1
|
Shen X, Li X, Wu T, Guo T, Lv J, He Z, Luo M, Zhu X, Tian Y, Lai W, Dong C, Hu X, Wu L. TRIM33 plays a critical role in regulating dendritic cell differentiation and homeostasis by modulating Irf8 and Bcl2l11 transcription. Cell Mol Immunol 2024; 21:752-769. [PMID: 38822080 PMCID: PMC11214632 DOI: 10.1038/s41423-024-01179-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/25/2024] [Indexed: 06/02/2024] Open
Abstract
The development of distinct dendritic cell (DC) subsets, namely, plasmacytoid DCs (pDCs) and conventional DC subsets (cDC1s and cDC2s), is controlled by specific transcription factors. IRF8 is essential for the fate specification of cDC1s. However, how the expression of Irf8 is regulated is not fully understood. In this study, we identified TRIM33 as a critical regulator of DC differentiation and maintenance. TRIM33 deletion in Trim33fl/fl Cre-ERT2 mice significantly impaired DC differentiation from hematopoietic progenitors at different developmental stages. TRIM33 deficiency downregulated the expression of multiple genes associated with DC differentiation in these progenitors. TRIM33 promoted the transcription of Irf8 to facilitate the differentiation of cDC1s by maintaining adequate CDK9 and Ser2 phosphorylated RNA polymerase II (S2 Pol II) levels at Irf8 gene sites. Moreover, TRIM33 prevented the apoptosis of DCs and progenitors by directly suppressing the PU.1-mediated transcription of Bcl2l11, thereby maintaining DC homeostasis. Taken together, our findings identified TRIM33 as a novel and crucial regulator of DC differentiation and maintenance through the modulation of Irf8 and Bcl2l11 expression. The finding that TRIM33 functions as a critical regulator of both DC differentiation and survival provides potential benefits for devising DC-based immune interventions and therapies.
Collapse
Affiliation(s)
- Xiangyi Shen
- Institute for Immunology, School of Basic Medical Sciences, Tsinghua University, 100084, Beijing, China
| | - Xiaoguang Li
- Institute for Immunology, School of Basic Medical Sciences, Tsinghua University, 100084, Beijing, China
- Joint Graduate Program of Peking-Tsinghua-National Institute of Biological Sciences, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Tao Wu
- Institute for Immunology, School of Basic Medical Sciences, Tsinghua University, 100084, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Tingting Guo
- Institute for Immunology, School of Basic Medical Sciences, Tsinghua University, 100084, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Jiaoyan Lv
- Institute for Immunology, School of Basic Medical Sciences, Tsinghua University, 100084, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Zhimin He
- Institute for Immunology, School of Basic Medical Sciences, Tsinghua University, 100084, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Maocai Luo
- Institute for Immunology, School of Basic Medical Sciences, Tsinghua University, 100084, Beijing, China
| | - Xinyi Zhu
- Institute for Immunology, School of Basic Medical Sciences, Tsinghua University, 100084, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Yujie Tian
- Institute for Immunology, School of Basic Medical Sciences, Tsinghua University, 100084, Beijing, China
- Joint Graduate Program of Peking-Tsinghua-National Institute of Biological Sciences, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Wenlong Lai
- Institute for Immunology, School of Basic Medical Sciences, Tsinghua University, 100084, Beijing, China
| | - Chen Dong
- Institute for Immunology, School of Basic Medical Sciences, Tsinghua University, 100084, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, 100084, Beijing, China
- Beijing Key Laboratory for Immunological Research on Chronic Diseases, 100084, Beijing, China
- Westlake University School of Medicine, Hangzhou, 310024, China
| | - Xiaoyu Hu
- Institute for Immunology, School of Basic Medical Sciences, Tsinghua University, 100084, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, 100084, Beijing, China
- Beijing Key Laboratory for Immunological Research on Chronic Diseases, 100084, Beijing, China
| | - Li Wu
- Institute for Immunology, School of Basic Medical Sciences, Tsinghua University, 100084, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, 100084, Beijing, China.
- Beijing Key Laboratory for Immunological Research on Chronic Diseases, 100084, Beijing, China.
| |
Collapse
|
2
|
Tiniakou I, Hsu PF, Lopez-Zepeda LS, Garipler G, Esteva E, Adams NM, Jang G, Soni C, Lau CM, Liu F, Khodadadi-Jamayran A, Rodrick TC, Jones D, Tsirigos A, Ohler U, Bedford MT, Nimer SD, Kaartinen V, Mazzoni EO, Reizis B. Genome-wide screening identifies Trim33 as an essential regulator of dendritic cell differentiation. Sci Immunol 2024; 9:eadi1023. [PMID: 38608038 PMCID: PMC11182672 DOI: 10.1126/sciimmunol.adi1023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 03/21/2024] [Indexed: 04/14/2024]
Abstract
The development of dendritic cells (DCs), including antigen-presenting conventional DCs (cDCs) and cytokine-producing plasmacytoid DCs (pDCs), is controlled by the growth factor Flt3 ligand (Flt3L) and its receptor Flt3. We genetically dissected Flt3L-driven DC differentiation using CRISPR-Cas9-based screening. Genome-wide screening identified multiple regulators of DC differentiation including subunits of TSC and GATOR1 complexes, which restricted progenitor growth but enabled DC differentiation by inhibiting mTOR signaling. An orthogonal screen identified the transcriptional repressor Trim33 (TIF-1γ) as a regulator of DC differentiation. Conditional targeting in vivo revealed an essential role of Trim33 in the development of all DCs, but not of monocytes or granulocytes. In particular, deletion of Trim33 caused rapid loss of DC progenitors, pDCs, and the cross-presenting cDC1 subset. Trim33-deficient Flt3+ progenitors up-regulated pro-inflammatory and macrophage-specific genes but failed to induce the DC differentiation program. Collectively, these data elucidate mechanisms that control Flt3L-driven differentiation of the entire DC lineage and identify Trim33 as its essential regulator.
Collapse
Affiliation(s)
- Ioanna Tiniakou
- Department of Pathology, New York University Grossman School of Medicine; New York, NY, USA
| | - Pei-Feng Hsu
- Department of Pathology, New York University Grossman School of Medicine; New York, NY, USA
| | - Lorena S. Lopez-Zepeda
- Department of Biology, Humboldt Universität zu Berlin; Berlin, Germany
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine; Berlin, Germany
| | - Görkem Garipler
- Department of Biology, New York University; New York, NY, USA
| | - Eduardo Esteva
- Department of Pathology, New York University Grossman School of Medicine; New York, NY, USA
| | - Nicholas M. Adams
- Department of Pathology, New York University Grossman School of Medicine; New York, NY, USA
| | - Geunhyo Jang
- Department of Pathology, New York University Grossman School of Medicine; New York, NY, USA
| | - Chetna Soni
- Department of Pathology, New York University Grossman School of Medicine; New York, NY, USA
| | - Colleen M. Lau
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine; Ithaca, NY, USA
| | - Fan Liu
- Department of Biochemistry and Molecular Biology, Department of Medicine and Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine; Miami, FL, USA
| | - Alireza Khodadadi-Jamayran
- Department of Pathology, New York University Grossman School of Medicine; New York, NY, USA
- Applied Bioinformatics Laboratories, New York University Grossman School of Medicine; New York, NY, USA
| | - Tori C. Rodrick
- Metabolomics Laboratory, Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine; New York, NY, USA
| | - Drew Jones
- Metabolomics Laboratory, Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine; New York, NY, USA
| | - Aristotelis Tsirigos
- Department of Pathology, New York University Grossman School of Medicine; New York, NY, USA
- Applied Bioinformatics Laboratories, New York University Grossman School of Medicine; New York, NY, USA
| | - Uwe Ohler
- Department of Biology, Humboldt Universität zu Berlin; Berlin, Germany
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine; Berlin, Germany
| | - Mark T. Bedford
- Department of Epigenetics & Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center; Houston, TX, USA
| | - Stephen D. Nimer
- Department of Biochemistry and Molecular Biology, Department of Medicine and Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine; Miami, FL, USA
| | - Vesa Kaartinen
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry; Ann Arbor, MI, USA
| | | | - Boris Reizis
- Department of Pathology, New York University Grossman School of Medicine; New York, NY, USA
| |
Collapse
|
3
|
Liu X, Hao J, Wei P, Zhao X, Lan Q, Ni L, Chen Y, Bai X, Ni L, Dong C. SMAD4, activated by the TCR-triggered MEK/ERK signaling pathway, critically regulates CD8 + T cell cytotoxic function. SCIENCE ADVANCES 2022; 8:eabo4577. [PMID: 35895826 PMCID: PMC9328680 DOI: 10.1126/sciadv.abo4577] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Transforming growth factor-β is well known to restrain cytotoxic T cell responses to maintain self-tolerance and to promote tumor immune evasion. In this study, we have investigated the role of SMAD4, a core component in the TGF-β signaling pathway, in CD8+ T cells. Unexpectedly, we found that SMAD4 was critical in promoting CD8+ T cell function in both tumor and infection models. SMAD4-mediated transcriptional regulation of CD8+ T cell activation and cytotoxicity was dependent on the T cell receptor (TCR) but not TGF-β signaling pathway. Following TCR activation, SMAD4 translocated into the nucleus, up-regulated genes encoding TCR signaling components and cytotoxic molecules in CD8+ T cells and thus reinforced T cell function. Biochemically, SMAD4 was directly phosphorylated by ERK at Ser367 residue following TCR activation. Our study thus demonstrates a critical yet unexpected role of SMAD4 in promoting CD8+ T cell-mediated cytotoxic immunity.
Collapse
Affiliation(s)
- Xinwei Liu
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Jing Hao
- Shanghai Immune Therapy Institute, Shanghai Jiaotong University School of Medicine-affiliated Renji Hospital, Shanghai 200127, China
| | - Peng Wei
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xiaohong Zhao
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Qiuyan Lan
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Lu Ni
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yongzhen Chen
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xue Bai
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Ling Ni
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Chen Dong
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China
- Shanghai Immune Therapy Institute, Shanghai Jiaotong University School of Medicine-affiliated Renji Hospital, Shanghai 200127, China
| |
Collapse
|
4
|
Rivera R, Williams NA, Kennedy GG, Sánchez-Pavón P, Chun J. Generation of an Lpar1-EGFP Fusion Knock-in Transgenic Mouse Line. Cell Biochem Biophys 2021; 79:619-627. [PMID: 34652685 PMCID: PMC8551097 DOI: 10.1007/s12013-021-01033-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2021] [Indexed: 10/25/2022]
Abstract
Lysophosphatidic acid (LPA) is a lysophospholipid that acts as an extracellular signal through the activation of cognate G protein-coupled receptors (GPCRs). There are six known LPA receptors (LPA1-6). The first such receptor, LPA1, was identified in the embryonic brain and has been studied extensively for gene expression throughout the body, including through studies of receptor-null mice. However, identifying receptor protein expression in situ and in vivo within living cells and tissues has been difficult because of biologically low receptor expression and variable antibody specificity. To visualize native LPA1 receptor expression in situ, we generated a knock-in mouse produced by homologous recombination in murine embryonic stem (ES) cells to replace a wildtype Lpar1 allele with a mutant allele created by in-frame fusion of EGFP to the 4th exon of Lpar1 (Lpar1-EGFP knock-in allele). Homozygous knock-in mice appeared normal and the expected mendelian ratios of knock-in allele transmission were present in females and males. Histological assessments of the fetal and adult central nervous system (CNS) demonstrated expression patterns that were consistent with prior in situ hybridization studies. This new mouse line will be useful for studies of LPA1 in the developing and adult CNS, as well as other tissues, and for receptor assessments in living tissues and disease models.
Collapse
Affiliation(s)
- Richard Rivera
- Translational Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Nyssa A Williams
- Translational Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Grace G Kennedy
- Translational Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Paloma Sánchez-Pavón
- Translational Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Jerold Chun
- Translational Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
5
|
Xu H, Agalioti T, Zhao J, Steglich B, Wahib R, Vesely MCA, Bielecki P, Bailis W, Jackson R, Perez D, Izbicki J, Licona-Limón P, Kaartinen V, Geginat J, Esplugues E, Tolosa E, Huber S, Flavell RA, Gagliani N. The induction and function of the anti-inflammatory fate of T H17 cells. Nat Commun 2020; 11:3334. [PMID: 32620760 PMCID: PMC7335205 DOI: 10.1038/s41467-020-17097-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 06/11/2020] [Indexed: 01/19/2023] Open
Abstract
TH17 cells exemplify environmental immune adaptation: they can acquire both a pathogenic and an anti-inflammatory fate. However, it is not known whether the anti-inflammatory fate is merely a vestigial trait, or whether it serves to preserve the integrity of the host tissues. Here we show that the capacity of TH17 cells to acquire an anti-inflammatory fate is necessary to sustain immunological tolerance, yet it impairs immune protection against S. aureus. Additionally, we find that TGF-β signalling via Smad3/Smad4 is sufficient for the expression of the anti-inflammatory cytokine, IL-10, in TH17 cells. Our data thus indicate a key function of TH17 cell plasticity in maintaining immune homeostasis, and dissect the molecular mechanisms explaining the functional flexibility of TH17 cells with regard to environmental changes. CD4+ T helper cells producing IL-17A (TH17 cells) can take on pathogenic or anti-inflammatory functions in context-specific manners. Here the authors show that the anti-inflammatory fate of TH17 cells contributes, via TGF-β signaling and induction of IL-10, to host immune tolerance, but also simultaneously dampens protective immunity against S. aureus.
Collapse
Affiliation(s)
- Hao Xu
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, 06520, USA
| | - Theodora Agalioti
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Jun Zhao
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, 06520, USA
| | - Babett Steglich
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Ramez Wahib
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | | | - Piotr Bielecki
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, 06520, USA
| | - Will Bailis
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Division of Protective Immunity, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Ruaidhri Jackson
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, 06520, USA
| | - Daniel Perez
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Jakob Izbicki
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Paula Licona-Limón
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, D.F, México
| | - Vesa Kaartinen
- Biologic and Material Sciences, University of Michigan, 1011N. University Ave, Ann Arbor, MI, 48109, USA
| | - Jens Geginat
- INGM-National Institute of Molecular Genetics "Romeo ed Enrica Invernizzi", Milan, Italy.,Department of Clinical Sciences and Community Health, Università degli studi di Milano, Milan, Italy
| | - Enric Esplugues
- Laboratory of Molecular and Cellular Immunology, Principe Felipe Research Center (CIPF), 46012, Valencia, Spain
| | - Eva Tolosa
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Samuel Huber
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Richard A Flavell
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, 06520, USA. .,Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA.
| | - Nicola Gagliani
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany. .,I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany. .,Immunology and Allergy Unit, Department of Medicine, Solna, Karolinska Institute and University Hospital, Stockholm, Sweden.
| |
Collapse
|
6
|
Parks CA, Pak K, Pinal-Fernandez I, Huang W, Derfoul A, Mammen AL. Trim33 (Tif1γ) is not required for skeletal muscle development or regeneration but suppresses cholecystokinin expression. Sci Rep 2019; 9:18507. [PMID: 31811178 PMCID: PMC6898130 DOI: 10.1038/s41598-019-54651-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 11/08/2019] [Indexed: 11/09/2022] Open
Abstract
The expression of Trim33 (Tif1γ) increases in skeletal muscles during regeneration and decreases upon maturation. Although Trim33 is required for the normal development of other tissues, its role in skeletal muscle is unknown. The current study aimed to define the role of Trim33 in muscle development and regeneration. We generated mice with muscle-specific conditional knockout of Trim33 by combining floxed Trim33 and Cre recombinase under the Pax7 promoter. Muscle regeneration was induced by injuring mouse muscles with cardiotoxin. We studied the consequences of Trim33 knockdown on viability, body weight, skeletal muscle histology, muscle regeneration, and gene expression. We also studied the effect of Trim33 silencing in satellite cells and the C2C12 mouse muscle cell line. Although Trim33 knockdown mice weighed less than control mice, their skeletal muscles were histologically unremarkable and regenerated normally following injury. Unexpectedly, RNAseq analysis revealed dramatically increased expression of cholecystokinin (CCK) in regenerating muscle from Trim33 knockout mice, satellite cells from Trim33 knockout mice, and C2C12 cells treated with Trim33 siRNA. Trim33 knockdown had no demonstrable effect on muscle differentiation or regeneration. However, Trim33 knockdown induced CCK expression in muscle, suggesting that suppression of CCK expression requires Trim33.
Collapse
Affiliation(s)
- Cassie A Parks
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Katherine Pak
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Iago Pinal-Fernandez
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA. .,Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Faculty of Health Sciences, Universitat Oberta de Catalunya, Barcelona, Spain.
| | - Wilson Huang
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Assia Derfoul
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Andrew L Mammen
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA. .,Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
7
|
Baloghova N, Lidak T, Cermak L. Ubiquitin Ligases Involved in the Regulation of Wnt, TGF-β, and Notch Signaling Pathways and Their Roles in Mouse Development and Homeostasis. Genes (Basel) 2019; 10:genes10100815. [PMID: 31623112 PMCID: PMC6826584 DOI: 10.3390/genes10100815] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 10/02/2019] [Accepted: 10/13/2019] [Indexed: 12/20/2022] Open
Abstract
The Wnt, TGF-β, and Notch signaling pathways are essential for the regulation of cellular polarity, differentiation, proliferation, and migration. Differential activation and mutual crosstalk of these pathways during animal development are crucial instructive forces in the initiation of the body axis and the development of organs and tissues. Due to the ability to initiate cell proliferation, these pathways are vulnerable to somatic mutations selectively producing cells, which ultimately slip through cellular and organismal checkpoints and develop into cancer. The architecture of the Wnt, TGF-β, and Notch signaling pathways is simple. The transmembrane receptor, activated by the extracellular stimulus, induces nuclear translocation of the transcription factor, which subsequently changes the expression of target genes. Nevertheless, these pathways are regulated by a myriad of factors involved in various feedback mechanisms or crosstalk. The most prominent group of regulators is the ubiquitin-proteasome system (UPS). To open the door to UPS-based therapeutic manipulations, a thorough understanding of these regulations at a molecular level and rigorous confirmation in vivo are required. In this quest, mouse models are exceptional and, thanks to the progress in genetic engineering, also an accessible tool. Here, we reviewed the current understanding of how the UPS regulates the Wnt, TGF-β, and Notch pathways and we summarized the knowledge gained from related mouse models.
Collapse
Affiliation(s)
- Nikol Baloghova
- Laboratory of Cancer Biology, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, 252 42 Vestec, Czech Republic.
| | - Tomas Lidak
- Laboratory of Cancer Biology, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, 252 42 Vestec, Czech Republic.
| | - Lukas Cermak
- Laboratory of Cancer Biology, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, 252 42 Vestec, Czech Republic.
| |
Collapse
|
8
|
Rajderkar S, Mann JM, Panaretos C, Yumoto K, Li HD, Mishina Y, Ralston B, Kaartinen V. Trim33 is required for appropriate development of pre-cardiogenic mesoderm. Dev Biol 2019; 450:101-114. [PMID: 30940539 DOI: 10.1016/j.ydbio.2019.03.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/27/2019] [Accepted: 03/27/2019] [Indexed: 11/25/2022]
Abstract
Congenital cardiac malformations are among the most common birth defects in humans. Here we show that Trim33, a member of the Tif1 subfamily of tripartite domain containing transcriptional cofactors, is required for appropriate differentiation of the pre-cardiogenic mesoderm during a narrow time window in late gastrulation. While mesoderm-specific Trim33 mutants did not display noticeable phenotypes, epiblast-specific Trim33 mutant embryos developed ventricular septal defects, showed sparse trabeculation and abnormally thin compact myocardium, and died as a result of cardiac failure during late gestation. Differentiating embryoid bodies deficient in Trim33 showed an enrichment of gene sets associated with cardiac differentiation and contractility, while the total number of cardiac precursor cells was reduced. Concordantly, cardiac progenitor cell proliferation was reduced in Trim33-deficient embryos. ChIP-Seq performed using antibodies against Trim33 in differentiating embryoid bodies revealed more than 4000 peaks, which were significantly enriched close to genes implicated in stem cell maintenance and mesoderm development. Nearly half of the Trim33 peaks overlapped with binding sites of the Ctcf insulator protein. Our results suggest that Trim33 is required for appropriate differentiation of precardiogenic mesoderm during late gastrulation and that it will likely mediate some of its functions via multi-protein complexes, many of which include the chromatin architectural and insulator protein Ctcf.
Collapse
Affiliation(s)
- Sudha Rajderkar
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jeffrey M Mann
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Christopher Panaretos
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kenji Yumoto
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Hong-Dong Li
- Center for Bioinformatics, School of Information Science and Engineering, Central South University, Changsha, Hunan, 410083, PR China
| | - Yuji Mishina
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Benjamin Ralston
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Vesa Kaartinen
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
9
|
Tanaka S, Jiang Y, Martinez GJ, Tanaka K, Yan X, Kurosaki T, Kaartinen V, Feng XH, Tian Q, Wang X, Dong C. Trim33 mediates the proinflammatory function of Th17 cells. J Exp Med 2018; 215:1853-1868. [PMID: 29930104 PMCID: PMC6028517 DOI: 10.1084/jem.20170779] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 03/28/2018] [Accepted: 05/17/2018] [Indexed: 12/31/2022] Open
Abstract
Transforming growth factor-β (TGF-β) regulates reciprocal regulatory T cell (T reg) and T helper 17 (Th17) differentiation, the underlying mechanism of which is still not understood. Here, we report that tripartite motif-containing 33 (Trim33), a modulator of TGF-β signaling that associates with Smad2, regulates the proinflammatory function of Th17 cells. Trim33 deficiency in T cells ameliorated an autoimmune disease in vivo. Trim33 was required for induction in vitro of Th17, but not T reg cells. Moreover, Smad4 and Trim33 play contrasting roles in the regulation of IL-10 expression; loss of Trim33 enhanced IL-10 production. Furthermore, Trim33 was recruited to the Il17a and Il10 gene loci, dependent on Smad2, and mediated their chromatin remodeling during Th17 differentiation. Trim33 thus promotes the proinflammatory function of Th17 cells by inducing IL-17 and suppressing IL-10 expression.
Collapse
Affiliation(s)
- Shinya Tanaka
- Department of Immunology and Center for Inflammation and Cancer, MD Anderson Cancer Center, Houston, TX.,Division of Immunology and Genome Biology, Department of Molecular Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yu Jiang
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Gustavo J Martinez
- Department of Immunology and Center for Inflammation and Cancer, MD Anderson Cancer Center, Houston, TX
| | - Kentaro Tanaka
- Department of Immunology and Center for Inflammation and Cancer, MD Anderson Cancer Center, Houston, TX
| | | | - Tomohiro Kurosaki
- Laboratory of Lymphocyte Differentiation, Osaka University, Osaka, Japan
| | - Vesa Kaartinen
- Department of Biological and Materials Sciences, University of Michigan, Ann Arbor, MI
| | - Xin-Hua Feng
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Qiang Tian
- Institute for System Biology, Seattle, WA
| | - Xiaohu Wang
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Chen Dong
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China .,Beijing Key Lab for Immunological Research on Chronic Diseases, Beijing, China
| |
Collapse
|
10
|
Embryonic lethality in mice lacking Trim59 due to impaired gastrulation development. Cell Death Dis 2018; 9:302. [PMID: 29467473 PMCID: PMC5833458 DOI: 10.1038/s41419-018-0370-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 01/21/2018] [Accepted: 02/01/2018] [Indexed: 01/13/2023]
Abstract
TRIM family members have been implicated in a variety of biological processes such as differentiation and development. We here found that Trim59 plays a critical role in early embryo development from blastocyst stage to gastrula. There existed delayed development and empty yolk sacs from embryonic day (E) 8.5 in Trim59−/− embryos. No viable Trim59−/− embryos were observed beyond E9.5. Trim59 deficiency affected primary germ layer formation at the beginning of gastrulation. At E6.5 and E7.5, the expression of primary germ layer formation-associated genes including Brachyury, lefty2, Cer1, Otx2, Wnt3, and BMP4 was reduced in Trim59−/− embryos. Homozygous mutant embryonic epiblasts were contracted and the mesoderm was absent. Trim59 could interact with actin- and myosin-associated proteins. Its deficiency disturbed F-actin polymerization during inner cell mass differentiation. Trim59-mediated polymerization of F-actin was via WASH K63-linked ubiquitination. Thus, Trim59 may be a critical regulator for early embryo development from blastocyst stage to gastrula through modulating F-actin assembly.
Collapse
|
11
|
Abstract
Animal models of erythropoiesis have been, and will continue to be, important tools for understanding molecular mechanisms underlying the development of this cell lineage and the pathophysiology associated with various human erythropoietic diseases. In this regard, the mouse is probably the most valuable animal model available to investigators. The physiology and short gestational period of mice make them ideal for studying developmental processes and modeling human diseases. These attributes, coupled with cutting-edge genetic tools such as transgenesis, gene knockouts, conditional gene knockouts, and genome editing, provide a significant resource to the research community to test a plethora of hypotheses. This review summarizes the mouse models available for studying a wide variety of erythroid-related questions, as well as the properties inherent in each one.
Collapse
|
12
|
Rajderkar S, Panaretos C, Kaartinen V. Trim33 regulates early maturation of mouse embryoid bodies in vitro. Biochem Biophys Rep 2017; 12:185-192. [PMID: 29090280 PMCID: PMC5650645 DOI: 10.1016/j.bbrep.2017.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 08/27/2017] [Accepted: 10/09/2017] [Indexed: 12/22/2022] Open
Abstract
Embryonic stem cells (ESCs) are an established model for investigating developmental processes, disease conditions, tissue regeneration and therapeutic targets. Previous studies have shown that tripartite motif-containing 33 protein (Trim33) functions as a chromatin reader during Nodal-induced mesoderm induction. Here we report that despite reduced proliferation, mouse ESCs deficient in Trim33 remained pluripotent when cultured under non-differentiating conditions. However, when induced to differentiate to embryoid bodies (EBs), the mutant cultures showed increased cell shedding and apoptosis at day 3 of differentiation. Gene set enrichment analysis (GSEA) indicated that several molecular functions associated with cell survival, transcriptional/translational activity and growth factor signaling were affected already by the second day of differentiation in Trim33-deficient EBs. Consistent with increased apoptosis, expression of Rac1, a critical factor for EB cell survival, was reduced in Trim33 mutant EBs. In addition, a set of genes involved in regulation of pluripotency was upregulated in mutant EBs. Our results suggest that Trim33 regulates early maturation of mouse embryoid bodies in vitro. Trim33-/- ES cells can be normally maintained under non-differentiating conditions. Trim33-/- EBs show changes in gene expression during early maturation. Trim33 is required for survival and appropriate maturation of EBs in vitro.
Collapse
|
13
|
Xia X, Zuo F, Luo M, Sun Y, Bai J, Xi Q. Role of TRIM33 in Wnt signaling during mesendoderm differentiation. SCIENCE CHINA-LIFE SCIENCES 2017; 60:1142-1149. [PMID: 28844090 DOI: 10.1007/s11427-017-9129-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 06/29/2017] [Indexed: 01/03/2023]
Abstract
Tripartite motif 33 (TRIM33), a member of the transcription intermediate factor 1 (TIF1) family of transcription cofactors, mediates transforming growth factor-beta (TGF-β) signaling through its PHD-Bromo cassette in mesendoderm differentiation during early mouse embryonic development. However, the role of the TRIM33 RING domain in embryonic differentiation is less clear. Here, we report that TRIM33 mediates Wnt signaling by directly regulating the expression of a specific subset of Wnt target genes, and this action is independent of its RING domain. We show that TRIM33 interacts with β-catenin, a central player in Wnt signaling in mouse embryonic stem cells (mESCs). In contrast to previous reports in cancer cell lines, the RING domain does not appear to function as the E3 ligase for β-catenin, since neither knockout nor overexpression of TRIM33 had an effect on β-catenin protein levels in mESCs. Furthermore, we show that although TRIM33 seems to be dispensable for Wnt signaling through a reporter assay, loss of TRIM33 significantly impairs the expression of a subset of Wnt target genes, including Mixl1, in a Wnt signaling-dependent manner. Together, our results indicate that TRIM33 regulates Wnt signaling independent of the E3 ligase activity of its RING domain for β-catenin in mESCs.
Collapse
Affiliation(s)
- Xiaojie Xia
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Feifei Zuo
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.,Joint Graduate Program of Peking-Tsinghua-NIBS, School of Life Sciences, Tsinghua University, Beijing, 100871, China
| | - Maoguo Luo
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Ye Sun
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jianbo Bai
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.,Joint Graduate Program of Peking-Tsinghua-NIBS, School of Life Sciences, Tsinghua University, Beijing, 100871, China
| | - Qiaoran Xi
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
14
|
Fujisawa T, Filippakopoulos P. Functions of bromodomain-containing proteins and their roles in homeostasis and cancer. Nat Rev Mol Cell Biol 2017; 18:246-262. [PMID: 28053347 DOI: 10.1038/nrm.2016.143] [Citation(s) in RCA: 388] [Impact Index Per Article: 55.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Bromodomains (BRDs) are evolutionarily conserved protein-protein interaction modules that are found in a wide range of proteins with diverse catalytic and scaffolding functions and are present in most tissues. BRDs selectively recognize and bind to acetylated Lys residues - particularly in histones - and thereby have important roles in the regulation of gene expression. BRD-containing proteins are frequently dysregulated in cancer, they participate in gene fusions that generate diverse, frequently oncogenic proteins, and many cancer-causing mutations have been mapped to the BRDs themselves. Importantly, BRDs can be targeted by small-molecule inhibitors, which has stimulated many translational research projects that seek to attenuate the aberrant functions of BRD-containing proteins in disease.
Collapse
Affiliation(s)
- Takao Fujisawa
- Ludwig Institute for Cancer Research, Old Road Campus Research Building, Roosevelt Drive, Oxford
| | - Panagis Filippakopoulos
- Ludwig Institute for Cancer Research, Old Road Campus Research Building, Roosevelt Drive, Oxford.,Structural Genomics Consortium, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| |
Collapse
|
15
|
Isbel L, Srivastava R, Oey H, Spurling A, Daxinger L, Puthalakath H, Whitelaw E. Trim33 Binds and Silences a Class of Young Endogenous Retroviruses in the Mouse Testis; a Novel Component of the Arms Race between Retrotransposons and the Host Genome. PLoS Genet 2015; 11:e1005693. [PMID: 26624618 PMCID: PMC4666613 DOI: 10.1371/journal.pgen.1005693] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 10/30/2015] [Indexed: 12/12/2022] Open
Abstract
Transposable elements (TEs) have been active in the mammalian genome for millions of years and the silencing of these elements in the germline is important for the survival of the host. Mice carrying reporter transgenes can be used to model transcriptional silencing. A mutagenesis screen for modifiers of epigenetic gene silencing produced a line with a mutation in Trim33; the mutants displayed increased expression of the reporter transgene. ChIP-seq of Trim33 in testis revealed 9,109 peaks, mostly at promoters. This is the first report of ChIP-seq for Trim33 in any tissue. Comparison with ENCODE datasets showed that regions of high read density for Trim33 had high read density for histone marks associated with transcriptional activity and mapping to TE consensus sequences revealed Trim33 enrichment at RLTR10B, the LTR of one of the youngest retrotransposons in the mouse genome, MMERVK10C. We identified consensus sequences from the 266 regions at which Trim33 ChIP-seq peaks overlapped RLTR10B elements and found a match to the A-Myb DNA-binding site. We found that TRIM33 has E3 ubiquitin ligase activity for A-MYB and regulates its abundance. RNA-seq revealed that mice haploinsufficient for Trim33 had altered expression of a small group of genes in the testis and the gene with the most significant increase was found to be transcribed from an upstream RLTR10B. These studies provide the first evidence that A-Myb has a role in the actions of Trim33 and suggest a role for both A-Myb and Trim33 in the arms race between the transposon and the host. This the first report of any factor specifically regulating RLTR10B and adds to the current literature on the silencing of MMERVK10C retrotransposons. This is also the first report that A-Myb has a role in the transcription of any retrotransposon. Almost half of the genomes of humans and mice are made up of transposable elements. During host evolution, subsets of these elements have periods of transpositional activity during which they spread throughout the genome. This is dependent on the transcriptional activity of these elements in the cells that contribute to the germline. Hosts have evolved pathways to silence their expression. A number of Trim family proteins have been found to have a role in silencing transposable elements, and it was previously shown that Trim33 shared this function in liver. However, the function of Trim33 in other tissues is poorly understood. Here we report a role for Trim33 in silencing a specific subset of retrotransposons that contain RLTR10B LTRs, in the germline. We also show the transcription factor, A-Myb, is responsible for activating transcription of these elements and it is likely that a subset of RLTR10Bs have recently evolved Myb DNA binding sites to capitalise on the critical role that the A-Myb transcription factor has in germ cells. Suppression of A-Myb activity by Trim33 provides a plausible mechanism by which the host keeps transposons in check.
Collapse
Affiliation(s)
- Luke Isbel
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Melbourne, Australia
| | - Rahul Srivastava
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Melbourne, Australia
| | - Harald Oey
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Melbourne, Australia
| | - Alex Spurling
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Melbourne, Australia
| | - Lucia Daxinger
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Melbourne, Australia
| | - Hamsa Puthalakath
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Melbourne, Australia
| | - Emma Whitelaw
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Melbourne, Australia
- * E-mail:
| |
Collapse
|
16
|
Lane J, Yumoto K, Azhar M, Ninomiya-Tsuji J, Inagaki M, Hu Y, Deng CX, Kim J, Mishina Y, Kaartinen V. Tak1, Smad4 and Trim33 redundantly mediate TGF-β3 signaling during palate development. Dev Biol 2014; 398:231-41. [PMID: 25523394 DOI: 10.1016/j.ydbio.2014.12.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 12/02/2014] [Accepted: 12/04/2014] [Indexed: 02/02/2023]
Abstract
Transforming growth factor-beta3 (TGF-β3) plays a critical role in palatal epithelial cells by inducing palatal epithelial fusion, failure of which results in cleft palate, one of the most common birth defects in humans. Recent studies have shown that Smad-dependent and Smad-independent pathways work redundantly to transduce TGF-β3 signaling in palatal epithelial cells. However, detailed mechanisms by which this signaling is mediated still remain to be elucidated. Here we show that TGF-β activated kinase-1 (Tak1) and Smad4 interact genetically in palatal epithelial fusion. While simultaneous abrogation of both Tak1 and Smad4 in palatal epithelial cells resulted in characteristic defects in the anterior and posterior secondary palate, these phenotypes were less severe than those seen in the corresponding Tgfb3 mutants. Moreover, our results demonstrate that Trim33, a novel chromatin reader and regulator of TGF-β signaling, cooperates with Smad4 during palatogenesis. Unlike the epithelium-specific Smad4 mutants, epithelium-specific Tak1:Smad4- and Trim33:Smad4-double mutants display reduced expression of Mmp13 in palatal medial edge epithelial cells, suggesting that both of these redundant mechanisms are required for appropriate TGF-β signal transduction. Moreover, we show that inactivation of Tak1 in Trim33:Smad4 double conditional knockouts leads to the palatal phenotypes which are identical to those seen in epithelium-specific Tgfb3 mutants. To conclude, our data reveal added complexity in TGF-β signaling during palatogenesis and demonstrate that functionally redundant pathways involving Smad4, Tak1 and Trim33 regulate palatal epithelial fusion.
Collapse
Affiliation(s)
- Jamie Lane
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI 48019, USA
| | - Kenji Yumoto
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI 48019, USA
| | - Mohamad Azhar
- Department of Pediatrics, Indiana University, Indianapolis, IN, USA
| | - Jun Ninomiya-Tsuji
- Department of Environmental and Molecular Toxicology, North Carolina State University, Raleigh, NC, USA
| | - Maiko Inagaki
- Department of Environmental and Molecular Toxicology, North Carolina State University, Raleigh, NC, USA
| | - Yingling Hu
- Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Chu-Xia Deng
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Jieun Kim
- The Saban Research Institute of Children׳s Hospital Los Angeles, Los Angeles, CA, USA
| | - Yuji Mishina
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI 48019, USA
| | - Vesa Kaartinen
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI 48019, USA.
| |
Collapse
|
17
|
Falk S, Joosten E, Kaartinen V, Sommer L. Smad4 and Trim33/Tif1γ redundantly regulate neural stem cells in the developing cortex. ACTA ACUST UNITED AC 2013; 24:2951-63. [PMID: 23765158 DOI: 10.1093/cercor/bht149] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
During central nervous system (CNS) development, proliferation and differentiation of neural stem cells (NSCs) have to be regulated in a spatio-temporal fashion. Here, we report different branches of the transforming growth factor β (TGFβ) signaling pathway to be required for the brain area-specific control of NSCs. In the midbrain, canonical TGFβ signaling via Smad4 regulates the balance between proliferation and differentiation of NSCs. Accordingly, Smad4 deletion resulted in horizontal expansion of NSCs due to increased proliferation, decreased differentiation, and decreased cell cycle exit. In the developing cortex, however, ablation of Smad4 alone did not have any effect on proliferation and differentiation of NSCs. In contrast, concomitant mutation of both Smad4 and Trim33 led to an increase in proliferative cells in the ventricular zone due to decreased cell cycle exit, revealing a functional redundancy of Smad4 and Trim33. Furthermore, in Smad4-Trim33 double mutant embryos, cortical NSCs generated an excess of deep layer neurons concurrent with a delayed and reduced production of upper layer neurons and, in addition, failed to undergo the neurogenic to gliogenic switch at the right developmental stage. Thus, our data disclose that in different regions of the developing CNS different aspects of the TGFβ signaling pathway are required to ensure proper development.
Collapse
Affiliation(s)
- Sven Falk
- Division of Cell and Developmental Biology, Institute of Anatomy, University of Zurich, Zurich, Switzerland, Current address: Helmholtz Center Munich, German Research Center for Environmental Health, Institute for Stem Cell Research, D-85764 Neuherberg, Germany
| | - Esméé Joosten
- Division of Cell and Developmental Biology, Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Vesa Kaartinen
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI 48109, USA and
| | - Lukas Sommer
- Division of Cell and Developmental Biology, Institute of Anatomy, University of Zurich, Zurich, Switzerland
| |
Collapse
|
18
|
Bai X, Trowbridge JJ, Riley E, Lee JA, DiBiase A, Kaartinen VM, Orkin SH, Zon LI. TiF1-gamma plays an essential role in murine hematopoiesis and regulates transcriptional elongation of erythroid genes. Dev Biol 2012; 373:422-30. [PMID: 23159334 DOI: 10.1016/j.ydbio.2012.10.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 09/24/2012] [Accepted: 10/08/2012] [Indexed: 12/13/2022]
Abstract
Transcriptional regulators play critical roles in the regulation of cell fate during hematopoiesis. Previous studies in zebrafish have identified an essential role for the transcriptional intermediary factor TIF1γ in erythropoiesis by regulating the transcription elongation of erythroid genes. To study if TIF1γ plays a similar role in murine erythropoiesis and to assess its function in other blood lineages, we generated mouse models with hematopoietic deletion of TIF1γ. Our results showed a block in erythroid maturation in the bone marrow following tif1γ deletion that was compensated with enhanced spleen erythropoiesis. Further analyses revealed a defect in transcription elongation of erythroid genes in the bone marrow. In addition, loss of TIF1γ resulted in defects in other blood compartments, including a profound loss of B cells, a dramatic expansion of granulocytes and decreased HSC function. TIF1γ exerts its functions in a cell-autonomous manner as revealed by competitive transplantation experiments. Our study therefore demonstrates that TIF1γ plays essential roles in multiple murine blood lineages and that its function in transcription elongation is evolutionally conserved.
Collapse
Affiliation(s)
- Xiaoying Bai
- Stem Cell Program, Children's Hospital Boston, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Hesling C, Lopez J, Fattet L, Gonzalo P, Treilleux I, Blanchard D, Losson R, Goffin V, Pigat N, Puisieux A, Mikaelian I, Gillet G, Rimokh R. Tif1γ is essential for the terminal differentiation of mammary alveolar epithelial cells and for lactation through SMAD4 inhibition. Development 2012; 140:167-75. [PMID: 23154409 DOI: 10.1242/dev.085068] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Transforming growth factor β (TGFβ) is widely recognised as an important factor that regulates many steps of normal mammary gland (MG) development, including branching morphogenesis, functional differentiation and involution. Tif1γ has previously been reported to temporally and spatially control TGFβ signalling during early vertebrate development by exerting negative effects over SMAD4 availability. To evaluate the contribution of Tif1 γ to MG development, we developed a Cre/LoxP system to specifically invalidate the Tif1g gene in mammary epithelial cells in vivo. Tif1g-null mammary gland development appeared to be normal and no defects were observed during the lifespan of virgin mice. However, a lactation defect was observed in mammary glands of Tif1g-null mice. We demonstrate that Tif1 γ is essential for the terminal differentiation of alveolar epithelial cells at the end of pregnancy and to ensure lactation. Tif1 γ appears to play a crucial role in the crosstalk between TGFβ and prolactin pathways by negatively regulating both PRL receptor expression and STAT5 phosphorylation, thereby impairing the subsequent transactivation of PRL target genes. Using HC11 cells as a model, we demonstrate that the effects of Tif1g knockdown on lactation depend on both SMAD4 and TGFβ. Interestingly, we found that the Tif1γ expression pattern in mammary epithelial cells is almost symmetrically opposite to that described for TGFβ. We propose that Tif1γ contributes to the repression of TGFβ activity during late pregnancy and prevents lactation by inhibiting SMAD4.
Collapse
Affiliation(s)
- Cédric Hesling
- Centre de Recherche en Cancérologie de Lyon, Inserm UMR-S1052, CNRS UMR5286, Centre Léon Bérard, Lyon, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Herquel B, Ouararhni K, Davidson I. The TIF1α-related TRIM cofactors couple chromatin modifications to transcriptional regulation, signaling and tumor suppression. Transcription 2012; 2:231-6. [PMID: 22231120 DOI: 10.4161/trns.2.5.17725] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
TRIM24 (TIF1α), TRIM28 (TIF1β) and TRIM33 (TIF1γ) are related cofactors defining a subgroup of the tripartite motif (TRIM) superfamily comprising an N-terminal RING finger E3 ligase and a C-terminal PHD-Bromodomain chromatin interacting module. Increasing evidence highlights the important roles of these proteins as modulators of multiple signaling pathways during normal development and as tumor suppressors. The finding that they interact to form a multiprotein complex suggests new mechanisms to integrate multiple signaling pathways for tumor suppression.
Collapse
Affiliation(s)
- Benjamin Herquel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch Cédex, France
| | | | | |
Collapse
|
21
|
A poised chromatin platform for TGF-β access to master regulators. Cell 2012; 147:1511-24. [PMID: 22196728 DOI: 10.1016/j.cell.2011.11.032] [Citation(s) in RCA: 223] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 11/08/2011] [Accepted: 11/11/2011] [Indexed: 11/23/2022]
Abstract
Specific chromatin marks keep master regulators of differentiation silent yet poised for activation by extracellular signals. We report that nodal TGF-β signals use the poised histone mark H3K9me3 to trigger differentiation of mammalian embryonic stem cells. Nodal receptors induce the formation of companion Smad4-Smad2/3 and TRIM33-Smad2/3 complexes. The PHD-Bromo cassette of TRIM33 facilitates binding of TRIM33-Smad2/3 to H3K9me3 and H3K18ac on the promoters of mesendoderm regulators Gsc and Mixl1. The crystal structure of this cassette, bound to histone H3 peptides, illustrates that PHD recognizes K9me3, and Bromo binds an adjacent K18ac. The interaction between TRIM33-Smad2/3 and H3K9me3 displaces the chromatin-compacting factor HP1γ, making nodal response elements accessible to Smad4-Smad2/3 for Pol II recruitment. In turn, Smad4 increases K18 acetylation to augment TRIM33-Smad2/3 binding. Thus, nodal effectors use the H3K9me3 mark as a platform to switch master regulators of stem cell differentiation from the poised to the active state.
Collapse
|
22
|
Abstract
Acetylation of lysine residues is a post-translational modification with broad relevance
to cellular signalling and disease biology. Enzymes that ‘write’
(histone acetyltransferases, HATs) and ‘erase’ (histone deacetylases,
HDACs) acetylation sites are an area of extensive research in current drug development,
but very few potent inhibitors that modulate the ‘reading process’
mediated by acetyl lysines have been described. The principal readers of
ɛ-N-acetyl lysine (Kac) marks are
bromodomains (BRDs), which are a diverse family of evolutionary conserved
protein-interaction modules. The conserved BRD fold contains a deep, largely hydrophobic
acetyl lysine binding site, which represents an attractive pocket for the development of
small, pharmaceutically active molecules. Proteins that contain BRDs have been implicated
in the development of a large variety of diseases. Recently, two highly potent and
selective inhibitors that target BRDs of the BET (bromodomains and extra-terminal) family
provided compelling data supporting targeting of these BRDs in inflammation and in an
aggressive type of squamous cell carcinoma. It is likely that BRDs will emerge alongside
HATs and HDACs as interesting targets for drug development for the large number of
diseases that are caused by aberrant acetylation of lysine residues.
Collapse
|
23
|
Aucagne R, Droin N, Solary E, Bastie JN, Delva L. [TIF1γ: a tumor suppressor gene in chronic myelomonocytic leukemia]. Med Sci (Paris) 2011; 27:696-8. [PMID: 21880252 DOI: 10.1051/medsci/2011278006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
24
|
Adult hematopoiesis is regulated by TIF1γ, a repressor of TAL1 and PU.1 transcriptional activity. Cell Stem Cell 2011; 8:412-25. [PMID: 21474105 DOI: 10.1016/j.stem.2011.02.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2010] [Revised: 12/11/2010] [Accepted: 02/08/2011] [Indexed: 12/30/2022]
Abstract
Crosstalk between transcription factors and cytokines precisely regulates tissue homeostasis. Transcriptional intermediary factor 1γ (TIF1γ) regulates vertebrate hematopoietic development, can control transcription elongation, and is a component of the TGF-β signaling pathway. Here we show that deletion of TIF1γ in adult hematopoiesis is compatible with life and long-term maintenance of essential blood cell lineages. However, loss of TIF1γ results in deficient long-term hematopoietic stem cell (LT-HSC) transplantation activity, deficient short-term HSC (ST-HSC) bone marrow retention, and priming ST-HSCs to myelomonocytic lineage. These defects are hematopoietic cell-autonomous, and priming of TIF1γ-deficient ST-HSCs can be partially rescued by wild-type hematopoietic cells. TIF1γ can form complexes with TAL1 or PU.1-two essential DNA-binding proteins in hematopoiesis-occupy specific subsets of their DNA binding sites in vivo, and repress their transcriptional activity. These results suggest a regulation of adult hematopoiesis through TIF1γ-mediated transcriptional repression of TAL1 and PU.1 target genes.
Collapse
|
25
|
Aucagne R, Droin N, Paggetti J, Lagrange B, Largeot A, Hammann A, Bataille A, Martin L, Yan KP, Fenaux P, Losson R, Solary E, Bastie JN, Delva L. Transcription intermediary factor 1γ is a tumor suppressor in mouse and human chronic myelomonocytic leukemia. J Clin Invest 2011; 121:2361-70. [PMID: 21537084 PMCID: PMC3104753 DOI: 10.1172/jci45213] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Accepted: 03/08/2011] [Indexed: 12/27/2022] Open
Abstract
Transcription intermediary factor 1γ (TIF1γ) was suggested to play a role in erythropoiesis. However, how TIF1γ regulates the development of different blood cell lineages and whether TIF1γ is involved in human hematological malignancies remain to be determined. Here we have shown that TIF1γ was a tumor suppressor in mouse and human chronic myelomonocytic leukemia (CMML). Loss of Tif1g in mouse HSCs favored the expansion of the granulo-monocytic progenitor compartment. Furthermore, Tif1g deletion induced the age-dependent appearance of a cell-autonomous myeloproliferative disorder in mice that recapitulated essential characteristics of human CMML. TIF1γ was almost undetectable in leukemic cells of 35% of CMML patients. This downregulation was related to the hypermethylation of CpG sequences and specific histone modifications in the gene promoter. A demethylating agent restored the normal epigenetic status of the TIF1G promoter in human cells, which correlated with a reestablishment of TIF1γ expression. Together, these results demonstrate that TIF1G is an epigenetically regulated tumor suppressor gene in hematopoietic cells and suggest that changes in TIF1γ expression may be a biomarker of response to demethylating agents in CMML.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Aging/genetics
- Animals
- Antimetabolites, Antineoplastic/pharmacology
- Antimetabolites, Antineoplastic/therapeutic use
- Azacitidine/analogs & derivatives
- Azacitidine/pharmacology
- Azacitidine/therapeutic use
- Base Sequence
- Cell Differentiation
- DNA Methylation
- Decitabine
- Female
- Gene Expression Regulation, Leukemic
- Genes, Tumor Suppressor
- Hematopoiesis/genetics
- Hematopoiesis/physiology
- Hematopoietic Stem Cells/pathology
- Humans
- Leukemia, Myelomonocytic, Chronic/drug therapy
- Leukemia, Myelomonocytic, Chronic/genetics
- Leukemia, Myelomonocytic, Chronic/pathology
- Male
- Mice
- Mice, Knockout
- Middle Aged
- Molecular Sequence Data
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Neoplasm Proteins/physiology
- Promoter Regions, Genetic
- Receptor, Macrophage Colony-Stimulating Factor/biosynthesis
- Receptor, Macrophage Colony-Stimulating Factor/genetics
- Specific Pathogen-Free Organisms
- Transcription Factors/deficiency
- Transcription Factors/genetics
- Transcription Factors/physiology
Collapse
Affiliation(s)
- Romain Aucagne
- Inserm UMR 866, University of Burgundy, Dijon, France.
IFR “Santé-STIC,” University of Burgundy, Dijon, France.
Inserm UMR 1009, Integrated Research Cancer Institute Villejuif (IRCIV), Institut Gustave Roussy, Villejuif, France.
Flow Cytometry Facility,
Cellular Imagery Facility, and
Department of Pathology, University Hospital, Dijon, France.
Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of Functional Genomics, CNRS UMR 7104, Inserm U964, Louis Pasteur University, Collège de France, Illkirch, France.
University Hospital, Assistance Publique–Hôpitaux de Paris (AP-HP) and University of Paris 13, Bobigny, France.
University Hospital, Clinical Hematology Department, Dijon, France
| | - Nathalie Droin
- Inserm UMR 866, University of Burgundy, Dijon, France.
IFR “Santé-STIC,” University of Burgundy, Dijon, France.
Inserm UMR 1009, Integrated Research Cancer Institute Villejuif (IRCIV), Institut Gustave Roussy, Villejuif, France.
Flow Cytometry Facility,
Cellular Imagery Facility, and
Department of Pathology, University Hospital, Dijon, France.
Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of Functional Genomics, CNRS UMR 7104, Inserm U964, Louis Pasteur University, Collège de France, Illkirch, France.
University Hospital, Assistance Publique–Hôpitaux de Paris (AP-HP) and University of Paris 13, Bobigny, France.
University Hospital, Clinical Hematology Department, Dijon, France
| | - Jérôme Paggetti
- Inserm UMR 866, University of Burgundy, Dijon, France.
IFR “Santé-STIC,” University of Burgundy, Dijon, France.
Inserm UMR 1009, Integrated Research Cancer Institute Villejuif (IRCIV), Institut Gustave Roussy, Villejuif, France.
Flow Cytometry Facility,
Cellular Imagery Facility, and
Department of Pathology, University Hospital, Dijon, France.
Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of Functional Genomics, CNRS UMR 7104, Inserm U964, Louis Pasteur University, Collège de France, Illkirch, France.
University Hospital, Assistance Publique–Hôpitaux de Paris (AP-HP) and University of Paris 13, Bobigny, France.
University Hospital, Clinical Hematology Department, Dijon, France
| | - Brice Lagrange
- Inserm UMR 866, University of Burgundy, Dijon, France.
IFR “Santé-STIC,” University of Burgundy, Dijon, France.
Inserm UMR 1009, Integrated Research Cancer Institute Villejuif (IRCIV), Institut Gustave Roussy, Villejuif, France.
Flow Cytometry Facility,
Cellular Imagery Facility, and
Department of Pathology, University Hospital, Dijon, France.
Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of Functional Genomics, CNRS UMR 7104, Inserm U964, Louis Pasteur University, Collège de France, Illkirch, France.
University Hospital, Assistance Publique–Hôpitaux de Paris (AP-HP) and University of Paris 13, Bobigny, France.
University Hospital, Clinical Hematology Department, Dijon, France
| | - Anne Largeot
- Inserm UMR 866, University of Burgundy, Dijon, France.
IFR “Santé-STIC,” University of Burgundy, Dijon, France.
Inserm UMR 1009, Integrated Research Cancer Institute Villejuif (IRCIV), Institut Gustave Roussy, Villejuif, France.
Flow Cytometry Facility,
Cellular Imagery Facility, and
Department of Pathology, University Hospital, Dijon, France.
Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of Functional Genomics, CNRS UMR 7104, Inserm U964, Louis Pasteur University, Collège de France, Illkirch, France.
University Hospital, Assistance Publique–Hôpitaux de Paris (AP-HP) and University of Paris 13, Bobigny, France.
University Hospital, Clinical Hematology Department, Dijon, France
| | - Arlette Hammann
- Inserm UMR 866, University of Burgundy, Dijon, France.
IFR “Santé-STIC,” University of Burgundy, Dijon, France.
Inserm UMR 1009, Integrated Research Cancer Institute Villejuif (IRCIV), Institut Gustave Roussy, Villejuif, France.
Flow Cytometry Facility,
Cellular Imagery Facility, and
Department of Pathology, University Hospital, Dijon, France.
Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of Functional Genomics, CNRS UMR 7104, Inserm U964, Louis Pasteur University, Collège de France, Illkirch, France.
University Hospital, Assistance Publique–Hôpitaux de Paris (AP-HP) and University of Paris 13, Bobigny, France.
University Hospital, Clinical Hematology Department, Dijon, France
| | - Amandine Bataille
- Inserm UMR 866, University of Burgundy, Dijon, France.
IFR “Santé-STIC,” University of Burgundy, Dijon, France.
Inserm UMR 1009, Integrated Research Cancer Institute Villejuif (IRCIV), Institut Gustave Roussy, Villejuif, France.
Flow Cytometry Facility,
Cellular Imagery Facility, and
Department of Pathology, University Hospital, Dijon, France.
Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of Functional Genomics, CNRS UMR 7104, Inserm U964, Louis Pasteur University, Collège de France, Illkirch, France.
University Hospital, Assistance Publique–Hôpitaux de Paris (AP-HP) and University of Paris 13, Bobigny, France.
University Hospital, Clinical Hematology Department, Dijon, France
| | - Laurent Martin
- Inserm UMR 866, University of Burgundy, Dijon, France.
IFR “Santé-STIC,” University of Burgundy, Dijon, France.
Inserm UMR 1009, Integrated Research Cancer Institute Villejuif (IRCIV), Institut Gustave Roussy, Villejuif, France.
Flow Cytometry Facility,
Cellular Imagery Facility, and
Department of Pathology, University Hospital, Dijon, France.
Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of Functional Genomics, CNRS UMR 7104, Inserm U964, Louis Pasteur University, Collège de France, Illkirch, France.
University Hospital, Assistance Publique–Hôpitaux de Paris (AP-HP) and University of Paris 13, Bobigny, France.
University Hospital, Clinical Hematology Department, Dijon, France
| | - Kai-Ping Yan
- Inserm UMR 866, University of Burgundy, Dijon, France.
IFR “Santé-STIC,” University of Burgundy, Dijon, France.
Inserm UMR 1009, Integrated Research Cancer Institute Villejuif (IRCIV), Institut Gustave Roussy, Villejuif, France.
Flow Cytometry Facility,
Cellular Imagery Facility, and
Department of Pathology, University Hospital, Dijon, France.
Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of Functional Genomics, CNRS UMR 7104, Inserm U964, Louis Pasteur University, Collège de France, Illkirch, France.
University Hospital, Assistance Publique–Hôpitaux de Paris (AP-HP) and University of Paris 13, Bobigny, France.
University Hospital, Clinical Hematology Department, Dijon, France
| | - Pierre Fenaux
- Inserm UMR 866, University of Burgundy, Dijon, France.
IFR “Santé-STIC,” University of Burgundy, Dijon, France.
Inserm UMR 1009, Integrated Research Cancer Institute Villejuif (IRCIV), Institut Gustave Roussy, Villejuif, France.
Flow Cytometry Facility,
Cellular Imagery Facility, and
Department of Pathology, University Hospital, Dijon, France.
Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of Functional Genomics, CNRS UMR 7104, Inserm U964, Louis Pasteur University, Collège de France, Illkirch, France.
University Hospital, Assistance Publique–Hôpitaux de Paris (AP-HP) and University of Paris 13, Bobigny, France.
University Hospital, Clinical Hematology Department, Dijon, France
| | - Régine Losson
- Inserm UMR 866, University of Burgundy, Dijon, France.
IFR “Santé-STIC,” University of Burgundy, Dijon, France.
Inserm UMR 1009, Integrated Research Cancer Institute Villejuif (IRCIV), Institut Gustave Roussy, Villejuif, France.
Flow Cytometry Facility,
Cellular Imagery Facility, and
Department of Pathology, University Hospital, Dijon, France.
Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of Functional Genomics, CNRS UMR 7104, Inserm U964, Louis Pasteur University, Collège de France, Illkirch, France.
University Hospital, Assistance Publique–Hôpitaux de Paris (AP-HP) and University of Paris 13, Bobigny, France.
University Hospital, Clinical Hematology Department, Dijon, France
| | - Eric Solary
- Inserm UMR 866, University of Burgundy, Dijon, France.
IFR “Santé-STIC,” University of Burgundy, Dijon, France.
Inserm UMR 1009, Integrated Research Cancer Institute Villejuif (IRCIV), Institut Gustave Roussy, Villejuif, France.
Flow Cytometry Facility,
Cellular Imagery Facility, and
Department of Pathology, University Hospital, Dijon, France.
Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of Functional Genomics, CNRS UMR 7104, Inserm U964, Louis Pasteur University, Collège de France, Illkirch, France.
University Hospital, Assistance Publique–Hôpitaux de Paris (AP-HP) and University of Paris 13, Bobigny, France.
University Hospital, Clinical Hematology Department, Dijon, France
| | - Jean-Noël Bastie
- Inserm UMR 866, University of Burgundy, Dijon, France.
IFR “Santé-STIC,” University of Burgundy, Dijon, France.
Inserm UMR 1009, Integrated Research Cancer Institute Villejuif (IRCIV), Institut Gustave Roussy, Villejuif, France.
Flow Cytometry Facility,
Cellular Imagery Facility, and
Department of Pathology, University Hospital, Dijon, France.
Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of Functional Genomics, CNRS UMR 7104, Inserm U964, Louis Pasteur University, Collège de France, Illkirch, France.
University Hospital, Assistance Publique–Hôpitaux de Paris (AP-HP) and University of Paris 13, Bobigny, France.
University Hospital, Clinical Hematology Department, Dijon, France
| | - Laurent Delva
- Inserm UMR 866, University of Burgundy, Dijon, France.
IFR “Santé-STIC,” University of Burgundy, Dijon, France.
Inserm UMR 1009, Integrated Research Cancer Institute Villejuif (IRCIV), Institut Gustave Roussy, Villejuif, France.
Flow Cytometry Facility,
Cellular Imagery Facility, and
Department of Pathology, University Hospital, Dijon, France.
Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of Functional Genomics, CNRS UMR 7104, Inserm U964, Louis Pasteur University, Collège de France, Illkirch, France.
University Hospital, Assistance Publique–Hôpitaux de Paris (AP-HP) and University of Paris 13, Bobigny, France.
University Hospital, Clinical Hematology Department, Dijon, France
| |
Collapse
|
26
|
Blank U, Karlsson S. The role of Smad signaling in hematopoiesis and translational hematology. Leukemia 2011; 25:1379-88. [PMID: 21566654 DOI: 10.1038/leu.2011.95] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Hematopoietic stem cells (HSCs) reside in the bone marrow (BM) of adult individuals and function to produce and regenerate the entire blood and immune system over the course of an individual's lifetime. Historically, HSCs are among the most thoroughly characterized tissue-specific stem cells. Despite this, the regulation of fate options, such as self-renewal and differentiation, has remained elusive, partly because of the expansive plethora of factors and signaling cues that govern HSC behavior in vivo. In the BM, HSCs are housed in specialized niches that dovetail the behavior of HSCs with the need of the organism. The Smad-signaling pathway, which operates downstream of the transforming growth factor-β (TGF-β) superfamily of ligands, regulates a diverse set of biological processes, including proliferation, differentiation and apoptosis, in many different organ systems. Much of the function of Smad signaling in hematopoiesis has remained nebulous due to early embryonic lethality of most knockout mouse models. However, recently new data have been uncovered, suggesting that the Smad-signaling circuitry is intimately linked to HSC regulation. In this review, we bring the Smad-signaling pathway into focus, chronicling key concepts and recent advances with respect to TGF-β-superfamily signaling in normal and leukemic hematopoiesis.
Collapse
Affiliation(s)
- U Blank
- Division of Molecular Medicine and Gene Therapy, Laboratory Medicine, Lund Stem Cell Center, Lund University Hospital, Lund, Sweden.
| | | |
Collapse
|
27
|
Transcription cofactors TRIM24, TRIM28, and TRIM33 associate to form regulatory complexes that suppress murine hepatocellular carcinoma. Proc Natl Acad Sci U S A 2011; 108:8212-7. [PMID: 21531907 DOI: 10.1073/pnas.1101544108] [Citation(s) in RCA: 163] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
TRIM24 (TIF1α), TRIM28 (TIF1β), and TRIM33 (TIF1γ) are three related cofactors belonging to the tripartite motif superfamily that interact with distinct transcription factors. TRIM24 interacts with the liganded retinoic acid (RA) receptor to repress its transcriptional activity. Germ line inactivation of TRIM24 in mice deregulates RA-signaling in hepatocytes leading to the development of hepatocellular carcinoma (HCC). Here we show that TRIM24 can be purified as at least two macromolecular complexes comprising either TRIM33 or TRIM33 and TRIM28. Somatic hepatocyte-specific inactivation of TRIM24, TRIM28, or TRIM33 all promote HCC in a cell-autonomous manner in mice. Moreover, HCC formation upon TRIM24 inactivation is strongly potentiated by further loss of TRIM33. These results demonstrate that the TIF1-related subfamily of TRIM proteins interact both physically and functionally to modulate HCC formation in mice.
Collapse
|
28
|
Recent Papers on Zebrafish and Other Aquarium Fish Models. Zebrafish 2008. [DOI: 10.1089/zeb.2008.9987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|