Medicine, University Duisburg-Essen, Essen, Germany
- Department of Health and Nursing, Occupational Therapy, Ernst-Abbe-University of Applied Sciences, Jena, Germany
| | - Ivo Bendix
- Centre for Translational Neuro- and Behavioural Sciences, C-TNBS, Faculty of Medicine, University Duisburg-Essen, Essen, Germany
- Department of Pediatrics I, Neonatology and Experimental Perinatal Neurosciences, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Beatrix Reisch
- Department of Obstetrics and Gynecology, University Hospital Essen, Essen, Germany
| | - Ursula Felderhoff-Mueser
- Department of Pediatrics I, Neonatology, Pediatric Intensive Care and Pediatric Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Centre for Translational Neuro- and Behavioural Sciences, C-TNBS, Faculty of Medicine, University Duisburg-Essen, Essen, Germany
| | - Britta Huening
- Department of Pediatrics I, Neonatology, Pediatric Intensive Care and Pediatric Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Centre for Translational Neuro- and Behavioural Sciences, C-TNBS, Faculty of Medicine, University Duisburg-Essen, Essen, Germany
- *Correspondence: Britta Huening,
| |
Collapse
|
3
|
Uemura A, Fruttiger M, D'Amore PA, De Falco S, Joussen AM, Sennlaub F, Brunck LR, Johnson KT, Lambrou GN, Rittenhouse KD, Langmann T. VEGFR1 signaling in retinal angiogenesis and microinflammation. Prog Retin Eye Res 2021; 84:100954. [PMID: 33640465 PMCID: PMC8385046 DOI: 10.1016/j.preteyeres.2021.100954] [Citation(s) in RCA: 146] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 02/12/2021] [Accepted: 02/19/2021] [Indexed: 12/13/2022]
Abstract
Five vascular endothelial growth factor receptor (VEGFR) ligands (VEGF-A, -B, -C, -D, and placental growth factor [PlGF]) constitute the VEGF family. VEGF-A binds VEGF receptors 1 and 2 (VEGFR1/2), whereas VEGF-B and PlGF only bind VEGFR1. Although much research has been conducted on VEGFR2 to elucidate its key role in retinal diseases, recent efforts have shown the importance and involvement of VEGFR1 and its family of ligands in angiogenesis, vascular permeability, and microinflammatory cascades within the retina. Expression of VEGFR1 depends on the microenvironment, is differentially regulated under hypoxic and inflammatory conditions, and it has been detected in retinal and choroidal endothelial cells, pericytes, retinal and choroidal mononuclear phagocytes (including microglia), Müller cells, photoreceptor cells, and the retinal pigment epithelium. Whilst the VEGF-A decoy function of VEGFR1 is well established, consequences of its direct signaling are less clear. VEGFR1 activation can affect vascular permeability and induce macrophage and microglia production of proinflammatory and proangiogenic mediators. However the ability of the VEGFR1 ligands (VEGF-A, PlGF, and VEGF-B) to compete against each other for receptor binding and to heterodimerize complicates our understanding of the relative contribution of VEGFR1 signaling alone toward the pathologic processes seen in diabetic retinopathy, retinal vascular occlusions, retinopathy of prematurity, and age-related macular degeneration. Clinically, anti-VEGF drugs have proven transformational in these pathologies and their impact on modulation of VEGFR1 signaling is still an opportunity-rich field for further research.
Collapse
Affiliation(s)
- Akiyoshi Uemura
- Department of Retinal Vascular Biology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan.
| | - Marcus Fruttiger
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK.
| | - Patricia A D'Amore
- Schepens Eye Research Institute of Massachusetts Eye and Ear, 20 Staniford Street, Boston, MA, 02114, USA.
| | - Sandro De Falco
- Angiogenesis Laboratory, Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", Via Pietro Castellino 111, 80131 Naples, Italy; ANBITION S.r.l., Via Manzoni 1, 80123, Naples, Italy.
| | - Antonia M Joussen
- Department of Ophthalmology, Charité-Universitätsmedizin Berlin, Hindenburgdamm 30, 12200 Berlin, and Augustenburger Platz 1, 13353, Berlin, Germany.
| | - Florian Sennlaub
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France.
| | - Lynne R Brunck
- Bayer Consumer Care AG, Pharmaceuticals, Peter-Merian-Strasse 84, CH-4052 Basel, Switzerland.
| | - Kristian T Johnson
- Bayer Consumer Care AG, Pharmaceuticals, Peter-Merian-Strasse 84, CH-4052 Basel, Switzerland.
| | - George N Lambrou
- Bayer Consumer Care AG, Pharmaceuticals, Peter-Merian-Strasse 84, CH-4052 Basel, Switzerland.
| | - Kay D Rittenhouse
- Bayer Consumer Care AG, Pharmaceuticals, Peter-Merian-Strasse 84, CH-4052 Basel, Switzerland.
| | - Thomas Langmann
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Joseph-Stelzmann-Str. 9, 50931, Cologne, Germany.
| |
Collapse
|
4
|
Kay VR, Rätsep MT, Figueiró-Filho EA, Croy BA. Preeclampsia may influence offspring neuroanatomy and cognitive function: a role for placental growth factor†. Biol Reprod 2020; 101:271-283. [PMID: 31175349 DOI: 10.1093/biolre/ioz095] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/30/2019] [Accepted: 06/06/2019] [Indexed: 01/01/2023] Open
Abstract
Preeclampsia (PE) is a common pregnancy complication affecting 3-5% of women. Preeclampsia is diagnosed clinically as new-onset hypertension with associated end organ damage after 20 weeks of gestation. Despite being diagnosed as a maternal syndrome, fetal experience of PE is a developmental insult with lifelong cognitive consequences. These cognitive alterations are associated with distorted neuroanatomy and cerebrovasculature, including a higher risk of stroke. The pathophysiology of a PE pregnancy is complex, with many factors potentially able to affect fetal development. Deficient pro-angiogenic factor expression is one aspect that may impair fetal vascularization, alter brain structure, and affect future cognition. Of the pro-angiogenic growth factors, placental growth factor (PGF) is strongly linked to PE. Concentrations of PGF are inappropriately low in maternal blood both before and during a PE gestation. Fetal concentrations of PGF appear to mirror maternal circulating concentrations. Using Pgf-/- mice that may model effects of PE on offspring, we demonstrated altered central nervous system vascularization, neuroanatomy, and behavior. Overall, we propose that development of the fetal brain is impaired in PE, making the offspring of preeclamptic pregnancies a unique cohort with greater risk of altered cognition and cerebrovasculature. These individuals may benefit from early interventions, either pharmacological or environmental. The early neonatal period may be a promising window for intervention while the developing brain retains plasticity.
Collapse
Affiliation(s)
- Vanessa R Kay
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Matthew T Rätsep
- Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | | | - B Anne Croy
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
5
|
Adult Pgf -/- mice behaviour and neuroanatomy are altered by neonatal treatment with recombinant placental growth factor. Sci Rep 2019; 9:9285. [PMID: 31243296 PMCID: PMC6594955 DOI: 10.1038/s41598-019-45824-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 06/12/2019] [Indexed: 12/20/2022] Open
Abstract
Offspring of preeclamptic pregnancies have cognitive alterations. Placental growth factor (PGF), is low in preeclampsia; reduced levels may affect brain development. PGF-null mice differ from normal congenic controls in cerebrovasculature, neuroanatomy and behavior. Using brain imaging and behavioral testing, we asked whether developmentally asynchronous (i.e. neonatal) PGF supplementation alters the vascular, neuroanatomic and/or behavioral status of Pgf−/− mice at adulthood. C57BL/6-Pgf−/− pups were treated intraperitoneally on postnatal days 1–10 with vehicle or PGF at 10 pg/g, 70 pg/g or 700 pg/g. These mice underwent behavioral testing and perfusion for MRI and analysis of retinal vasculature. A second cohort of vehicle- or PGF-treated mice was perfused for micro-CT imaging. 10 pg/g PGF-treated mice exhibited less locomotor activity and greater anxiety-like behavior relative to vehicle-treated mice. Depressive-like behavior showed a sex-specific, dose-dependent decrease and was lowest in 700 pg/g PGF-treated females relative to vehicle-treated females. Spatial learning did not differ. MRI revealed smaller volume of three structures in the 10 pg/g group, larger volume of seven structures in the 70 pg/g group and smaller volume of one structure in the 700 pg/g group. No cerebral or retinal vascular differences were detected. Overall, neonatal PGF replacement altered behavior and neuroanatomy of adult Pgf−/− mice.
Collapse
|
6
|
Sánchez O, Ruiz-Romero A, Domínguez C, Ferrer Q, Ribera I, Rodríguez-Sureda V, Alijotas J, Arévalo S, Carreras E, Cabero L, Llurba E. Brain angiogenic gene expression in fetuses with congenital heart disease. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2018; 52:734-738. [PMID: 29205570 DOI: 10.1002/uog.18977] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 10/09/2017] [Accepted: 11/28/2017] [Indexed: 06/07/2023]
Abstract
OBJECTIVE To assess potential differences in the expression of antiangiogenic and angiogenic factors and of genes associated with chronic hypoxia in cerebral tissue of euploid fetuses with congenital heart disease (CHD) vs those without. METHODS Cerebral tissue was obtained from 15 fetuses with CHD and 12 control fetuses that had undergone termination of pregnancy. Expression profiles of the antiangiogenic factor soluble fms-like tyrosine kinase-1 (sFlt-1), the angiogenic vascular endothelial growth factor-A (VEGF-A) and placental growth factor (PlGF), and of genes associated with chronic hypoxia were determined by real-time polymerase chain reaction in tissue from the frontal cortex and the basal ganglia of the fetuses. RESULTS Expression of sFlt-1 was 48% higher in the frontal cortex (P = 0.0431) and 72% higher in the basal ganglia (P = 0.0369) of CHD fetuses compared with controls. The expression of VEGF-A was 60% higher (P = 0.0432) and that of hypoxia-inducible factor 2-alpha was 98% higher (P = 0.0456) in the basal ganglia of CHD fetuses compared with controls. No significant differences were observed between the two groups in the expression of PlGF and hypoxia-inducible factor 1-alpha. CONCLUSION An overall dysregulation of angiogenesis with a net balance towards an antiangiogenic environment was observed in the cerebral tissue of fetuses with CHD, suggesting that these fetuses may have an intrinsic angiogenic impairment that could contribute to impaired brain perfusion and abnormal neurological development later in life. Copyright © 2017 ISUOG. Published by John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- O Sánchez
- Maternal and Child Health and Development Network (SAMID), RD16/0022/0015, Instituto de Salud Carlos III, Barcelona, Spain
- Biochemistry and Molecular Biology Research Centre for Nanomedicine, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - A Ruiz-Romero
- Maternal-Fetal Medicine Unit, Department of Obstetrics, Vall d'Hebron Research Institute (VHIR), SAMID Network, Vall d'Hebron University Hospital, Barcelona, Spain
| | - C Domínguez
- Biochemistry and Molecular Biology Research Centre for Nanomedicine, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
- Center for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Q Ferrer
- Pediatric Cardiology Unit, Department of Pediatrics, Vall d'Hebron University Hospital, Barcelona, Spain
| | - I Ribera
- Maternal-Fetal Medicine Unit, Department of Obstetrics, Vall d'Hebron Research Institute (VHIR), SAMID Network, Vall d'Hebron University Hospital, Barcelona, Spain
| | - V Rodríguez-Sureda
- Biochemistry and Molecular Biology Research Centre for Nanomedicine, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
- Center for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - J Alijotas
- Department of Internal Medicine, Vall d'Hebron University Hospital, Barcelona, Spain
- School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - S Arévalo
- Maternal-Fetal Medicine Unit, Department of Obstetrics, Vall d'Hebron Research Institute (VHIR), SAMID Network, Vall d'Hebron University Hospital, Barcelona, Spain
| | - E Carreras
- Maternal-Fetal Medicine Unit, Department of Obstetrics, Vall d'Hebron Research Institute (VHIR), SAMID Network, Vall d'Hebron University Hospital, Barcelona, Spain
| | - L Cabero
- Maternal-Fetal Medicine Unit, Department of Obstetrics, Vall d'Hebron Research Institute (VHIR), SAMID Network, Vall d'Hebron University Hospital, Barcelona, Spain
- School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - E Llurba
- Maternal-Fetal Medicine Unit, Department of Obstetrics, Vall d'Hebron Research Institute (VHIR), SAMID Network, Vall d'Hebron University Hospital, Barcelona, Spain
- School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
7
|
Lara E, Acurio J, Leon J, Penny J, Torres-Vergara P, Escudero C. Are the Cognitive Alterations Present in Children Born From Preeclamptic Pregnancies the Result of Impaired Angiogenesis? Focus on the Potential Role of the VEGF Family. Front Physiol 2018; 9:1591. [PMID: 30487752 PMCID: PMC6246680 DOI: 10.3389/fphys.2018.01591] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/23/2018] [Indexed: 12/12/2022] Open
Abstract
Evidence from clinical studies has proposed that children born from preeclamptic women have a higher risk of suffering neurological, psychological, or behavioral alterations. However, to date, the mechanisms behind these outcomes are poorly understood. Here, we speculate that the neurodevelopmental alterations in the children of preeclamptic pregnancies result from impaired angiogenesis. The pro-angiogenic factors vascular endothelial growth factor (VEGF) and placental growth factor (PlGF) are key regulators of both vascular and neurological development, and it has been widely demonstrated that umbilical blood of preeclamptic pregnancies contains high levels of soluble VEGF receptor type 1 (sFlt-1), a decoy receptor of VEGF. As a consequence, this anti-angiogenic state could lead to long-lasting neurological outcomes. In this non-systematic review, we propose that alterations in the circulating concentrations of VEGF, PlGF, and sFlt-1 in preeclamptic pregnancies will affect both fetal cerebrovascular function and neurodevelopment, which in turn may cause cognitive alterations in post-natal life.
Collapse
Affiliation(s)
- Evelyn Lara
- Vascular Physiology Laboratory, Group of Investigation in Tumor Angiogenesis (LFV-GIANT), Department of Basic Sciences, Faculty of Basic Sciences, Universidad del Bío-Bío, Chillán, Chile.,Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillán, Chile
| | - Jesenia Acurio
- Vascular Physiology Laboratory, Group of Investigation in Tumor Angiogenesis (LFV-GIANT), Department of Basic Sciences, Faculty of Basic Sciences, Universidad del Bío-Bío, Chillán, Chile.,Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillán, Chile
| | - José Leon
- Vascular Physiology Laboratory, Group of Investigation in Tumor Angiogenesis (LFV-GIANT), Department of Basic Sciences, Faculty of Basic Sciences, Universidad del Bío-Bío, Chillán, Chile.,Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillán, Chile
| | - Jeffrey Penny
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Pablo Torres-Vergara
- Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillán, Chile.,Department of Pharmacy, Faculty of Pharmacy, Universidad de Concepción, Concepción, Chile
| | - Carlos Escudero
- Vascular Physiology Laboratory, Group of Investigation in Tumor Angiogenesis (LFV-GIANT), Department of Basic Sciences, Faculty of Basic Sciences, Universidad del Bío-Bío, Chillán, Chile.,Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillán, Chile.,Red Iberoamericana de alteraciones Vasculares Asociadas a TRastornos del EMbarazo (RIVA-TREM), Chillán, Chile
| |
Collapse
|
8
|
Kay VR, Rätsep MT, Cahill LS, Hickman AF, Zavan B, Newport ME, Ellegood J, Laliberte CL, Reynolds JN, Carmeliet P, Tayade C, Sled JG, Croy BA. Effects of placental growth factor deficiency on behavior, neuroanatomy, and cerebrovasculature of mice. Physiol Genomics 2018; 50:862-875. [PMID: 30118404 DOI: 10.1152/physiolgenomics.00076.2018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Preeclampsia, a hypertensive syndrome occurring in 3-5% of human pregnancies, has lifelong health consequences for fetuses. Cognitive ability throughout life is altered, and adult stroke risk is increased. One potential etiological factor for altered brain development is low concentrations of proangiogenic placental growth factor (PGF). Impaired PGF production may promote an antiangiogenic fetal environment during neural and cerebrovascular development. We previously reported delayed vascularization of the hindbrain, altered retinal vascular organization, and less connectivity in the circle of Willis in Pgf-/- mice. We hypothesized Pgf-/- mice would have impaired cognition and altered brain neuroanatomy in addition to compromised cerebrovasculature. Cognitive behavior was assessed in adult Pgf-/- and Pgf+/+ mice by four paradigms followed by postmortem high-resolution MRI of neuroanatomy. X-ray microcomputed tomography imaging investigated the three-dimensional cerebrovascular geometry in another cohort. Pgf-/- mice exhibited poorer spatial memory, less depressive-like behavior, and superior recognition of novel objects. Significantly smaller volumes of 10 structures were detected in the Pgf-/- compared with Pgf+/+ brain. Pgf-/- brain had more total blood vessel segments in the small-diameter range. Lack of PGF altered cognitive functions, brain neuroanatomy, and cerebrovasculature in mice. Pgf-/- mice may be a preclinical model for the offspring effects of low-PGF preeclampsia gestation.
Collapse
Affiliation(s)
- Vanessa R Kay
- Department of Biomedical and Molecular Sciences, Queen's University , Kingston, Ontario , Canada
| | - Matthew T Rätsep
- Department of Biomedical and Molecular Sciences, Queen's University , Kingston, Ontario , Canada
| | - Lindsay S Cahill
- Mouse Imaging Centre, Hospital for Sick Children , Toronto, Ontario , Canada
| | - Andrew F Hickman
- Department of Biomedical and Molecular Sciences, Queen's University , Kingston, Ontario , Canada
| | - Bruno Zavan
- Department of Biomedical and Molecular Sciences, Queen's University , Kingston, Ontario , Canada.,Federal University of Alfenas (UNIFAL), Alfenas, Minas Gerais , Brazil
| | - Margaret E Newport
- Department of Biomedical and Molecular Sciences, Queen's University , Kingston, Ontario , Canada
| | - Jacob Ellegood
- Mouse Imaging Centre, Hospital for Sick Children , Toronto, Ontario , Canada
| | | | - James N Reynolds
- Centre for Neuroscience Studies, Queen's University , Kingston, Ontario , Canada
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, VIB - Vesalius Research Center, University of Leuven, Department of Oncology , Leuven , Belgium
| | - Chandrakant Tayade
- Department of Biomedical and Molecular Sciences, Queen's University , Kingston, Ontario , Canada
| | - John G Sled
- Mouse Imaging Centre, Hospital for Sick Children , Toronto, Ontario , Canada.,Department of Medical Biophysics, University of Toronto , Ontario , Canada
| | - B Anne Croy
- Department of Biomedical and Molecular Sciences, Queen's University , Kingston, Ontario , Canada
| |
Collapse
|
9
|
Resting-state functional connectivity in children born from gestations complicated by preeclampsia: A pilot study cohort. Pregnancy Hypertens 2018; 12:23-28. [PMID: 29674194 DOI: 10.1016/j.preghy.2018.02.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 11/02/2017] [Accepted: 02/06/2018] [Indexed: 01/30/2023]
Abstract
BACKGROUND Individuals (PE-F1s) born from preeclampsia (PE)-complicated pregnancies have elevated risks for cognitive impairment. Intervals of disturbed maternal plasma angiokines precede clinical signs of PE. We hypothesized pan-blastocyst dysregulation of angiokines underlies altered PE-F1 brain vascular and neurological development. This could alter brain functional connectivity (FC) patterns at rest. MATERIALS AND METHODS Resting-state functional MRI datasets of ten, matched child pairs (5 boys and 5 girls aged 7-10 years of age) from PE or control pregnancies were available for study. Seed-based analysis and independent component analysis (ICA) methodologies were used to assess whether differences in resting-state functional connectivity (rs-FC) were present between PE-F1s and controls. Bilateral amygdala, bilateral hippocampus, and medial prefrontal cortex (MPFC) were selected as regions of interest (ROI) for the seed-based analysis based on previous imaging differences that we reported in this set of children. RESULTS Compared to controls, PE-F1 children had increased rs-FC between the right amygdala and left frontal pole, the left amygdala and bilateral frontal pole, and the MPFC and precuneus. PE-F1 children additionally had decreased rs-FC between the MPFC and the left occipital fusiform gyrus compared to controls. CONCLUSION These are the first reported rs-FC data for PE-F1s of any age. Theysuggest that PE alters FC during human fetal brain development. Altered FC may contribute to the behavioural and neurological alterations reported in PE-F1s. Longitudinal MRI studies with larger sample sizes are required to confirm these novel findings.
Collapse
|