1
|
Bayramov AV, Yastrebov SA, Mednikov DN, Araslanova KR, Ermakova GV, Zaraisky AG. Paired fins in vertebrate evolution and ontogeny. Evol Dev 2024; 26:e12478. [PMID: 38650470 DOI: 10.1111/ede.12478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 02/28/2024] [Accepted: 04/08/2024] [Indexed: 04/25/2024]
Abstract
The origin of paired appendages became one of the most important adaptations of vertebrates, allowing them to lead active lifestyles and explore a wide range of ecological niches. The basic form of paired appendages in evolution is the fins of fishes. The problem of paired appendages has attracted the attention of researchers for more than 150 years. During this time, a number of theories have been proposed, mainly based on morphological data, two of which, the Balfour-Thacher-Mivart lateral fold theory and Gegenbaur's gill arch theory, have not lost their relevance. So far, however, none of the proposed ideas has been supported by decisive evidence. The study of the evolutionary history of the appearance and development of paired appendages lies at the intersection of several disciplines and involves the synthesis of paleontological, morphological, embryological, and genetic data. In this review, we attempt to summarize and discuss the results accumulated in these fields and to analyze the theories put forward regarding the prerequisites and mechanisms that gave rise to paired fins and limbs in vertebrates.
Collapse
Affiliation(s)
- Andrey V Bayramov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Sergey A Yastrebov
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| | - Dmitry N Mednikov
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| | - Karina R Araslanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Galina V Ermakova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Andrey G Zaraisky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Department of Regenerative Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
2
|
Newton AH, Smith CA. Resolving the mechanisms underlying epithelial-to-mesenchymal transition of the lateral plate mesoderm. Genesis 2024; 62:e23531. [PMID: 37443419 DOI: 10.1002/dvg.23531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/02/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023]
Abstract
Formation of the vertebrate limb buds begins with a localized epithelial-to-mesenchymal transition (EMT) of the somatic lateral plate mesoderm (LPM). While the processes that drive proliferation and outgrowth of the limb mesenchyme are well established, the fundamental mechanisms that precede this process and initiate EMT are less understood. In this review, we outline putative drivers of EMT of the LPM, drawing from analyses across a range of vertebrates and developmental models. We detail the expression patterns of key EMT transcriptional regulators in the somatic LPM of the presumptive limb fields, and their potential role in producing a mesenchymal cell fate. These include a putative cooperative role between the EMT inducers PRRX1 and TWIST1, supported by evidence in zebrafish and chicken models but unconfirmed data from mice. As such, additional functional data are required to definitively determine the mechanisms that initiate and drive EMT of the somatic LPM, a critical transition preceding formation of the limb bud mesenchyme.
Collapse
Affiliation(s)
- Axel H Newton
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Craig A Smith
- Department of Anatomy and Physiology, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
3
|
Wang Z, Peng C, Wu W, Yan C, Lv Y, Li JT. Developmental regulation of conserved non-coding element evolution provides insights into limb loss in squamates. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2399-2414. [PMID: 37256419 DOI: 10.1007/s11427-023-2362-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/09/2023] [Indexed: 06/01/2023]
Abstract
Limb loss shows recurrent phenotypic evolution across squamate lineages. Here, based on three de novo-assembled genomes of limbless lizards from different lineages, we showed that divergence of conserved non-coding elements (CNEs) played an important role in limb development. These CNEs were associated with genes required for limb initiation and outgrowth, and with regulatory signals in the early stage of limb development. Importantly, we identified the extensive existence of insertions and deletions (InDels) in the CNEs, with the numbers ranging from 111 to 756. Most of these CNEs with InDels were lineage-specific in the limbless squamates. Nearby genes of these InDel CNEs were important to early limb formation, such as Tbx4, Fgf10, and Gli3. Based on functional experiments, we found that nucleotide mutations and InDels both affected the regulatory function of the CNEs. Our study provides molecular evidence underlying limb loss in squamate reptiles from a developmental perspective and sheds light on the importance of regulatory element InDels in phenotypic evolution.
Collapse
Affiliation(s)
- Zeng Wang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & h Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Changjun Peng
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & h Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Wu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & h Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chaochao Yan
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & h Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Yunyun Lv
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & h Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- College of Life Science, Neijiang Normal University, Neijiang, 641100, China
| | - Jia-Tang Li
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & h Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin Nay Pyi Taw, 05282, Myanmar.
| |
Collapse
|
4
|
Brinkworth A, Green E, Li Y, Oyston J, Ruta M, Wills MA. Bird clades with less complex appendicular skeletons tend to have higher species richness. Nat Commun 2023; 14:5817. [PMID: 37726273 PMCID: PMC10509246 DOI: 10.1038/s41467-023-41415-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 08/30/2023] [Indexed: 09/21/2023] Open
Abstract
Species richness is strikingly uneven across taxonomic groups at all hierarchical levels, but the reasons for this heterogeneity are poorly understood. It is well established that morphological diversity (disparity) is decoupled from taxonomic diversity, both between clades and across geological time. Morphological complexity has been much less studied, but there is theory linking complexity with differential diversity across groups. Here we devise an index of complexity from the differentiation of the fore and hind limb pairs for a sample of 983 species of extant birds. We test the null hypothesis that this index of morphological complexity is uncorrelated with clade diversity, revealing a significant and negative correlation between the species richness of clades and the mean morphological complexity of those clades. Further, we find that more complex clades tend to occupy a smaller number of dietary and habitat niches, and that this proxy for greater ecological specialisation correlates with lower species richness. Greater morphological complexity in the appendicular skeleton therefore appears to hinder the generation and maintenance of species diversity. This may result from entrenchment into morphologies and ecologies that are less capable of yielding further diversity.
Collapse
Affiliation(s)
- Andrew Brinkworth
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath, BA2 7AZ, UK.
| | - Emily Green
- Joseph Banks Laboratories, Department of Life Sciences, University of Lincoln, Green Lane, Lincoln, LN6 7DL, UK
| | - Yimeng Li
- Nanjing Institute of Geology and Paleontology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Jack Oyston
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath, BA2 7AZ, UK
- Centre for Integrative Anatomy, Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, UK
| | - Marcello Ruta
- Joseph Banks Laboratories, Department of Life Sciences, University of Lincoln, Green Lane, Lincoln, LN6 7DL, UK
| | - Matthew A Wills
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath, BA2 7AZ, UK
| |
Collapse
|
5
|
Newton AH, Williams SM, Major AT, Smith CA. Cell lineage specification and signalling pathway use during development of the lateral plate mesoderm and forelimb mesenchyme. Development 2022; 149:276597. [DOI: 10.1242/dev.200702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 08/25/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
The lateral plate mesoderm (LPM) is a transient tissue that produces a diverse range of differentiated structures, including the limbs. However, the molecular mechanisms that drive early LPM specification and development are poorly understood. In this study, we use single-cell transcriptomics to define the cell-fate decisions directing LPM specification, subdivision and early initiation of the forelimb mesenchyme in chicken embryos. We establish a transcriptional atlas and global cell-cell signalling interactions in progenitor, transitional and mature cell types throughout the developing forelimb field. During LPM subdivision, somatic and splanchnic LPM fate is achieved through activation of lineage-specific gene modules. During the earliest stages of limb initiation, we identify activation of TWIST1 in the somatic LPM as a putative driver of limb bud epithelial-to-mesenchymal transition. Furthermore, we define a new role for BMP signalling during early limb development, revealing that it is necessary for inducing a somatic LPM fate and initiation of limb outgrowth, potentially through activation of TBX5. Together, these findings provide new insights into the mechanisms underlying LPM development, somatic LPM fate choice and early initiation of the vertebrate limb.
Collapse
Affiliation(s)
- Axel H. Newton
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University 1 , Victoria , Australia
- BioScience 4, School of BioSciences, The University of Melbourne 2 , Victoria , Australia
| | - Sarah M. Williams
- Monash University 3 Monash Bioinformatics Platform , , Victoria , Australia
- Queensland Cyber Infrastructure Foundation, University of Queensland 4 , Queensland , Australia
| | - Andrew T. Major
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University 1 , Victoria , Australia
| | - Craig A. Smith
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University 1 , Victoria , Australia
| |
Collapse
|
6
|
Guinard G. THE FORELIMBS OF ALVAREZSAUROIDEA (DINOSAURIA: THEROPODA): INSIGHT FROM EVOLUTIONARY TERATOLOGY. J Morphol 2022; 283:1257-1272. [PMID: 35915891 DOI: 10.1002/jmor.21500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 07/14/2022] [Accepted: 07/17/2022] [Indexed: 11/09/2022]
Abstract
Alvarezsauroidea (Tetanurae) are non-avian theropod dinosaurs whose forelimb evolution is characterised by overdevelopment of digit I, at the expense of the other two digits, complemented by a drastic forelimb shortening in derived species (Parvicursorinae). These variations are recognised as evolutionary developmental anomalies. Evolutionary teratology hence leads to a double diagnosis with 1) macrodactyly of digit I and microdactyly of digits II and III, plus 2) anterior micromelia. The teratological macrodactyly/microdactyly coupling evolved first. Developmental mechanisms disturbing limb proportion are thought to be convergent with those of other Tetanurae (Tyrannosauridae, Carcharodontosauridae). As for the manual anomalies, both are specific to Alvarezsauroidea (macrodactyly/microdactyly) and inherited (digit loss/reduction). While considering the frame-shift theory, posterior digits develop before the most anterior one. There would therefore be a decrease in the area devoted to digits II (condensation 3) and III (condensation 4), in connection with the Shh signalling pathway, interacting with other molecular players such as the GLI 3 protein and the Hox system. Developmental independence of digit I (condensation 2) would contribute to generate a particular morphology. Macrodactyly would be linked to a variation in Hoxd-13, impacting Gli3 activity, increasing cell proliferation. The loss/reduction of digital ray/phalanges (digits II and III), would be associated to Shh activity, a mechanism inherited from the theropodan ancestry. The macrodactyly/macrodactyly coupling, and then anterior micromelia, fundamentally changed the forelimb mechanical function, compared to the 'classical' grasping structure of basal representatives and other theropods. The distal ossification of the macrodactylian digit has been identified as physiological, implying the use of the structure. However, the debate of a particular 'adaptive' use is pointless since the ecology of an organism is interactively complex, being both at the scale of the individual and dependent on circumstances. Other anatomical features also allow for compensation and a different predation (cursorial hindlimbs). This article is protected by copyright. All rights reserved.
Collapse
|
7
|
Ouyang J, Wu Y, Li Y, Miao J, Zheng S, Tang H, Wang C, Xiong Y, Gao Y, Wang L, Yan X, Chen H. Identification of key candidate genes for wing length-related traits by whole-genome resequencing in 772 geese. Br Poult Sci 2022; 63:747-753. [PMID: 35848598 DOI: 10.1080/00071668.2022.2102889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
1. A total of 772, 420-day-old Xingguo gray geese (XGG) were sequenced using a low-depth (~1×) whole-genome resequencing strategy to reveal the genetic mechanism of wing length-related traits by genome-wide association analysis (GWAS).2. The results showed that 119 SNPs had genome-wide significance for wing length in five regions of chromosome 4, of which the most significant locus (P=7.95E-11) was located upstream of RBM47 and explained 7.3% of phenotypic variation.3. A total of 219 SNPs located on chromosome 4 that were associated with 2-joint-wing length, of which four SNPs reached the genome-wide significant level. However, for the length of 1-joint-wing and primary feather, we did not detect any associated locus.4. Six promising candidate genes, RBM47, SLAIN2, GRXCR1, SLC10A4, APBB2 and NSUN7 on chromosome 4, may play an important role in the growth and development of feathers, muscles and bones.
Collapse
Affiliation(s)
- Jing Ouyang
- School of life science, Jiangxi Science & Technology Normal University, Nanchang, China
| | - Yongfei Wu
- School of life science, Jiangxi Science & Technology Normal University, Nanchang, China
| | - Yaxi Li
- School of life science, Jiangxi Science & Technology Normal University, Nanchang, China
| | - Junjie Miao
- School of life science, Jiangxi Science & Technology Normal University, Nanchang, China
| | - Sumei Zheng
- School of life science, Jiangxi Science & Technology Normal University, Nanchang, China
| | - Hongbo Tang
- School of life science, Jiangxi Science & Technology Normal University, Nanchang, China
| | - Cong Wang
- School of life science, Jiangxi Science & Technology Normal University, Nanchang, China
| | - Yanpeng Xiong
- School of life science, Jiangxi Science & Technology Normal University, Nanchang, China
| | - Yuren Gao
- School of life science, Jiangxi Science & Technology Normal University, Nanchang, China
| | - Luping Wang
- School of life science, Jiangxi Science & Technology Normal University, Nanchang, China
| | | | - Hao Chen
- School of life science, Jiangxi Science & Technology Normal University, Nanchang, China
| |
Collapse
|
8
|
Sears KE, Gros J, Davey M. Limb development, evolution, and regeneration & repair: Part 1. Dev Dyn 2021; 250:1218-1219. [PMID: 34402127 DOI: 10.1002/dvdy.411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Karen E Sears
- Departments of Ecology and Evolutionary Biology and Molecular, Cell, and Developmental Biology, UCLA, California, Los Angeles, USA
| | - Jerome Gros
- Department of Developmental and Stem Biology, Institute Pasteur, Paris, France
| | - Megan Davey
- Functional Genetics and Development, The Roslin Institute, The University of Edinburgh, Midlothian, Scotland, UK
| |
Collapse
|