1
|
Wang H, Chen X, Meng X, Cao Y, Han S, Liu K, Zhao X, Zhao X, Zhang X. The pathogenic mechanism of syndactyly type V identified in a Hoxd13Q50R knock-in mice. Bone Res 2024; 12:21. [PMID: 38561387 PMCID: PMC10984994 DOI: 10.1038/s41413-024-00322-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 01/30/2024] [Accepted: 02/19/2024] [Indexed: 04/04/2024] Open
Abstract
Syndactyly type V (SDTY5) is an autosomal dominant extremity malformation characterized by fusion of the fourth and fifth metacarpals. In the previous publication, we first identified a heterozygous missense mutation Q50R in homeobox domain (HD) of HOXD13 in a large Chinese family with SDTY5. In order to substantiate the pathogenicity of the variant and elucidate the underlying pathogenic mechanism causing limb malformation, transcription-activator-like effector nucleases (TALEN) was employed to generate a Hoxd13Q50R mutant mouse. The mutant mice exhibited obvious limb malformations including slight brachydactyly and partial syndactyly between digits 2-4 in the heterozygotes, and severe syndactyly, brachydactyly and polydactyly in homozygotes. Focusing on BMP2 and SHH/GREM1/AER-FGF epithelial mesenchymal (e-m) feedback, a crucial signal pathway for limb development, we found the ectopically expressed Shh, Grem1 and Fgf8 and down-regulated Bmp2 in the embryonic limb bud at E10.5 to E12.5. A transcriptome sequencing analysis was conducted on limb buds (LBs) at E11.5, revealing 31 genes that exhibited notable disparities in mRNA level between the Hoxd13Q50R homozygotes and the wild-type. These genes are known to be involved in various processes such as limb development, cell proliferation, migration, and apoptosis. Our findings indicate that the ectopic expression of Shh and Fgf8, in conjunction with the down-regulation of Bmp2, results in a failure of patterning along both the anterior-posterior and proximal-distal axes, as well as a decrease in interdigital programmed cell death (PCD). This cascade ultimately leads to the development of syndactyly and brachydactyly in heterozygous mice, and severe limb malformations in homozygous mice. These findings suggest that abnormal expression of SHH, FGF8, and BMP2 induced by HOXD13Q50R may be responsible for the manifestation of human SDTY5.
Collapse
Affiliation(s)
- Han Wang
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Department of Medical Genetics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
- Department of Orthopedics, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Xiumin Chen
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Department of Medical Genetics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Xiaolu Meng
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Department of Medical Genetics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Yixuan Cao
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Department of Medical Genetics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Shirui Han
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Department of Medical Genetics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Keqiang Liu
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Department of Medical Genetics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Ximeng Zhao
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Department of Medical Genetics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Xiuli Zhao
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Department of Medical Genetics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China.
| | - Xue Zhang
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Department of Medical Genetics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China.
| |
Collapse
|
2
|
Xu Q, Luo Y, Chao Z, Zhang J, Liu X, Tang Q, Wang K, Tan S, Fang M. Integrated Analysis of Transcriptome Expression Profiles Reveals miRNA-326-NKX3.2-Regulated Porcine Chondrocyte Differentiation. Int J Mol Sci 2023; 24:ijms24087257. [PMID: 37108419 PMCID: PMC10138716 DOI: 10.3390/ijms24087257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 04/29/2023] Open
Abstract
The porcine body length trait is an essential factor affecting meat production and reproductive performance. It is evident that the development/lengthening of individual vertebrae is one of the main reasons for increases in body length; however, the underlying molecular mechanism remains unclear. In this study, RNA-seq analysis was used to profile the transcriptome (lncRNA, mRNA, and miRNA) of the thoracic intervertebral cartilage (TIC) at two time points (1 and 4 months) during vertebral column development in Yorkshire (Y) and Wuzhishan pigs (W). There were four groups: 1- (Y1) and 4-month-old (Y4) Yorkshire pigs and 1- (W1) and 4-month-old (W4) Wuzhishan pigs. In total, 161, 275, 86, and 126 differentially expressed (DE) lncRNAs, 1478, 2643, 404, and 750 DE genes (DEGs), and 74,51, 34, and 23 DE miRNAs (DE miRNAs) were identified in the Y4 vs. Y1, W4 vs. W1, Y4 vs. W4, and Y1 vs. W1 comparisons, respectively. Functional analysis of these DE transcripts (DETs) demonstrated that they had participated in various biological processes, such as cellular component organization or biogenesis, the developmental process, the metabolic process, bone development, and cartilage development. The crucial bone development-related candidate genes NK3 Homeobox 2 (NKX3.2), Wnt ligand secretion mediator (WLS), gremlin 1 (GREM1), fibroblast growth factor receptor 3 (FGFR3), hematopoietically expressed homeobox (HHEX), (collagen type XI alpha 1 chain (COL11A1), and Wnt Family Member 16 (WNT16)) were further identified by functional analysis. Moreover, lncRNA, miRNA, and gene interaction networks were constructed; a total of 55 lncRNAs, 6 miRNAs, and 7 genes formed lncRNA-gene, miRNA-gene, and lncRNA-miRNA-gene pairs, respectively. The aim was to demonstrate that coding and non-coding genes may co-regulate porcine spine development through interaction networks. NKX3.2 was identified as being specifically expressed in cartilage tissues, and it delayed chondrocyte differentiation. miRNA-326 regulated chondrocyte differentiation by targeting NKX3.2. The present study provides the first non-coding RNA and gene expression profiles in the porcine TIC, constructs the lncRNA-miRNA-gene interaction networks, and confirms the function of NKX3.2 in vertebral column development. These findings contribute to the understanding of the potential molecular mechanisms regulating pig vertebral column development. They expand our knowledge about the differences in body length between different pig species and provide a foundation for future studies.
Collapse
Affiliation(s)
- Qiao Xu
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yabiao Luo
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhe Chao
- Institute of Animal Sciences and Veterinary, Hainan Academy of Agricultural Sciences, Haikou 571100, China
| | - Jibin Zhang
- Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope, Duarte, CA 91006, USA
| | - Ximing Liu
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Qiguo Tang
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Kejun Wang
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shuyi Tan
- Institute of Animal Sciences and Veterinary, Hainan Academy of Agricultural Sciences, Haikou 571100, China
| | - Meiying Fang
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
3
|
Gros J, Davey M, Sears KE. Limb development, evolution, and regeneration and repair: Part two. Dev Dyn 2022; 251:1387-1388. [PMID: 36052833 DOI: 10.1002/dvdy.521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2022] [Indexed: 11/08/2022] Open
Affiliation(s)
- Jérôme Gros
- Université Paris Cité, CNRS UMR3738, Developmental and Stem Cell Biology Department, Institut Pasteur, Paris, France
| | - Megan Davey
- Functional Genetics and Development, The Roslin Institute, The University of Edinburgh, Edinburgh, Scotland
| | - Karen E Sears
- Departments of Ecology and Evolutionary Biology and Molecular, Cell, and Developmental Biology, UCLA, Los Angeles, California, USA
| |
Collapse
|
4
|
Huang BL, Mackem S. Rethinking positional information and digit identity: The role of late interdigit signaling. Dev Dyn 2021; 251:1414-1422. [PMID: 34811837 DOI: 10.1002/dvdy.440] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 12/22/2022] Open
Abstract
Seminal work from John Fallon's lab has illuminated how digit identity determination involves ongoing late regulation and occurs progressively during phalanx formation. Complementary genetic analyses in mice and several papers in this special issue have begun to flesh out how interdigit signaling accomplishes this, but major questions remain unaddressed, including how uncommitted progenitors from which phalanges arise are maintained, and what factors set limits on digit extension and phalanx number, particularly in mammals. This review summarizes what has been learned in the two decades since control of digit identity by late interdigit signals was first identified and what remains poorly understood, and will hopefully spark renewed interest in a process that is critical to evolutionary limb adaptations but nevertheless remains enigmatic.
Collapse
Affiliation(s)
- Bau-Lin Huang
- Cancer and Developmental Biology Laboratory, CCR, NCI, Frederick, Maryland, USA
| | - Susan Mackem
- Cancer and Developmental Biology Laboratory, CCR, NCI, Frederick, Maryland, USA
| |
Collapse
|