1
|
Vinter DJ, Hoppe C, Minchington TG, Sutcliffe C, Ashe HL. Dynamics of hunchback translation in real-time and at single-mRNA resolution in the Drosophila embryo. Development 2021; 148:dev196121. [PMID: 33722899 PMCID: PMC8077512 DOI: 10.1242/dev.196121] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 03/10/2021] [Indexed: 12/15/2022]
Abstract
The Hunchback (Hb) transcription factor is crucial for anterior-posterior patterning of the Drosophila embryo. The maternal hb mRNA acts as a paradigm for translational regulation due to its repression in the posterior of the embryo. However, little is known about the translatability of zygotically transcribed hb mRNAs. Here, we adapt the SunTag system, developed for imaging translation at single-mRNA resolution in tissue culture cells, to the Drosophila embryo to study the translation dynamics of zygotic hb mRNAs. Using single-molecule imaging in fixed and live embryos, we provide evidence for translational repression of zygotic SunTag-hb mRNAs. Whereas the proportion of SunTag-hb mRNAs translated is initially uniform, translation declines from the anterior over time until it becomes restricted to a posterior band in the expression domain. We discuss how regulated hb mRNA translation may help establish the sharp Hb expression boundary, which is a model for precision and noise during developmental patterning. Overall, our data show how use of the SunTag method on fixed and live embryos is a powerful combination for elucidating spatiotemporal regulation of mRNA translation in Drosophila.
Collapse
Affiliation(s)
| | | | | | | | - Hilary L. Ashe
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
2
|
Ghasemi M, Pawar H, Mishra RK, Brahmachari V. The functional diversity of Drosophila Ino80 in development. Mech Dev 2015; 138 Pt 2:113-121. [PMID: 26253267 DOI: 10.1016/j.mod.2015.07.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 07/28/2015] [Accepted: 07/30/2015] [Indexed: 10/23/2022]
Abstract
Ino80 is well known as a chromatin remodeling protein with the catalytic function of DNA dependent ATPase and is highly conserved across phyla. Ino80 in human and Drosophila is known to form the Ino80 complex in association with the DNA binding protein Ying-Yang 1 (YY1)/Pleiohomeotic (Pho) the Drosophila homologue. We have earlier reported that Ino80 sub-family of proteins has two functional domains, namely, the DNA dependent ATPase and the DNA binding domain. In the background of the essential role of dIno80 in development, we provide evidence of Pho independent function of dIno80 in development and analyze the dual role of dIno80 in activation as well as repression in the context of the homeotic gene Scr (sex combs reduced) in imaginal discs. This differential effect of dIno80 in different imaginal discs suggests the contextual function of dIno80 as an Enhancer of Trithorax and Polycomb (ETP). We speculate on the role of dIno80 as a chromatin remodeler on one hand and a potential recruiter of epigenetic regulatory complexes on the other.
Collapse
Affiliation(s)
- Mohsen Ghasemi
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| | - Hema Pawar
- Indian Agricultural Research Institute, New Delhi 110012, India
| | - Rakesh K Mishra
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| | - Vani Brahmachari
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India.
| |
Collapse
|
3
|
Liu J, Ma J. Uncovering a dynamic feature of the transcriptional regulatory network for anterior-posterior patterning in the Drosophila embryo. PLoS One 2013; 8:e62641. [PMID: 23646132 PMCID: PMC3639989 DOI: 10.1371/journal.pone.0062641] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 03/25/2013] [Indexed: 01/21/2023] Open
Abstract
Anterior-posterior (AP) patterning in the Drosophila embryo is dependent on the Bicoid (Bcd) morphogen gradient. However, most target genes of Bcd also require additional inputs to establish their expression domains, reflective of the operation of a cross-regulatory network and contributions of other maternal signals. This is in contrast to hunchback (hb), which has an anterior expression domain driven by an enhancer that appears to respond primarily to the Bcd input. To gain a better understanding of the regulatory logic of the AP patterning network, we perform quantitative studies that specifically investigate the dynamics of hb transcription during development. We show that Bcd-dependent hb transcription, monitored by the intron-containing nascent transcripts near the P2 promoter, is turned off quickly–on the order of a few minutes–upon entering the interphase of nuclear cycle 14A. This shutdown contrasts with earlier cycles during which active hb transcription can persist until the moment when the nucleus enters mitosis. The shutdown takes place at a time when the nuclear Bcd gradient profile in the embryo remains largely intact, suggesting that this is a process likely subject to control of a currently unknown regulatory mechanism. We suggest that this dynamic feature offers a window of opportunity for hb to faithfully interpret, and directly benefit from, Bcd gradient properties, including its scaling properties, to help craft a robust AP patterning outcome.
Collapse
Affiliation(s)
- Junbo Liu
- Division of Biomedical Informatics, Cincinnati Children’s Research Foundation, Cincinnati, Ohio, United States of America
| | - Jun Ma
- Division of Biomedical Informatics, Cincinnati Children’s Research Foundation, Cincinnati, Ohio, United States of America
- Division of Developmental Biology, Cincinnati Children’s Research Foundation, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
4
|
Liu J, Ma J. Dampened regulates the activating potency of Bicoid and the embryonic patterning outcome in Drosophila. Nat Commun 2013; 4:2968. [PMID: 24336107 PMCID: PMC3902774 DOI: 10.1038/ncomms3968] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 11/18/2013] [Indexed: 01/26/2023] Open
Abstract
The Drosophila morphogen gradient of Bicoid (Bcd) initiates anterior-posterior (AP) patterning; however, it is poorly understood how its ability to activate a target gene may have an impact on this process. Here we report an F-box protein, Dampened (Dmpd) as a nuclear cofactor of Bcd that can enhance its activating potency. We establish a quantitative platform to specifically investigate two parameters of a Bcd target gene response, expression amplitude and boundary position. We show that embryos lacking Dmpd have a reduced amplitude of Bcd-activated hunchback (hb) expression at a critical time of development. This is because of a reduced Bcd-dependent transcribing probability. This defect is faithfully propagated further downstream of the AP-patterning network to alter the spatial characteristics of even-skipped (eve) stripes. Thus, unlike another Bcd-interacting F-box protein Fate-shifted (Fsd), which controls AP patterning through regulating the Bcd gradient profile, Dmpd achieves its patterning role through regulating the activating potency of Bcd.
Collapse
Affiliation(s)
- Junbo Liu
- Division of Biomedical Informatics Cincinnati Children's Research Foundation 3333 Burnet Avenue Cincinnati, Ohio United States of America
| | - Jun Ma
- Division of Biomedical Informatics Cincinnati Children's Research Foundation 3333 Burnet Avenue Cincinnati, Ohio United States of America
- Division of Developmental Biology Cincinnati Children's Research Foundation 3333 Burnet Avenue Cincinnati, Ohio United States of America
| |
Collapse
|
5
|
Janssen R, Budd GE, Damen WG. Gene expression suggests conserved mechanisms patterning the heads of insects and myriapods. Dev Biol 2011; 357:64-72. [DOI: 10.1016/j.ydbio.2011.05.670] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 05/20/2011] [Accepted: 05/25/2011] [Indexed: 01/31/2023]
|
6
|
Vorwald-Denholtz PP, De Robertis EM. Temporal pattern of the posterior expression of Wingless in Drosophila blastoderm. Gene Expr Patterns 2011; 11:456-63. [PMID: 21821151 DOI: 10.1016/j.gep.2011.07.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 07/20/2011] [Accepted: 07/21/2011] [Indexed: 10/17/2022]
Abstract
In most animals, the antero-posterior (A-P) axis requires a gradient of Wnt signaling. Wnts are expressed posteriorly in many vertebrate and invertebrate embryos, forming a gradient of canonical Wnt/β-Catenin activity that is highest in the posterior and lowest in the anterior. One notable exception to this evolutionary conservation is in the Drosophila embryo, in which the A-P axis is established by early transcription factors of maternal origin. Despite this initial axial establishment, Drosophila still expresses Wingless (Wg), the main Drosophila Wnt homologue, in a strong posterior band early in embryogenesis. Since its discovery 30 years ago this posterior band of Wg has been largely ignored. In this study, we re-examined the onset of expression of the Wg posterior band in relation to the expression of Wg in other segments, and compared the timing of its expression to that of axial regulators such as gap and pair-rule genes. It was found that the posterior band of Wg is first detected in blastoderm at mid nuclear cycle 14, before the segment-polarity stripes of Wg are formed in other segments. The onset of the posterior band of Wg expression was preceded by that of the gap gene products Hunchback (hb) and Krüppel (Kr), and the pair-rule protein Even-skipped (Eve). Although the function of the posterior band of Wg was not analyzed in this study, we note that in temperature-sensitive Wg mutants, in which Wg is not properly secreted, the posterior band of Wg expression is diminished in strength, indicating a positive feedback loop required for Wg robust expression at the cellular blastoderm stage. We propose that this early posterior expression could play a role in the refinement of A-P patterning.
Collapse
Affiliation(s)
- Peggy P Vorwald-Denholtz
- Howard Hughes Medical Institute, Department of Biological Chemistry, University of California, Los Angeles, CA 90095-1662, United States
| | | |
Collapse
|
7
|
Abstract
Gap genes are involved in segment determination during the early development of the fruit fly Drosophila melanogaster as well as in other insects. This review attempts to synthesize the current knowledge of the gap gene network through a comprehensive survey of the experimental literature. I focus on genetic and molecular evidence, which provides us with an almost-complete picture of the regulatory interactions responsible for trunk gap gene expression. I discuss the regulatory mechanisms involved, and highlight the remaining ambiguities and gaps in the evidence. This is followed by a brief discussion of molecular regulatory mechanisms for transcriptional regulation, as well as precision and size-regulation provided by the system. Finally, I discuss evidence on the evolution of gap gene expression from species other than Drosophila. My survey concludes that studies of the gap gene system continue to reveal interesting and important new insights into the role of gene regulatory networks in development and evolution.
Collapse
Affiliation(s)
- Johannes Jaeger
- Centre de Regulació Genòmica, Universtitat Pompeu Fabra, Barcelona, Spain.
| |
Collapse
|
8
|
Abstract
Animal growth and development depend on the precise control of gene expression at the level of transcription. A central role in the regulation of developmental transcription is attributed to transcription factors that bind DNA enhancer elements, which are often located far from gene transcription start sites. Here, we review recent studies that have uncovered significant regulatory functions in developmental transcription for the TFIID basal transcription factors and for the DNA core promoter elements that are located close to transcription start sites.
Collapse
Affiliation(s)
- Uwe Ohler
- Institute for Genome Sciences & Policy, Departments of Biostatistics & Bioinformatics and Computer Science, Duke University, Durham, NC 27708, USA
| | | |
Collapse
|
9
|
Ashyraliyev M, Siggens K, Janssens H, Blom J, Akam M, Jaeger J. Gene circuit analysis of the terminal gap gene huckebein. PLoS Comput Biol 2009; 5:e1000548. [PMID: 19876378 PMCID: PMC2760955 DOI: 10.1371/journal.pcbi.1000548] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Accepted: 09/28/2009] [Indexed: 12/24/2022] Open
Abstract
The early embryo of Drosophila melanogaster provides a powerful model system to study the role of genes in pattern formation. The gap gene network constitutes the first zygotic regulatory tier in the hierarchy of the segmentation genes involved in specifying the position of body segments. Here, we use an integrative, systems-level approach to investigate the regulatory effect of the terminal gap gene huckebein (hkb) on gap gene expression. We present quantitative expression data for the Hkb protein, which enable us to include hkb in gap gene circuit models. Gap gene circuits are mathematical models of gene networks used as computational tools to extract regulatory information from spatial expression data. This is achieved by fitting the model to gap gene expression patterns, in order to obtain estimates for regulatory parameters which predict a specific network topology. We show how considering variability in the data combined with analysis of parameter determinability significantly improves the biological relevance and consistency of the approach. Our models are in agreement with earlier results, which they extend in two important respects: First, we show that Hkb is involved in the regulation of the posterior hunchback (hb) domain, but does not have any other essential function. Specifically, Hkb is required for the anterior shift in the posterior border of this domain, which is now reproduced correctly in our models. Second, gap gene circuits presented here are able to reproduce mutants of terminal gap genes, while previously published models were unable to reproduce any null mutants correctly. As a consequence, our models now capture the expression dynamics of all posterior gap genes and some variational properties of the system correctly. This is an important step towards a better, quantitative understanding of the developmental and evolutionary dynamics of the gap gene network.
Collapse
Affiliation(s)
- Maksat Ashyraliyev
- Center for Mathematics and Computer Science, Centrum Wiskunde and Informatica, Amsterdam, The Netherlands
| | - Ken Siggens
- Laboratory for Development and Evolution, University Museum of Zoology, Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Hilde Janssens
- EMBL/CRG Research Unit in Systems Biology, CRG–Centre de Regulació Genòmica, Universitat Pompeu Fabra, Barcelona, Spain
| | - Joke Blom
- Center for Mathematics and Computer Science, Centrum Wiskunde and Informatica, Amsterdam, The Netherlands
| | - Michael Akam
- Laboratory for Development and Evolution, University Museum of Zoology, Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Johannes Jaeger
- Laboratory for Development and Evolution, University Museum of Zoology, Department of Zoology, University of Cambridge, Cambridge, United Kingdom
- EMBL/CRG Research Unit in Systems Biology, CRG–Centre de Regulació Genòmica, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
10
|
Marques-Souza H, Aranda M, Tautz D. Delimiting the conserved features of hunchback function for the trunk organization of insects. Development 2008; 135:881-8. [PMID: 18216167 DOI: 10.1242/dev.018317] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The gap gene hunchback in Drosophila acts during syncytial blastoderm stage via a short-range gradient and concentration-dependent activation or repression of target genes. Orthologues of hunchback can be easily found in other insects, but it has been unclear how well its functions are conserved. The segmentation process in most insect embryos occurs under cellular conditions, which should not allow the formation of diffusion-controlled transcription factor gradients. We have studied here in detail the function of hunchback in the short germ embryo of Tribolium using parental RNAi and interaction with possible target genes. We find that hunchback is a major regulator of the trunk gap genes and Hox genes in Tribolium, but may only indirectly be required to regulate other segmentation genes. The core function of hunchback appears to be the setting of the Ultrabithorax expression border via a repression effect, and the activation of the Krüppel expression domain. These regulatory effects are likely to be direct and are conserved between Drosophila and Tribolium. We find no evidence for a classical gap phenotype in the form of loss of segments in the region of expression of hunchback. However, the phenotypic effects in Tribolium are highly comparable with those found for other short germ embryos, i.e. the core functions of hunchback in Tribolium appear to be the same in these other insects, although they are evolutionarily more distant to Tribolium, than Tribolium is to Drosophila. These results allow the disentanglement of the conserved role of hunchback in insects from the derived features that have been acquired in the lineage towards Drosophila. Given that the gap phenotype appears to occur only in long germ embryos and that the main role of hunchback appears to be the regionalization of the embryo, it may be appropriate to revive an alternative name for the class of gap genes, namely 'cardinal genes'.
Collapse
|
11
|
Goltsev Y, Fuse N, Frasch M, Zinzen RP, Lanzaro G, Levine M. Evolution of the dorsal-ventral patterning network in the mosquito, Anopheles gambiae. Development 2007; 134:2415-24. [PMID: 17522157 DOI: 10.1242/dev.02863] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The dorsal-ventral patterning of the Drosophila embryo is controlled by a well-defined gene regulation network. We wish to understand how changes in this network produce evolutionary diversity in insect gastrulation. The present study focuses on the dorsal ectoderm in two highly divergent dipterans, the fruitfly Drosophila melanogaster and the mosquito Anopheles gambiae. In D. melanogaster, the dorsal midline of the dorsal ectoderm forms a single extra-embryonic membrane, the amnioserosa. In A. gambiae, an expanded domain forms two distinct extra-embryonic tissues, the amnion and serosa. The analysis of approximately 20 different dorsal-ventral patterning genes suggests that the initial specification of the mesoderm and ventral neurogenic ectoderm is highly conserved in flies and mosquitoes. By contrast, there are numerous differences in the expression profiles of genes active in the dorsal ectoderm. Most notably, the subdivision of the extra-embryonic domain into separate amnion and serosa lineages in A. gambiae correlates with novel patterns of gene expression for several segmentation repressors. Moreover, the expanded amnion and serosa anlage correlates with a broader domain of Dpp signaling as compared with the D. melanogaster embryo. Evidence is presented that this expanded signaling is due to altered expression of the sog gene.
Collapse
Affiliation(s)
- Yury Goltsev
- Department MCB, Division of GGD, Center for Integrative Genomics, University of California, Berkeley, CA 94720, USA
| | | | | | | | | | | |
Collapse
|
12
|
Lynch JA, Brent AE, Leaf DS, Pultz MA, Desplan C. Localized maternal orthodenticle patterns anterior and posterior in the long germ wasp Nasonia. Nature 2006; 439:728-32. [PMID: 16467838 DOI: 10.1038/nature04445] [Citation(s) in RCA: 174] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2005] [Accepted: 10/26/2005] [Indexed: 11/08/2022]
Abstract
The Bicoid (Bcd) gradient in Drosophila has long been a model for the action of a morphogen in establishing embryonic polarity. However, it is now clear that bcd is a unique feature of higher Diptera. An evolutionarily ancient gene, orthodenticle (otd), has a bcd-like role in the beetle Tribolium. Unlike the Bcd gradient, which arises by diffusion of protein from an anteriorly localized messenger RNA, the Tribolium Otd gradient forms by translational repression of otd mRNA by a posteriorly localized factor. These differences in gradient formation are correlated with differences in modes of embryonic patterning. Drosophila uses long germ embryogenesis, where the embryo derives from the entire anterior-posterior axis, and all segments are patterned at the blastoderm stage, before gastrulation. In contrast, Tribolium undergoes short germ embryogenesis: the embryo arises from cells in the posterior of the egg, and only anterior segments are patterned at the blastoderm stage, with the remaining segments arising after gastrulation from a growth zone. Here we describe the role of otd in the long germband embryo of the wasp Nasonia vitripennis. We show that Nasonia otd maternal mRNA is localized at both poles of the embryo, and resulting protein gradients pattern both poles. Thus, localized Nasonia otd has two major roles that allow long germ development. It activates anterior targets at the anterior of the egg in a manner reminiscent of the Bcd gradient, and it is required for pre-gastrulation expression of posterior gap genes.
Collapse
Affiliation(s)
- Jeremy A Lynch
- Center for Developmental Genetics, NYU Biology, 100 Washington Square East New York, New York 10003, USA
| | | | | | | | | |
Collapse
|
13
|
Alves F, Dilão R. Modeling segmental patterning in Drosophila: Maternal and gap genes. J Theor Biol 2006; 241:342-59. [PMID: 16427090 DOI: 10.1016/j.jtbi.2005.11.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2005] [Revised: 11/25/2005] [Accepted: 11/30/2005] [Indexed: 12/29/2022]
Abstract
We propose a new mathematical model describing the establishment of maternal and gap proteins segmental patterning along the antero-posterior axis of the Drosophila early embryo. This model is based on experimental data and, without recurring to pre-defined activation thresholds, predicts qualitatively and quantitatively the expression patterns of the maternal and gap proteins, as well as the expression patterns of proteins resulting from mRNA ectopic expression and from some loss-of-function mutations. We conclude that the gap genes segmental patterning and consequent spatial organization of the embryo is determined by three main factors: (1) the initial positioning of the maternal bicoid and torso mRNA inside the egg, and subsequent diffusion of the corresponding proteins; (2) the structure of the genetic regulatory network; (3) the role of conservation laws in the establishment of steady and non-uniform spatial distributions of non-diffusing proteins.
Collapse
Affiliation(s)
- Filipa Alves
- Non-Linear Dynamics Group, Instituto Superior Técnico, Department of Physics, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | | |
Collapse
|
14
|
Pultz MA, Westendorf L, Gale SD, Hawkins K, Lynch J, Pitt JN, Reeves NL, Yao JCY, Small S, Desplan C, Leaf DS. A major role for zygotichunchbackin patterning theNasoniaembryo. Development 2005; 132:3705-15. [PMID: 16077090 DOI: 10.1242/dev.01939] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Developmental genetic analysis has shown that embryos of the parasitoid wasp Nasonia vitripennis depend more on zygotic gene products to direct axial patterning than do Drosophila embryos. In Drosophila, anterior axial patterning is largely established by bicoid, a rapidly evolving maternal-effect gene, working with hunchback, which is expressed both maternally and zygotically. Here,we focus on a comparative analysis of Nasonia hunchback function and expression. We find that a lesion in Nasonia hunchback is responsible for the severe zygotic headless mutant phenotype, in which most head structures and the thorax are deleted, as are the three most posterior abdominal segments. This defines a major role for zygotic Nasonia hunchback in anterior patterning, more extensive than the functions described for hunchback in Drosophila or Tribolium. Despite the major zygotic role of Nasonia hunchback, we find that it is strongly expressed maternally, as well as zygotically. NasoniaHunchback embryonic expression appears to be generally conserved; however, the mRNA expression differs from that of Drosophila hunchback in the early blastoderm. We also find that the maternal hunchback message decays at an earlier developmental stage in Nasonia than in Drosophila, which could reduce the relative influence of maternal products in Nasonia embryos. Finally, we extend the comparisons of Nasonia and Drosophila hunchback mutant phenotypes, and propose that the more severe Nasonia hunchback mutant phenotype may be a consequence of differences in functionally overlapping regulatory circuitry.
Collapse
Affiliation(s)
- Mary Anne Pultz
- Department of Biology, Western Washington University, Bellingham, WA 98225, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Leatherman JL, Levin L, Boero J, Jongens TA. germ cell-less acts to repress transcription during the establishment of the Drosophila germ cell lineage. Curr Biol 2002; 12:1681-5. [PMID: 12361572 DOI: 10.1016/s0960-9822(02)01182-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Previously, it has been shown that, during early Drosophila and C. elegans development, the germ cell precursors undergo a period of transcriptional quiescence. Here, we report that Germ cell-less (GCL), a germ plasm component necessary for the proper formation of "pole cells," the germ cell precursors in Drosophila, is required for the establishment of this transcriptional quiescence. While control embryos silence transcription prior to pole cell formation in the pole cell-destined nuclei, this silencing does not occur in embryos that lack GCL activity. The failure to establish quiescence is tightly correlated with failure to form the pole cells. Furthermore, we show that GCL can repress transcription of at least a subset of genes in an ectopic context, independent of other germ plasm components. Our results place GCL as the earliest gene known to act in the transcriptional repression of the germline. GCL's subcellular distribution on the nucleoplasmic surface of the nuclear envelope and its effect on transcription suggest that it may act to repress transcription in a manner similar to that proposed for transcriptional silencing of telomeric regions.
Collapse
Affiliation(s)
- Judith L Leatherman
- Cell and Molecular Biology Graduate Program, University of Pennsylvania Shool of Medicine, Philadelphia, PA 19104-6100, USA
| | | | | | | |
Collapse
|
16
|
Wu X, Vasisht V, Kosman D, Reinitz J, Small S. Thoracic patterning by the Drosophila gap gene hunchback. Dev Biol 2001; 237:79-92. [PMID: 11518507 DOI: 10.1006/dbio.2001.0355] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Localized gene expression patterns are critical for establishing body plans in all multicellular animals. In Drosophila, the gap gene hunchback (hb) is expressed in a dynamic pattern in anterior regions of the embryo. Hb protein is first detected as a shallow maternal gradient that prevents expression of posterior gap genes in anterior regions. hb mRNA is also expressed zygotically, first as a broad anterior domain controlled by the Bicoid (Bcd) morphogen, and then in a stripe at the position of parasegment 4 (PS4). Here, we show that the PS4-hb stripe changes the profile of the anterior Hb gradient by generating a localized peak of protein that persists until after the broad domain has started to decline. This peak is required specifically for the formation of the mesothoracic (T2) segment. At the molecular level, the PS4-hb stripe is critical for activation of the homeotic gene Antennapedia, but does not affect a gradient of Hb repressive activity formed by the combination of maternal and Bcd-dependent Hb. The repressive gradient is critical for establishing the positions of several target genes, including the gap genes Kruppel (Kr), knirps (kni), and giant (gt), and the homeotic gene Ultrabithorax (Ubx). Different Hb concentrations are sufficient for repression of gt, kni, and Ubx, but a very high level of Hb, or a combinatorial mechanism, is required for repression of Kr. These results suggest that the individual phases of hb transcription, which overlap temporally and spatially, contribute specific patterning functions in early embryogenesis.
Collapse
Affiliation(s)
- X Wu
- Department of Biology, New York University, 100 Washington Square East, New York, New York 10003, USA
| | | | | | | | | |
Collapse
|
17
|
Abstract
The gene proboscipedia (pb) is a member of the Antennapedia complex in Drosophila and is required for the proper specification of the adult mouthparts. In the embryo, pb expression serves no known function despite having an accumulation pattern in the mouthpart anlagen that is conserved across several insect orders. We have identified several of the genes necessary to generate this embryonic pattern of expression. These genes can be roughly split into three categories based on their time of action during development. First, prior to the expression of pb, the gap genes are required to specify the domains where pb may be expressed. Second, the initial expression pattern of pb is controlled by the combined action of the genes Deformed (Dfd), Sex combs reduced (Scr), cap'n'collar (cnc), and teashirt (tsh). Lastly, maintenance of this expression pattern later in development is dependent on the action of a subset of the Polycomb group genes. These interactions are mediated in part through a 500-bp regulatory element in the second intron of pb. We further show that Dfd protein binds in vitro to sequences found in this fragment. This is the first clear demonstration of autonomous positive cross-regulation of one Hox gene by another in Drosophila melanogaster and the binding of Dfd to a cis-acting regulatory element indicates that this control might be direct.
Collapse
Affiliation(s)
- D B Rusch
- Howard Hughes Medical Institute, Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| | | |
Collapse
|
18
|
Abstract
The Drosophila bicoid gene is well known for encoding a protein that forms a morphogenetic gradient with a key role in anterior patterning of the fruitfly embryo. Recent results suggest the evolution of bicoid might have involved dramatic changes in function - essentially the invention of a new regulatory protein.
Collapse
Affiliation(s)
- P Dearden
- University Museum of Zoology, Department of Zoology, Downing Street, Cambridge, CB2 3EJ, UK
| | | |
Collapse
|
19
|
Margolis JS, Borowsky ML, Steingrímsson E, Shim CW, Lengyel JA, Posakony JW. Posterior stripe expression of hunchback is driven from two promoters by a common enhancer element. Development 1995; 121:3067-77. [PMID: 7555732 DOI: 10.1242/dev.121.9.3067] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The gap gene hunchback (hb) is required for the formation and segmentation of two regions of the Drosophila embryo, a broad anterior domain and a narrow posterior domain. Accumulation of hb transcript in the posterior of the embryo occurs in two phases, an initial cap covering the terminal 15% of the embryo followed by a stripe at the anterior edge of this region. By in situ hybridization with transcript-specific probes, we show that the cap is composed only of mRNA from the distal transcription initiation site (P1), while the later posterior stripe is composed of mRNA from both the distal and proximal (P2) transcription initiation sites. Using a series of genomic rescue constructs and promoter-lacZ fusion genes, we define a 1.4 kb fragment of the hb upstream region that is both necessary and sufficient for posterior expression. Sequences within this fragment mediate regulation by the terminal gap genes tailless (tll) and a huckebein, which direct the formation of the posterior hb stripe. We show that the tll protein binds in vitro to specific sites within the 1.4 kb posterior enhancer region, providing the first direct evidence for activation of gene expression by tll. We propose a model in which the anterior border of the posterior hb stripe is determined by tll concentration in a manner analogous to the activation of anterior hb expression by bicoid.
Collapse
Affiliation(s)
- J S Margolis
- Department of Biology, University of California San Diego, La Jolla 92093-0366, USA
| | | | | | | | | | | |
Collapse
|
20
|
Boring L, Weir M, Schubiger G. Egg ligation alters the Bcd protein gradient and segmentation gene expression in embryos of Drosophila. Mech Dev 1993; 42:97-111. [PMID: 8369226 DOI: 10.1016/0925-4773(93)90102-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A concentration gradient of the anterior morphogen Bicoid (Bcd) plays a key role in the specification of cell fates in the early Drosophila embryo. We found that introduction of a membrane barrier across the embryo results in increased levels of Bcd protein on the anterior side of the barrier and decreased levels on the posterior side, consistent with a blockage in the postulated anterior-to-posterior translocation of Bcd protein. The expression patterns of downstream segmentation genes were in large part consistent with their regulation by the Bcd morphogen. However, some aspects of the patterns did not correlate with the altered Bcd distribution, suggesting that other morphogens also regulate the anteroposterior pattern. Our results suggest that axial translocation of morphogens is critical for establishing a well-proportioned body plan.
Collapse
Affiliation(s)
- L Boring
- Department of Zoology, University of Washington, Seattle 98195
| | | | | |
Collapse
|
21
|
Tautz D, Pfeifle C. A non-radioactive in situ hybridization method for the localization of specific RNAs in Drosophila embryos reveals translational control of the segmentation gene hunchback. Chromosoma 1989; 98:81-5. [PMID: 2476281 DOI: 10.1007/bf00291041] [Citation(s) in RCA: 2085] [Impact Index Per Article: 59.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We have developed a non-radioactive in situ hybridization technique for the localization of RNA in whole mount Drosophila embryos. After fixation, whole embryos are hybridized in situ with a DNA probe which has been labeled with digoxygenin. The hybridization products are detected by using a phosphatase-coupled antibody against digoxygenin. In parallel experiments, embryos can be treated with an antibody directed against the corresponding protein product to allow the detection of its distribution using standard immunochemical techniques. We have used this approach to compare the spatial and temporal distribution patterns of the RNA and protein products of the segmentation gene hunchback (hb) during the early stages of embryogenesis. This comparison revealed translational control of the maternally derived hb mRNA, which was difficult to detect by conventional techniques. The non-radioactive in situ hybridization method is as sensitive as conventional methods, but is faster and easier to perform. This may make it a useful tool for a variety of other systems.
Collapse
Affiliation(s)
- D Tautz
- Institut für Genetik, Mikrobiologie der Universität München, Federal Republic of Germany
| | | |
Collapse
|
22
|
Hülskamp M, Schröder C, Pfeifle C, Jäckle H, Tautz D. Posterior segmentation of the Drosophila embryo in the absence of a maternal posterior organizer gene. Nature 1989; 338:629-32. [PMID: 2704418 DOI: 10.1038/338629a0] [Citation(s) in RCA: 143] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Maternal hunchback activity suppresses the genetic pathway for abdomen formation in the Drosophila embryo. The active component of the posterior group of maternal genes, nanos, acts as a specific repressor of hunchback in the posterior region. Absence of both repressors results in normal embryos, indicating that posterior segmentation may not directly require maternal determinants.
Collapse
Affiliation(s)
- M Hülskamp
- Institut für Genetik und Mikrobiologie, Universität München, FRG
| | | | | | | | | |
Collapse
|