1
|
Johnson KO, Harel L, Triplett JW. Postsynaptic NMDA Receptor Expression Is Required for Visual Corticocollicular Projection Refinement in the Mouse Superior Colliculus. J Neurosci 2023; 43:1310-1320. [PMID: 36717228 PMCID: PMC9987568 DOI: 10.1523/jneurosci.1473-22.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/09/2022] [Accepted: 11/13/2022] [Indexed: 01/31/2023] Open
Abstract
Efficient sensory processing of spatial information is facilitated through the organization of neuronal connections into topographic maps of space. In integrative sensory centers, converging topographic maps must be aligned to merge spatially congruent information. The superior colliculus (SC) receives topographically ordered visual inputs from retinal ganglion cells (RGCs) in the eye and layer 5 neurons in the primary visual cortex (L5-V1). Previous studies suggest that RGCs instruct the alignment of later-arriving L5-V1 inputs in an activity-dependent manner. However, the molecular mechanisms underlying this remain unclear. Here, we explored the role of NMDA receptors in visual map alignment in the SC using a conditional genetic knockout approach. We leveraged a novel knock-in mouse line that expresses tamoxifen-inducible Cre recombinase under the control of the Tal1 gene (Tal1CreERT2 ), which we show allows for specific recombination in the superficial layers of the SC. We used Tal1CreERT2 mice of either sex to conditionally delete the obligate GluN1 subunit of the NMDA receptor (SC-cKO) during the period of visual map alignment. We observed a significant disruption of L5-V1 axon terminal organization in the SC of SC-cKO mice. Importantly, retinocollicular topography was unaffected in this context, suggesting that alignment is also disrupted. Time-course experiments suggest that NMDA receptors may play a critical role in the refinement of L5-V1 inputs in the SC. Together, these data implicate NMDA receptors as critical mediators of activity-dependent visual map alignment in the SC.SIGNIFICANCE STATEMENT Alignment of topographic inputs is critical for integration of spatially congruent sensory information; however, little is known about the mechanisms underlying this complex process. Here, we took a conditional genetic approach to explore the role of NMDA receptors in the alignment of retinal and cortical visual inputs in the superior colliculus. We characterize a novel mouse line providing spatial and temporal control of recombination in the superior colliculus and reveal a critical role for NMDA expression in visual map alignment. These data support a role for neuronal activity in visual map alignment and provide mechanistic insight into this complex developmental process.
Collapse
Affiliation(s)
- Kristy O Johnson
- Center for Neuroscience Research, Children's National Research Institute, Washington, DC 20010
- Institute for Biomedical Sciences, George Washington University School of Medicine, Washington, DC 20037
| | - Leeor Harel
- Center for Neuroscience Research, Children's National Research Institute, Washington, DC 20010
| | - Jason W Triplett
- Center for Neuroscience Research, Children's National Research Institute, Washington, DC 20010
- Institute for Biomedical Sciences, George Washington University School of Medicine, Washington, DC 20037
- Department of Pediatrics, George Washington University School of Medicine, Washington, DC 20037
- Department of Pharmacology and Physiology, George Washington University School of Medicine, Washington, DC 20037
| |
Collapse
|
2
|
Allegra A, Sant'Antonio E, Musolino C, Ettari R. New insights into neuropeptides regulation of immune system and hemopoiesis: effects on hematologic malignancies. Curr Med Chem 2021; 29:2412-2437. [PMID: 34521320 DOI: 10.2174/0929867328666210914120228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/29/2021] [Accepted: 08/04/2021] [Indexed: 11/22/2022]
Abstract
Several neurotransmitters and neuropeptides were reported to join to or to cooperate with different cells of the immune system, bone marrow, and peripheral cells and numerous data support that neuroactive molecules might control immune system activity and hemopoiesis operating on lymphoid organs, and the primary hematopoietic unit, the hematopoietic niche. Furthermore, many compounds seem to be able to take part to the leukemogenesis and lymphomagenesis process, and in the onset of multiple myeloma. In this review, we will assess the possibility that neurotransmitters and neuropeptides may have a role in the onset of haematological neoplasms, may affect the response to treatment or may represent a useful starting point for a new therapeutic approach. More in vivo investigations are needed to evaluate neuropeptide's role in haematological malignancies and the possible utilization as an antitumor therapeutic target. Comprehending the effect of the pharmacological administration of neuropeptide modulators on hematologic malignancies opens up new possibilities in curing clonal hematologic diseases to achieve more satisfactory outcomes.
Collapse
Affiliation(s)
- Alessandro Allegra
- Department of Human Pathology in Adulthood and Childhood, University of Messina. Italy
| | | | - Caterina Musolino
- Department of Human Pathology in Adulthood and Childhood, University of Messina. Italy
| | - Roberta Ettari
- Department of Chemical, Biological, Pharmaceutical and Environmental Chemistry, University of Messina. Italy
| |
Collapse
|
3
|
Vijayalingam S, Ezekiel UR, Xu F, Subramanian T, Geerling E, Hoelscher B, San K, Ganapathy A, Pemberton K, Tycksen E, Pinto AK, Brien JD, Beck DB, Chung WK, Gurnett CA, Chinnadurai G. Human iPSC-Derived Neuronal Cells From CTBP1-Mutated Patients Reveal Altered Expression of Neurodevelopmental Gene Networks. Front Neurosci 2020; 14:562292. [PMID: 33192249 PMCID: PMC7653094 DOI: 10.3389/fnins.2020.562292] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 10/01/2020] [Indexed: 11/17/2022] Open
Abstract
A recurrent de novo mutation in the transcriptional corepressor CTBP1 is associated with neurodevelopmental disabilities in children (Beck et al., 2016, 2019; Sommerville et al., 2017). All reported patients harbor a single recurrent de novo heterozygous missense mutation (p.R342W) within the cofactor recruitment domain of CtBP1. To investigate the transcriptional activity of the pathogenic CTBP1 mutant allele in physiologically relevant human cell models, we generated induced pluripotent stem cells (iPSC) from the dermal fibroblasts derived from patients and normal donors. The transcriptional profiles of the iPSC-derived “early” neurons were determined by RNA-sequencing. Comparison of the RNA-seq data of the neurons from patients and normal donors revealed down regulation of gene networks involved in neurodevelopment, synaptic adhesion and anti-viral (interferon) response. Consistent with the altered gene expression patterns, the patient-derived neurons exhibited morphological and electrophysiological abnormalities, and susceptibility to viral infection. Taken together, our studies using iPSC-derived neuron models provide novel insights into the pathological activities of the CTBP1 p.R342W allele.
Collapse
Affiliation(s)
- S Vijayalingam
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Edward A. Doisy Research Center, St. Louis, MO, United States
| | - Uthayashanker R Ezekiel
- Department of Clinical Health Sciences, Doisy College of Health Science, Saint Louis University School of Medicine, Saint Louis, MO, United States
| | - Fenglian Xu
- Department of Biology and Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University, St. Louis, MO, United States
| | - T Subramanian
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Edward A. Doisy Research Center, St. Louis, MO, United States
| | - Elizabeth Geerling
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Edward A. Doisy Research Center, St. Louis, MO, United States
| | - Brittany Hoelscher
- Department of Biology and Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University, St. Louis, MO, United States
| | - KayKay San
- Department of Clinical Health Sciences, Doisy College of Health Science, Saint Louis University School of Medicine, Saint Louis, MO, United States
| | - Aravinda Ganapathy
- Department of Clinical Health Sciences, Doisy College of Health Science, Saint Louis University School of Medicine, Saint Louis, MO, United States
| | - Kyle Pemberton
- Department of Biology and Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University, St. Louis, MO, United States
| | - Eric Tycksen
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, United States
| | - Amelia K Pinto
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Edward A. Doisy Research Center, St. Louis, MO, United States
| | - James D Brien
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Edward A. Doisy Research Center, St. Louis, MO, United States
| | - David B Beck
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Wendy K Chung
- Department of Pediatrics and Medicine, Columbia University Medical Center, New York, NY, United States
| | - Christina A Gurnett
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States
| | - G Chinnadurai
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Edward A. Doisy Research Center, St. Louis, MO, United States
| |
Collapse
|
4
|
Morona R, Bandín S, López JM, Moreno N, González A. Amphibian thalamic nuclear organization during larval development and in the adult frog Xenopus laevis: Genoarchitecture and hodological analysis. J Comp Neurol 2020; 528:2361-2403. [PMID: 32162311 DOI: 10.1002/cne.24899] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 12/18/2022]
Abstract
The early patterning of the thalamus during embryonic development defines rostral and caudal progenitor domains, which are conserved from fishes to mammals. However, the subsequent developmental mechanisms that lead to the adult thalamic configuration have only been investigated for mammals and other amniotes. In this study, we have analyzed in the anuran amphibian Xenopus laevis (an anamniote vertebrate), through larval and postmetamorphic development, the progressive regional expression of specific markers for the rostral (GABA, GAD67, Lhx1, and Nkx2.2) and caudal (Gbx2, VGlut2, Lhx2, Lhx9, and Sox2) domains. In addition, the regional distributions at different developmental stages of other markers such as calcium binding proteins and neuropeptides, helped the identification of thalamic nuclei. It was observed that the two embryonic domains were progressively specified and compartmentalized during premetamorphosis, and cell subpopulations characterized by particular gene expression combinations were located in periventricular, intermediate and superficial strata. During prometamorphosis, three dorsoventral tiers formed from the caudal domain and most pronuclei were defined, which were modified into the definitive nuclear configuration through the metamorphic climax. Mixed cell populations originated from the rostral and caudal domains constitute most of the final nuclei and allowed us to propose additional subdivisions in the adult thalamus, whose main afferent and efferent connections were assessed by tracing techniques under in vitro conditions. This study corroborates shared features of early gene expression patterns in the thalamus between Xenopus and mouse, however, the dynamic changes in gene expression observed at later stages in the amphibian support mechanisms different from those of mammals.
Collapse
Affiliation(s)
- Ruth Morona
- Department of Cell Biology, Faculty of Biology, University Complutense of Madrid, Madrid, Spain
| | - Sandra Bandín
- Department of Cell Biology, Faculty of Biology, University Complutense of Madrid, Madrid, Spain
| | - Jesús M López
- Department of Cell Biology, Faculty of Biology, University Complutense of Madrid, Madrid, Spain
| | - Nerea Moreno
- Department of Cell Biology, Faculty of Biology, University Complutense of Madrid, Madrid, Spain
| | - Agustín González
- Department of Cell Biology, Faculty of Biology, University Complutense of Madrid, Madrid, Spain
| |
Collapse
|
5
|
Tran H, Park W, Seong S, Jeong J, Nguyen Q, Yoon J, Baek K, Jeong Y. Tcf7l2
transcription factor is required for the maintenance, but not the initial specification, of the neurotransmitter identity in the caudal thalamus. Dev Dyn 2019; 249:646-655. [DOI: 10.1002/dvdy.146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/15/2019] [Accepted: 12/15/2019] [Indexed: 12/31/2022] Open
Affiliation(s)
- Hong‐Nhung Tran
- Department of Genetic Engineering, College of Life Sciences and Graduate School of BiotechnologyKyung Hee University Yongin‐si Republic of Korea
| | - Wonbae Park
- Department of Genetic Engineering, College of Life Sciences and Graduate School of BiotechnologyKyung Hee University Yongin‐si Republic of Korea
| | - Sojeong Seong
- Department of Genetic Engineering, College of Life Sciences and Graduate School of BiotechnologyKyung Hee University Yongin‐si Republic of Korea
| | - Ji‐eun Jeong
- Department of Genetic Engineering, College of Life Sciences and Graduate School of BiotechnologyKyung Hee University Yongin‐si Republic of Korea
| | - Quy‐Hoai Nguyen
- Department of Genetic Engineering, College of Life Sciences and Graduate School of BiotechnologyKyung Hee University Yongin‐si Republic of Korea
| | - Jaeseung Yoon
- Department of Genetic Engineering, College of Life Sciences and Graduate School of BiotechnologyKyung Hee University Yongin‐si Republic of Korea
| | - Kwanghee Baek
- Department of Genetic Engineering, College of Life Sciences and Graduate School of BiotechnologyKyung Hee University Yongin‐si Republic of Korea
| | - Yongsu Jeong
- Department of Genetic Engineering, College of Life Sciences and Graduate School of BiotechnologyKyung Hee University Yongin‐si Republic of Korea
| |
Collapse
|
6
|
Guo Q, Li JYH. Defining developmental diversification of diencephalon neurons through single cell gene expression profiling. Development 2019; 146:dev174284. [PMID: 30872278 PMCID: PMC6602344 DOI: 10.1242/dev.174284] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/07/2019] [Indexed: 12/31/2022]
Abstract
The embryonic diencephalon forms integration centers and relay stations in the forebrain. Anecdotal expression studies suggest that the diencephalon contains multiple developmental compartments and subdivisions. Here, we utilized single cell RNA sequencing to profile transcriptomes of dissociated cells from the diencephalon of E12.5 mouse embryos. We identified the divergence of different progenitors, intermediate progenitors, and emerging neurons. By mapping the identified cell groups to their spatial origins, we characterized the molecular features of cell types and cell states arising from various diencephalic domains. Furthermore, we reconstructed the developmental trajectory of distinct cell lineages, and thereby identified the genetic cascades and gene regulatory networks underlying the progression of the cell cycle, neurogenesis and cellular diversification. The analysis provides new insights into the molecular mechanisms underlying the amplification of intermediate progenitor cells in the thalamus. The single cell-resolved trajectories not only confirm a close relationship between the rostral thalamus and prethalamus, but also uncover an unexpected close relationship between the caudal thalamus, epithalamus and rostral pretectum. Our data provide a useful resource for systematic studies of cell heterogeneity and differentiation kinetics within the diencephalon.
Collapse
Affiliation(s)
- Qiuxia Guo
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT 06030-6403, USA
| | - James Y H Li
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT 06030-6403, USA
- Institute for Systems Genomics, University of Connecticut, 400 Farmington Avenue, Farmington, CT 06030-6403, USA
| |
Collapse
|