1
|
Aldahhan RA, Stanton PG. Heat stress response of somatic cells in the testis. Mol Cell Endocrinol 2021; 527:111216. [PMID: 33639219 DOI: 10.1016/j.mce.2021.111216] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 11/30/2020] [Accepted: 02/15/2021] [Indexed: 02/06/2023]
Abstract
The testis is a temperature-sensitive organ that needs to be maintained 2-7 °C below core body temperature to ensure the production of normal sperm. Failure to maintain testicular temperature in mammals impairs spermatogenesis and leads to low sperm counts, poor sperm motility and abnormal sperm morphology in the ejaculate. This review discusses the recent knowledge on the response of testicular somatic cells to heat stress and, specifically, regarding the relevant contributions of heat, germ cell depletion and inflammatory reactions on the functions of Sertoli and Leydig cells. It also outlines mechanisms of testicular thermoregulation, as well as the thermogenic factors that impact testicular function.
Collapse
Affiliation(s)
- Rashid A Aldahhan
- Department of Anatomy, College of Medicine, Imam Abdulrahman Bin Faisal University, P.O. Box 2114, Dammam, 31541, Saudi Arabia.
| | - Peter G Stanton
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Victoria, Australia; Department of Molecular and Translational Sciences, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
2
|
Yang Y, Wilson MJ. Genome-wide analysis of H3K4me3 and H3K27me3 modifications throughout the mouse urogenital ridge at E11.5. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2019.100412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
3
|
Zheng B, Zhao D, Zhang P, Shen C, Guo Y, Zhou T, Guo X, Zhou Z, Sha J. Quantitative Proteomics Reveals the Essential Roles of Stromal Interaction Molecule 1 (STIM1) in the Testicular Cord Formation in Mouse Testis. Mol Cell Proteomics 2015. [PMID: 26199344 DOI: 10.1074/mcp.m115.049569] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Testicular cord formation in male gonadogenesis involves assembly of several cell types, the precise molecular mechanism is still not well known. With the high-throughput quantitative proteomics technology, a comparative proteomic profile of mouse embryonic male gonads were analyzed at three time points (11.5, 12.5, and 13.5 days post coitum), corresponding to critical stages of testicular cord formation in gonadal development. 4070 proteins were identified, and 338 were differentially expressed, of which the Sertoli cell specific genes were significant enrichment, with mainly increased expression across testis cord development. Additionally, we found overrepresentation of proteins related to oxidative stress in these Sertoli cell specific genes. Of these differentially expressed oxidative stress-associated Sertoli cell specific protein, stromal interaction molecule 1, was found to have discrepant mRNA and protein regulations, with increased protein expression but decreased mRNA levels during testis cord development. Knockdown of Stim1 in Sertoli cells caused extensive defects in gonadal development, including testicular cord disruption, loss of interstitium, and failed angiogenesis, together with increased levels of reactive oxygen species. And suppressing the aberrant elevation of reactive oxygen species could partly rescue the defects of testicular cord development. Taken together, our results suggest that reactive oxygen species regulation in Sertoli cells is important for gonadogenesis, and the quantitative proteomic data could be a rich resource to the elucidation of regulation of testicular cord development.
Collapse
Affiliation(s)
- Bo Zheng
- From the ‡State Key Laboratory of Reproductive Medicine, Collaborative Innovation Center of Genetics and Development, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China
| | - Dan Zhao
- From the ‡State Key Laboratory of Reproductive Medicine, Collaborative Innovation Center of Genetics and Development, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China
| | - Pan Zhang
- From the ‡State Key Laboratory of Reproductive Medicine, Collaborative Innovation Center of Genetics and Development, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China
| | - Cong Shen
- From the ‡State Key Laboratory of Reproductive Medicine, Collaborative Innovation Center of Genetics and Development, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China
| | - Yueshuai Guo
- From the ‡State Key Laboratory of Reproductive Medicine, Collaborative Innovation Center of Genetics and Development, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China
| | - Tao Zhou
- From the ‡State Key Laboratory of Reproductive Medicine, Collaborative Innovation Center of Genetics and Development, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China
| | - Xuejiang Guo
- From the ‡State Key Laboratory of Reproductive Medicine, Collaborative Innovation Center of Genetics and Development, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China
| | - Zuomin Zhou
- From the ‡State Key Laboratory of Reproductive Medicine, Collaborative Innovation Center of Genetics and Development, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China
| | - Jiahao Sha
- From the ‡State Key Laboratory of Reproductive Medicine, Collaborative Innovation Center of Genetics and Development, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
4
|
Cui J, Wu LT, Chu KH. Comparative proteomic profiling during ovarian development of the shrimp Metapenaeus ensis. Mol Biol Rep 2013; 41:519-28. [PMID: 24311308 DOI: 10.1007/s11033-013-2887-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 11/23/2013] [Indexed: 01/20/2023]
Abstract
Two-dimensional electrophoresis and mass spectrometry were used to identify proteins that are differentially expressed during ovarian maturation in Metapenaeus ensis. 87 spots with consistently significant quantitative differences (≥ 1.5-fold for vol%) among stage I, III and V ovaries were chosen for MS/MS analysis. 45 spots were significantly matched to known proteins in the database (Mascot score >40). Half of them were down-regulated, in contrast to 9 out of 45 proteins that were up-regulated as ovarian maturation proceeded. Functionally, these identified proteins could be classified into five major groups, including cytoskeleton (11 %), metabolism (18 %), signal transduction (32 %), gene expression (14 %) and immune response (7 %). Among the differentially expressed reproduction-related proteins, the mRNA expression level of cellular retinoic acid/retinol binding protein in M. ensis (MeCRABP) during ovarian maturation was further characterized by quantitative real-time PCR. It was down-regulated during ovarian maturation. In situ hybridization further revealed that MeCRABP transcript was localized in ooplasm of previtellogenic oocytes but not in vitellogenic oocytes. These results demonstrate the application of proteomic analysis for identification of proteins involved in shrimp ovarian maturation and they provide new insights into ovarian development.
Collapse
Affiliation(s)
- Ju Cui
- The Key Laboratory of Geriatrics, Beijing Hospital and Beijing Institute of Geriatrics, Ministry of Health, Da Hua Road, Beijing, 100730, China,
| | | | | |
Collapse
|
5
|
MacLeod G, Varmuza S. The application of proteomic approaches to the study of mammalian spermatogenesis and sperm function. FEBS J 2013; 280:5635-51. [DOI: 10.1111/febs.12461] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 07/04/2013] [Accepted: 07/26/2013] [Indexed: 12/22/2022]
Affiliation(s)
- Graham MacLeod
- Department of Cell & Systems Biology; University of Toronto; ON Canada
| | - Susannah Varmuza
- Department of Cell & Systems Biology; University of Toronto; ON Canada
| |
Collapse
|
6
|
Sterne-Weiler T, Martinez-Nunez RT, Howard JM, Cvitovik I, Katzman S, Tariq MA, Pourmand N, Sanford JR. Frac-seq reveals isoform-specific recruitment to polyribosomes. Genome Res 2013; 23:1615-23. [PMID: 23783272 PMCID: PMC3787259 DOI: 10.1101/gr.148585.112] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Pre-mRNA splicing is required for the accurate expression of virtually all human protein coding genes. However, splicing also plays important roles in coordinating subsequent steps of pre-mRNA processing such as polyadenylation and mRNA export. Here, we test the hypothesis that nuclear pre-mRNA processing influences the polyribosome association of alternative mRNA isoforms. By comparing isoform ratios in cytoplasmic and polyribosomal extracts, we determined that the alternative products of ∼30% (597/1954) of mRNA processing events are differentially partitioned between these subcellular fractions. Many of the events exhibiting isoform-specific polyribosome association are highly conserved across mammalian genomes, underscoring their possible biological importance. We find that differences in polyribosome association may be explained, at least in part by the observation that alternative splicing alters the cis-regulatory landscape of mRNAs isoforms. For example, inclusion or exclusion of upstream open reading frames (uORFs) in the 5′UTR as well as Alu-elements and microRNA target sites in the 3′UTR have a strong influence on polyribosome association of alternative mRNA isoforms. Taken together, our data demonstrate for the first time the potential link between alternative splicing and translational control of the resultant mRNA isoforms.
Collapse
Affiliation(s)
- Timothy Sterne-Weiler
- Biomolecular Engineering Department, Jack Baskin School of Engineering, University of California Santa Cruz, Santa Cruz, California 95064, USA
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
Spermatogenesis is a highly sophisticated process involved in the transmission of genetic heritage. It includes halving ploidy, repackaging of the chromatin for transport, and the equipment of developing spermatids and eventually spermatozoa with the advanced apparatus (e.g., tightly packed mitochondrial sheat in the mid piece, elongating of the tail, reduction of cytoplasmic volume) to elicit motility once they reach the epididymis. Mammalian spermatogenesis is divided into three phases. In the first the primitive germ cells or spermatogonia undergo a series of mitotic divisions. In the second the spermatocytes undergo two consecutive divisions in meiosis to produce haploid spermatids. In the third the spermatids differentiate into spermatozoa in a process called spermiogenesis. Paracrine, autocrine, juxtacrine, and endocrine pathways all contribute to the regulation of the process. The array of structural elements and chemical factors modulating somatic and germ cell activity is such that the network linking the various cellular activities during spermatogenesis is unimaginably complex. Over the past two decades, advances in genomics have greatly improved our knowledge of spermatogenesis, by identifying numerous genes essential for the development of functional male gametes. Large-scale analyses of testicular function have deepened our insight into normal and pathological spermatogenesis. Progress in genome sequencing and microarray technology have been exploited for genome-wide expression studies, leading to the identification of hundreds of genes differentially expressed within the testis. However, although proteomics has now come of age, the proteomics-based investigation of spermatogenesis remains in its infancy. Here, we review the state-of-the-art of large-scale proteomic analyses of spermatogenesis, from germ cell development during sex determination to spermatogenesis in the adult. Indeed, a few laboratories have undertaken differential protein profiling expression studies and/or systematic analyses of testicular proteomes in entire organs or isolated cells from various species. We consider the pros and cons of proteomics for studying the testicular germ cell gene expression program. Finally, we address the use of protein datasets, through integrative genomics (i.e., combining genomics, transcriptomics, and proteomics), bioinformatics, and modelling.
Collapse
Affiliation(s)
- Sophie Chocu
- Inserm, U1085, IRSET, University of Rennes I, Campus de Beaulieu, Rennes, France
| | | | | | | |
Collapse
|
8
|
Klinefelter GR, Laskey JW, Winnik WM, Suarez JD, Roberts NL, Strader LF, Riffle BW, Veeramachaneni DNR. Novel molecular targets associated with testicular dysgenesis induced by gestational exposure to diethylhexyl phthalate in the rat: a role for estradiol. Reproduction 2012; 144:747-61. [PMID: 23041508 DOI: 10.1530/rep-12-0266] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Significant research has been focused on phthalate-induced alterations in male reproductive development. Studies on rodents have prompted the notion that a syndrome exists in the human male which includes phenotypic alterations such as hypospadias, cryptorchidism, poor semen quality, and even testicular cancer. Each phenotype in this 'testicular dysgenesis syndrome' is predicated on reduction in testosterone production by the fetal Leydig cell. We sought to examine the relationship between dysgenesis and steroidogenic capacity in the fetal rat testis more stringently by incorporating lower exposures than those typically used, conducting a comprehensive, non-targeted quantitative evaluation of the fetal testis proteome, and relating alterations in individual proteins to the capacity of the fetal Leydig cell to produce testosterone, and histopathology of the fetal testis. Pregnant dams were dosed orally from gestation day (GD) 13-19 with 0, 10, or 100 mg diethylhexyl phthalate (DEHP)/kg body weight per day. Each endpoint was represented by 16l. Clustering of Leydig cells occurred before any significant decrease in the capacity of the GD19 Leydig cell to produce testosterone. At 100 mg DEHP/kg, testosterone production was reduced significantly, Leydig cell clusters became quite large, and additional dysgenetic changes were observed in the fetal testis. Of 23 proteins whose expression was altered significantly at both DEHP exposure levels, seven were found to be correlated with and predictive of the quantified endpoints. None of these proteins have been previously implicated with DEHP exposure. Notably, pathway analysis revealed that these seven proteins fit a pathway network in which each is regulated directly or indirectly by estradiol.
Collapse
Affiliation(s)
- Gary R Klinefelter
- United States Environmental Protection Agency, Office of Research and Development, Toxicology Assessment Division, National Health and Environmental Effects Research Laboratory, Reproductive Toxicology Branch, MD#72, Reproductive Toxicology Facility, Durham, North Carolina 27713, USA.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Calvel P, Rolland AD, Jégou B, Pineau C. Testicular postgenomics: targeting the regulation of spermatogenesis. Philos Trans R Soc Lond B Biol Sci 2010; 365:1481-500. [PMID: 20403865 DOI: 10.1098/rstb.2009.0294] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Sperm are, arguably, the most differentiated cells produced within the body of any given species. This is owing to the fact that spermatogenesis is an intricate and highly specialized process evolved to suit the individual particularities of each sexual species. Despite a vast diversity in method, the aim of spermatogenesis is always the same, the idealized transmission of genetic patrimony. Towards this goal certain requirements must always be met, such as a relative twofold reduction in ploidy, repackaging of the chromatin for transport and specialized enhancements for cell motility, recognition and fusion. In the past 20 years, the study of molecular networks coordinating male germ cell development, particularly in mammals, has become more and more facilitated thanks to large-scale analyses of genome expression. Such postgenomic endeavors have generated landscapes of data for both fundamental and clinical reproductive biology. Continuous, large-scale integration analyses of these datasets are undertaken which provide access to very precise information on a myriad of biomolecules. This review presents commonly used transcriptomic and proteomic workflows applied to various testicular germ cell studies. We will also provide a general overview of the technical possibilities available to reproductive genomic biologists, noting the advantages and drawbacks of each technique.
Collapse
Affiliation(s)
- Pierre Calvel
- Inserm, U625, IFR 140, University of Rennes I, Campus de Beaulieu, Rennes 35042, France
| | | | | | | |
Collapse
|
10
|
Ewen K, Baker M, Wilhelm D, Aitken RJ, Koopman P. Global survey of protein expression during gonadal sex determination in mice. Mol Cell Proteomics 2009; 8:2624-41. [PMID: 19617587 DOI: 10.1074/mcp.m900108-mcp200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The development of an embryo as male or female depends on differentiation of the gonads as either testes or ovaries. A number of genes are known to be important for gonadal differentiation, but our understanding of the regulatory networks underpinning sex determination remains fragmentary. To advance our understanding of sexual development beyond the transcriptome level, we performed the first global survey of the mouse gonad proteome at the time of sex determination by using two-dimensional nanoflow LC-MS/MS. The resulting data set contains a total of 1037 gene products (154 non-redundant and 883 redundant proteins) identified from 620 peptides. Functional classification and biological network construction suggested that the identified proteins primarily serve in RNA post-transcriptional modification and trafficking, protein synthesis and folding, and post-translational modification. The data set contains potential novel regulators of gonad development and sex determination not revealed previously by transcriptomics and proteomics studies and more than 60 proteins with potential links to human disorders of sexual development.
Collapse
Affiliation(s)
- Katherine Ewen
- Division of Molecular Genetics and Development, The University of Queensland, Brisbane, Queensland 4072, Australia
| | | | | | | | | |
Collapse
|
11
|
Feng Y, Peng X, Li S, Gong Y. Isolation and characterization of sexual dimorphism genes expressed in chicken embryonic gonads. Acta Biochim Biophys Sin (Shanghai) 2009; 41:285-94. [PMID: 19352543 DOI: 10.1093/abbs/gmp012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In chicken, the bipotential embryonic gonad differentiates into either a pair of testes or an ovary, but few genes that underlying the gonadal sex differentiation have been identified and the sex-determination gene is still unknown. To identify more genes involved in chicken sex differentiation, we employed suppression subtractive hybridization to isolate differentially expressed genes between sexes from chicken gonads during a period of E3.5-E6. A total of 152 cDNA clones corresponding to 88 genes (41 from F-M library and 47 from M-F library) were screened using dot-blot analysis. These genes are located mainly on the macrochromosomes (1-5) with five in the sex chromosomes (one in W and four in Z), encoding four dominating molecular categories belonging to enzyme, DNA association, RNA association, and structural protein. Comparing the obtained cDNA sequences with those in chicken EST database, it showed that cDNAs of 32 genes from F-M library and 16 from M-F library have homologs in two reported embryonic gonad cDNA libraries. Quantitative real-time PCR analysis of eight genes involved in epigenetic and transcription regulation showed significantly different expression between sexes of CDK2AP1, SMARCE1, SAP18, SUDS3, and PQBP1 appeared at the early stage in gonad development (E4). Based on the functional comparison of sexual differentially expressed genes, the roles of some putatively important genes including ATP5A1W, CDK2AP1, mitochondrial transcripts, etc. have been analyzed. In conclusion, characterization of isolated genes would provide valuable clues to identify potential candidates involved in genetic mechanisms of chicken sex differentiation and gonad development.
Collapse
Affiliation(s)
- Yanping Feng
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | |
Collapse
|
12
|
Testicular Development and Spermatogenesis: Harvesting the Postgenomics Bounty. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 636:16-41. [DOI: 10.1007/978-0-387-09597-4_2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Liu GY, Gao SZ, Ge CR, Zhang X. Molecular characterization of the encoding regions and tissue expression analyses for three novel porcine genes--HNRPA1, YIPF5 and UB2D2. Mol Biol Rep 2007; 35:519-26. [PMID: 17610147 DOI: 10.1007/s11033-007-9117-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2007] [Accepted: 06/18/2007] [Indexed: 11/25/2022]
Abstract
The complete encoding regions of three porcine genes--heterogeneous nuclear ribonucleoprotein A1 (HNRPA1), YIP1 family member 5 (YIPF5) and ubiquitin-conjugating enzyme E2 D2 (UB2D2) were amplified using the reverse transcriptase polymerase chain reaction (RT-PCR) based on the conserved encoding region information of the mouse or other mammals and the referenced highly homologous pig ESTs of these conserved encoding regions. These three novel porcine genes were assigned to GeneID: 768103, 768112, and 780418. The phylogenetic tree analysis revealed that the swine HNRPA1 has closer genetic relationships with the HNRPA1 of mouse and rhesus monkey, but the swine YIPF5 has a closer genetic relationship with the YIPF5 of cattle and the swine UB2D2 shows an evolutional model different with the UB2D2 of other five species. The tissue expression analysis indicated that the swine HNRPA1 gene was moderately expressed in fat, spleen and kidney, weakly expressed in muscle and lung, and hardly expressed in small intestine, large intestine and liver. The swine YIPF5 gene was moderately expressed in fat and spleen, and hardly expressed in small intestine, large intestine, liver, lung, muscle and kidney. The swine UB2D2 gene was weakly expressed in lung, and hardly expressed in small intestine, large intestine, liver, muscle, fat, spleen and kidney. Our experiment established the primary foundation for further research on these three swine genes.
Collapse
Affiliation(s)
- G Y Liu
- Key Laboratory of Animal Nutrition and Feed of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China
| | | | | | | |
Collapse
|
14
|
Wilhelm D, Hiramatsu R, Mizusaki H, Widjaja L, Combes AN, Kanai Y, Koopman P. SOX9 Regulates Prostaglandin D Synthase Gene Transcription in Vivo to Ensure Testis Development. J Biol Chem 2007; 282:10553-60. [PMID: 17277314 DOI: 10.1074/jbc.m609578200] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In mammals, male sex is determined by the Y-chromosomal gene Sry (sex-determining region of Y chromosome). The expression of Sry and subsequently Sox9 (SRY box containing gene 9) in precursors of the supporting cell lineage results in the differentiation of these cells into Sertoli cells. Sertoli cells in turn orchestrate the development of all other male-specific cell types. To ensure that Sertoli cells differentiate in sufficient numbers to induce normal testis development, the early testis produces prostaglandin D(2) (PGD(2)), which recruits cells of the supporting cell lineage to a Sertoli cell fate. Here we show that the gene encoding prostaglandin D synthase (Pgds), the enzyme that produces PGD(2), is expressed in Sertoli cells immediately after the onset of Sox9 expression. Promoter analysis in silico and in vitro identified a paired SOX/SRY binding site. Interestingly, only SOX9, and not SRY, was able to bind as a dimer to this site and transactivate the Pgds promoter. In line with this, a transgenic mouse model showed that Pgds expression is not affected by ectopic Sry expression. Finally, chromatin immunoprecipitation proved that SOX9 but not SRY binds to the Pgds promoter in vivo.
Collapse
Affiliation(s)
- Dagmar Wilhelm
- Division of Molecular Genetics and Development, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld 4072, Australia
| | | | | | | | | | | | | |
Collapse
|
15
|
Paz M, Morín M, del Mazo J. Proteome profile changes during mouse testis development. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2006; 1:404-15. [DOI: 10.1016/j.cbd.2006.10.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2006] [Revised: 09/19/2006] [Accepted: 10/09/2006] [Indexed: 10/24/2022]
|