1
|
Afanassieff M, Perold F, Bouchereau W, Cadiou A, Beaujean N. Embryo-derived and induced pluripotent stem cells: Towards naive pluripotency and chimeric competency in rabbits. Exp Cell Res 2020; 389:111908. [PMID: 32057751 DOI: 10.1016/j.yexcr.2020.111908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/08/2020] [Accepted: 02/10/2020] [Indexed: 12/17/2022]
Abstract
Both embryo-derived (ESC) and induced pluripotent stem cell (iPSC) lines have been established in rabbit. They exhibit the essential characteristics of primed pluripotency. In this review, we described their characteristic features at both molecular and functional levels. We also described the attempts to reprogram rabbit pluripotent stem cells (rbPSCs) toward the naive state of pluripotency using methods established previously to capture this state in rodents and primates. In the last section, we described and discussed our current knowledge of rabbit embryo development pertaining to the mechanisms of early lineage segregation. We argued that the molecular signature of naive-state pluripotency differs between mice and rabbits. We finally discussed some of the key issues to be addressed for capturing the naive state in rbPSCs, including the generation of embryo/PSC chimeras.
Collapse
Affiliation(s)
- Marielle Afanassieff
- Univ Lyon, Université Lyon 1, Inserm, INRAE, Stem Cell and Brain Research Institute, U1208, USC1361, F-69500, Bron, France.
| | - Florence Perold
- Univ Lyon, Université Lyon 1, Inserm, INRAE, Stem Cell and Brain Research Institute, U1208, USC1361, F-69500, Bron, France
| | - Wilhelm Bouchereau
- Univ Lyon, Université Lyon 1, Inserm, INRAE, Stem Cell and Brain Research Institute, U1208, USC1361, F-69500, Bron, France
| | - Antoine Cadiou
- Univ Lyon, Université Lyon 1, Inserm, INRAE, Stem Cell and Brain Research Institute, U1208, USC1361, F-69500, Bron, France
| | - Nathalie Beaujean
- Univ Lyon, Université Lyon 1, Inserm, INRAE, Stem Cell and Brain Research Institute, U1208, USC1361, F-69500, Bron, France
| |
Collapse
|
2
|
Abstract
A transgenic mouse carries within its genome an artificial DNA construct (transgene) that is deliberately introduced by an experimentalist. These animals are widely used to understand gene function and protein function. When addressing the history of transgenic mouse technology, it is apparent that a number of basic science research areas laid the groundwork for success. These include reproductive science, genetics and molecular biology, and micromanipulation and microscopy equipment. From reproductive physiology came applications on how to optimize mouse breeding, how to superovulate mice to produce zygotes for DNA microinjection or preimplantation embryos for combination with embryonic stem (ES) cells, and how to return zygotes and embryos to a pseudopregnant surrogate dam for gestation and birth. From developmental biology, it was learned how to micromanipulate embryos for morula aggregation and blastocyst microinjection and how to establish germline competent ES cells. From genetics came the foundational principles governing the inheritance of genes, the interactions of gene products, and an understanding of the phenotypic consequences of genetic mutations. From molecular biology came a panoply of tools and reagents that are used to clone DNA transgenes, to detect the presence of transgenes, to assess gene expression by measuring transcription, and to detect proteins in cells and tissues. Technical advances in light microscopes, micromanipulators, micropipette pullers, and ancillary equipment made it possible for experimentalists to insert thin glass needles into zygotes or embryos under controlled conditions to inject DNA solutions or ES cells. To fully discuss the breadth of contributions of these numerous scientific disciplines to a comprehensive history of transgenic science is beyond the scope of this work. Examples will be used to illustrate scientific developments central to the foundation of transgenic technology and that are in use today.
Collapse
Affiliation(s)
- Thomas L Saunders
- Transgenic Animal Model Core, University of Michigan Medical School, Ann Arbor, MI, USA.
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
3
|
Auerbach W, DeChiara TM. Injecting Embryonic Stem Cells into Eight-Cell-Stage Mouse Embryos. Cold Spring Harb Protoc 2017; 2017:pdb.prot094367. [PMID: 28864571 DOI: 10.1101/pdb.prot094367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In this protocol, eight-cell-stage precompaction embryos from outbred mouse strains are used for the injection of hybrid or inbred embryonic stem (ES) cells. This process often leads to generation of fully ES cell-derived so-called F0 mice (VelociMice). Postinjection culture of embryos is necessary to achieve the highest ratio of fully ES cell-derived mice and high-degree chimeras. Typically, 50 embryos are injected per ES cell clone.
Collapse
|
4
|
An Integrative Developmental Genomics and Systems Biology Approach to Identify an In Vivo Sox Trio-Mediated Gene Regulatory Network in Murine Embryos. BIOMED RESEARCH INTERNATIONAL 2017. [PMID: 28630873 PMCID: PMC5467288 DOI: 10.1155/2017/8932583] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Embryogenesis is an intricate process involving multiple genes and pathways. Some of the key transcription factors controlling specific cell types are the Sox trio, namely, Sox5, Sox6, and Sox9, which play crucial roles in organogenesis working in a concerted manner. Much however still needs to be learned about their combinatorial roles during this process. A developmental genomics and systems biology approach offers to complement the reductionist methodology of current developmental biology and provide a more comprehensive and integrated view of the interrelationships of complex regulatory networks that occur during organogenesis. By combining cell type-specific transcriptome analysis and in vivo ChIP-Seq of the Sox trio using mouse embryos, we provide evidence for the direct control of Sox5 and Sox6 by the transcriptional trio in the murine model and by Morpholino knockdown in zebrafish and demonstrate the novel role of Tgfb2, Fbxl18, and Tle3 in formation of Sox5, Sox6, and Sox9 dependent tissues. Concurrently, a complete embryonic gene regulatory network has been generated, identifying a wide repertoire of genes involved and controlled by the Sox trio in the intricate process of normal embryogenesis.
Collapse
|
5
|
Sivakamasundari V, Kraus P, Sun W, Hu X, Lim SL, Prabhakar S, Lufkin T. A developmental transcriptomic analysis of Pax1 and Pax9 in embryonic intervertebral disc development. Biol Open 2017; 6:187-199. [PMID: 28011632 PMCID: PMC5312110 DOI: 10.1242/bio.023218] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Pax1 and Pax9 play redundant, synergistic functions in the patterning and differentiation of the sclerotomal cells that give rise to the vertebral bodies and intervertebral discs (IVD) of the axial skeleton. They are conserved in mice and humans, whereby mutation/deficiency of human PAX1/PAX9 has been associated with kyphoscoliosis. By combining cell-type-specific transcriptome and ChIP-sequencing data, we identified the roles of Pax1/Pax9 in cell proliferation, cartilage development and collagen fibrillogenesis, which are vital in early IVD morphogenesis. Pax1 is up-regulated in the absence of Pax9, while Pax9 is unaffected by the loss of Pax1/Pax9 We identified the targets compensated by a single- or double-copy of Pax9 They positively regulate many of the cartilage genes known to be regulated by Sox5/Sox6/Sox9 and are connected to Sox5/Sox6 by a negative feedback loop. Pax1/Pax9 are intertwined with BMP and TGF-B pathways and we propose they initiate expression of chondrogenic genes during early IVD differentiation and subsequently become restricted to the outer annulus by the negative feedback mechanism. Our findings highlight how early IVD development is regulated spatio-temporally and have implications for understanding kyphoscoliosis.
Collapse
Affiliation(s)
- V Sivakamasundari
- The Single Cell Biology Laboratory, The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT 06030, USA
| | - Petra Kraus
- Department of Biology, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA
| | - Wenjie Sun
- Computational and Systems Biology, Genome Institute of Singapore, 60 Biopolis Street, 138672, Singapore
| | - Xiaoming Hu
- Computational and Systems Biology, Genome Institute of Singapore, 60 Biopolis Street, 138672, Singapore
| | - Siew Lan Lim
- Computational and Systems Biology, Genome Institute of Singapore, 60 Biopolis Street, 138672, Singapore
| | - Shyam Prabhakar
- Computational and Systems Biology, Genome Institute of Singapore, 60 Biopolis Street, 138672, Singapore
| | - Thomas Lufkin
- Department of Biology, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA
| |
Collapse
|
6
|
Chatterjee S, Kraus P, Sivakamasundari V, Yap SP, Kumar V, Prabhakar S, Lufkin T. Genome wide binding (ChIP-Seq) of murine Bapx1 and Sox9 proteins in vivo and in vitro. GENOMICS DATA 2016; 10:51-3. [PMID: 27672560 PMCID: PMC5030313 DOI: 10.1016/j.gdata.2016.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 09/07/2016] [Indexed: 11/30/2022]
Abstract
This work pertains to GEO submission GSE36672, in vivo and in vitro genome wide binding (ChIP-Seq) of Bapx1/Nkx3.2 and Sox9 proteins. We have previously shown that data from a genome wide binding assay combined with transcriptional profiling is an insightful means to divulge the mechanisms directing cell type specification and the generation of tissues and subsequent organs [1]. Our earlier work identified the role of the DNA-binding homeodomain containing protein Bapx1/Nkx3.2 in midgestation murine embryos. Microarray analysis of EGFP-tagged cells (both wildtype and null) was integrated using ChIP-Seq analysis of Bapx1/Nkx3.2 and Sox9 DNA-binding proteins in living tissue.
Collapse
Affiliation(s)
- Sumantra Chatterjee
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
| | - Petra Kraus
- Department of Biology, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA
| | - V Sivakamasundari
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT 06030, USA
| | - Sook Peng Yap
- Apta Biosciences, 31 Biopolis Way, Nanos, Singapore 138669, Singapore
| | - Vibhor Kumar
- Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore
| | - Shyam Prabhakar
- Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore
| | - Thomas Lufkin
- Department of Biology, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA
| |
Collapse
|
7
|
Osteil P, Studdert J, Wilkie E, Fossat N, Tam PP. Generation of genome-edited mouse epiblast stem cells via a detour through ES cell-chimeras. Differentiation 2016; 91:119-25. [DOI: 10.1016/j.diff.2015.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 10/15/2015] [Accepted: 10/15/2015] [Indexed: 11/27/2022]
|
8
|
Chatterjee S, Sivakamasundari V, Kraus P, Yap SP, Kumar V, Prabhakar S, Lufkin T. Gene expression profiles of Bapx1 expressing FACS sorted cells from wildtype and Bapx1-EGFP null mouse embryos. GENOMICS DATA 2015; 5:103-105. [PMID: 26101748 PMCID: PMC4474491 DOI: 10.1016/j.gdata.2015.05.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The data described in this article refers to Chatterjee et al. (2015) “In vivo genome-wide analysis of multiple tissues identifies gene regulatory networks, novel functions and downstream regulatory genes for Bapx1 and its co-regulation with Sox9 in the mammalian vertebral column” (GEO GSE35649) [1]. Transcriptional profiling combined with genome wide binding data is a powerful tool to elucidate the molecular mechanism behind vertebrate organogenesis. It also helps to uncover multiple roles of a single gene in different organs. In the above mentioned report we reveal the function of the homeobox gene Bapx1 during the embryogenesis of five distinct organs (vertebral column, spleen, gut, forelimb and hindlimb) at a relevant developmental stage (E12.5), microarray analysis of isolated wildtype and mutant cells in is compared in conjunction with ChIP-Seq analysis. We also analyzed the development of the vertebral column by comparing microarray and ChIP-Seq data for Bapx1 with similarly generated data sets for Sox9 to generate a gene regulatory network controlling various facets of the organogenesis.
Collapse
Affiliation(s)
- Sumantra Chatterjee
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205 USA
| | - V Sivakamasundari
- Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore
| | - Petra Kraus
- Department of Biology, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA
| | - Sook Peng Yap
- Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore
| | - Vibhor Kumar
- Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore
| | - Shyam Prabhakar
- Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore
| | - Thomas Lufkin
- Department of Biology, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA
| |
Collapse
|
9
|
Yeo JC, Jiang J, Tan ZY, Yim GR, Ng JH, Göke J, Kraus P, Liang H, Gonzales KAU, Chong HC, Tan CP, Lim YS, Tan NS, Lufkin T, Ng HH. Klf2 is an essential factor that sustains ground state pluripotency. Cell Stem Cell 2015; 14:864-72. [PMID: 24905170 DOI: 10.1016/j.stem.2014.04.015] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 03/14/2014] [Accepted: 04/17/2014] [Indexed: 10/25/2022]
Abstract
The maintenance of mouse embryonic stem cells (mESCs) requires LIF and serum. However, a pluripotent "ground state," bearing resemblance to preimplantation mouse epiblasts, can be established through dual inhibition (2i) of both prodifferentiation Mek/Erk and Gsk3/Tcf3 pathways. While Gsk3 inhibition has been attributed to the transcriptional derepression of Esrrb, the molecular mechanism mediated by Mek inhibition remains unclear. In this study, we show that Krüppel-like factor 2 (Klf2) is phosphorylated by Erk2 and that phospho-Klf2 is proteosomally degraded. Mek inhibition hence prevents Klf2 protein phosphodegradation to sustain pluripotency. Indeed, while Klf2-null mESCs can survive under LIF/Serum, they are not viable under 2i, demonstrating that Klf2 is essential for ground state pluripotency. Importantly, we also show that ectopic Klf2 expression can replace Mek inhibition in mESCs, allowing the culture of Klf2-null mESCs under Gsk3 inhibition alone. Collectively, our study defines the Mek/Erk/Klf2 axis that cooperates with the Gsk3/Tcf3/Esrrb pathway in mediating ground state pluripotency.
Collapse
Affiliation(s)
- Jia-Chi Yeo
- Genome Institute of Singapore, 60 Biopolis Street, #02-01 Genome Building, Singapore 138672, Singapore; School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Jianming Jiang
- Genome Institute of Singapore, 60 Biopolis Street, #02-01 Genome Building, Singapore 138672, Singapore
| | - Zi-Ying Tan
- Genome Institute of Singapore, 60 Biopolis Street, #02-01 Genome Building, Singapore 138672, Singapore; Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Guo-Rong Yim
- Genome Institute of Singapore, 60 Biopolis Street, #02-01 Genome Building, Singapore 138672, Singapore
| | - Jia-Hui Ng
- Genome Institute of Singapore, 60 Biopolis Street, #02-01 Genome Building, Singapore 138672, Singapore
| | - Jonathan Göke
- Genome Institute of Singapore, 60 Biopolis Street, #02-01 Genome Building, Singapore 138672, Singapore
| | - Petra Kraus
- Genome Institute of Singapore, 60 Biopolis Street, #02-01 Genome Building, Singapore 138672, Singapore; Department of Biology, Clarkson University, Potsdam, NY 13699, USA
| | - Hongqing Liang
- Genome Institute of Singapore, 60 Biopolis Street, #02-01 Genome Building, Singapore 138672, Singapore
| | - Kevin Andrew Uy Gonzales
- Genome Institute of Singapore, 60 Biopolis Street, #02-01 Genome Building, Singapore 138672, Singapore; Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 117456, Singapore
| | - Han-Chung Chong
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Cheng-Peow Tan
- Genome Institute of Singapore, 60 Biopolis Street, #02-01 Genome Building, Singapore 138672, Singapore
| | - Yee-Siang Lim
- Genome Institute of Singapore, 60 Biopolis Street, #02-01 Genome Building, Singapore 138672, Singapore
| | - Nguan-Soon Tan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore; Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, A(∗)STAR, Singapore 138673, Singapore
| | - Thomas Lufkin
- Genome Institute of Singapore, 60 Biopolis Street, #02-01 Genome Building, Singapore 138672, Singapore; Department of Biology, Clarkson University, Potsdam, NY 13699, USA
| | - Huck-Hui Ng
- Genome Institute of Singapore, 60 Biopolis Street, #02-01 Genome Building, Singapore 138672, Singapore; School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore; Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore; Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 117456, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Block MD6, Centre for Translational Medicine, 14 Medical Drive #14-01T, Singapore 117599, Singapore.
| |
Collapse
|
10
|
Shrestha S, Sun Y, Lufkin T, Kraus P, Or Y, Garcia YA, Guy N, Ramos P, Cox MB, Tay F, Lin VCL. Tetratricopeptide repeat domain 9A negatively regulates estrogen receptor alpha activity. Int J Biol Sci 2015; 11:434-47. [PMID: 25798063 PMCID: PMC4366642 DOI: 10.7150/ijbs.9311] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 12/29/2014] [Indexed: 12/14/2022] Open
Abstract
Tetratricopeptide repeat domain 9A (TTC9A) is a target gene of estrogen and progesterone. It is over-expressed in breast cancer. However, little is known about the physiological function of TTC9A. The objectives of this study were to establish a Ttc9a knockout mouse model and to study the consequence of Ttc9a gene inactivation. The Ttc9a targeting vector was generated by replacing the Ttc9a exon 1 with a neomycin cassette. The mice homozygous for Ttc9a exon 1 deletion appear to grow normally and are fertile. However, further characterization of the female mice revealed that Ttc9a deficiency is associated with greater body weight, bigger thymus and better mammary development in post-pubertal mice. Furthermore, Ttc9a deficient mammary gland was more responsive to estrogen treatment with greater mammary ductal lengthening, ductal branching and estrogen target gene induction. Since Ttc9a is induced by estrogen in estrogen target tissues, these results suggest that Ttc9a is a negative regulator of estrogen function through a negative feedback mechanism. This is supported by in vitro evidence that TTC9A over-expression attenuated ERα activity in MCF-7 cells. Although TTC9A does not bind to ERα or its chaperone protein Hsp90 directly, TTC9A strongly interacts with FKBP38 and FKBP51, both of which interact with ERα and Hsp90 and modulate ERα activity. It is plausible therefore that TTC9A negatively regulates ERα activity through interacting with co-chaperone proteins such as FKBP38 and FKBP51.
Collapse
Affiliation(s)
- Smeeta Shrestha
- 1. School of Biological Sciences, Nanyang Technological University, Singapore
| | - Yang Sun
- 1. School of Biological Sciences, Nanyang Technological University, Singapore
| | | | | | - Yuzuan Or
- 1. School of Biological Sciences, Nanyang Technological University, Singapore
| | - Yenni A. Garcia
- 3. Department of Biological Sciences, University of Texas at El Paso, USA
| | - Naihsuan Guy
- 3. Department of Biological Sciences, University of Texas at El Paso, USA
| | - Paola Ramos
- 3. Department of Biological Sciences, University of Texas at El Paso, USA
| | - Marc B. Cox
- 3. Department of Biological Sciences, University of Texas at El Paso, USA
| | - Fiona Tay
- 1. School of Biological Sciences, Nanyang Technological University, Singapore
| | - Valerie CL Lin
- 1. School of Biological Sciences, Nanyang Technological University, Singapore
| |
Collapse
|
11
|
Aksoy I, Jauch R, Eras V, Chng WBA, Chen J, Divakar U, Ng CKL, Kolatkar PR, Stanton LW. Sox transcription factors require selective interactions with Oct4 and specific transactivation functions to mediate reprogramming. Stem Cells 2015; 31:2632-46. [PMID: 23963638 DOI: 10.1002/stem.1522] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Revised: 05/03/2013] [Accepted: 07/31/2013] [Indexed: 01/28/2023]
Abstract
The unique ability of Sox2 to cooperate with Oct4 at selective binding sites in the genome is critical for reprogramming somatic cells into induced pluripotent stem cells (iPSCs). We have recently demonstrated that Sox17 can be converted into a reprogramming factor by alteration of a single amino acid (Sox17EK) within its DNA binding HMG domain. Here we expanded this study by introducing analogous mutations to 10 other Sox proteins and interrogated the role of N-and C-termini on the reprogramming efficiency. We found that point-mutated Sox7 and Sox17 can convert human and mouse fibroblasts into iPSCs, but Sox4, Sox5, Sox6, Sox8, Sox9, Sox11, Sox12, Sox13, and Sox18 cannot. Next we studied regions outside the HMG domain and found that the C-terminal transactivation domain of Sox17 and Sox7 enhances the potency of Sox2 in iPSC assays and confers weak reprogramming potential to the otherwise inactive Sox4EK and Sox18EK proteins. These results suggest that the glutamate (E) to lysine (K) mutation in the HMG domain is necessary but insufficient to swap the function of Sox factors. Moreover, the HMG domain alone fused to the VP16 transactivation domain is able to induce reprogramming, albeit at low efficiency. By molecular dissection of the C-terminus of Sox17, we found that the β-catenin interaction region contributes to the enhanced reprogramming efficiency of Sox17EK. To mechanistically understand the enhanced reprogramming potential of Sox17EK, we analyzed ChIP-sequencing and expression data and identified a subset of candidate genes specifically regulated by Sox17EK and not by Sox2.
Collapse
Affiliation(s)
- Irene Aksoy
- Stem Cell and Developmental biology, Genome Institute of Singapore, Singapore, Singapore
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Chatterjee S, Sivakamasundari V, Yap SP, Kraus P, Kumar V, Xing X, Lim SL, Sng J, Prabhakar S, Lufkin T. In vivo genome-wide analysis of multiple tissues identifies gene regulatory networks, novel functions and downstream regulatory genes for Bapx1 and its co-regulation with Sox9 in the mammalian vertebral column. BMC Genomics 2014; 15:1072. [PMID: 25480362 PMCID: PMC4302147 DOI: 10.1186/1471-2164-15-1072] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 11/27/2014] [Indexed: 12/30/2022] Open
Abstract
Background Vertebrate organogenesis is a highly complex process involving sequential cascades of transcription factor activation or repression. Interestingly a single developmental control gene can occasionally be essential for the morphogenesis and differentiation of tissues and organs arising from vastly disparate embryological lineages. Results Here we elucidated the role of the mammalian homeobox gene Bapx1 during the embryogenesis of five distinct organs at E12.5 - vertebral column, spleen, gut, forelimb and hindlimb - using expression profiling of sorted wildtype and mutant cells combined with genome wide binding site analysis. Furthermore we analyzed the development of the vertebral column at the molecular level by combining transcriptional profiling and genome wide binding data for Bapx1 with similarly generated data sets for Sox9 to assemble a detailed gene regulatory network revealing genes previously not reported to be controlled by either of these two transcription factors. Conclusions The gene regulatory network appears to control cell fate decisions and morphogenesis in the vertebral column along with the prevention of premature chondrocyte differentiation thus providing a detailed molecular view of vertebral column development. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1072) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Thomas Lufkin
- Department of Biology, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA.
| |
Collapse
|
13
|
Kraus P, Winata CL, Lufkin T. BAC transgenic zebrafish for transcriptional promoter and enhancer studies. Methods Mol Biol 2014; 1227:245-58. [PMID: 25239750 DOI: 10.1007/978-1-4939-1652-8_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
With the advent of BAC recombineering techniques, transcriptional promoter and enhancer isolation studies have become much more feasible in zebrafish than in mouse given the easy access to large numbers of fertilized zebrafish eggs and offspring in general, the easy to follow ex-utero development of zebrafish, an overall less skill demand and a more cost-effective technique. Here we provide guidelines for the generation of BAC recombineering-based transgenic zebrafish for DNA transcriptional promoter and enhancer identification studies as well as protocols for their analysis, which have been successfully applied in our laboratories many times. BAC recombineering in zebrafish allows for economical functional genomics studies, for example by integrating developmental biology with comparative genomics approaches to validate potential enhancer elements of vertebrate transcription factors.
Collapse
Affiliation(s)
- Petra Kraus
- Department of Biology, Clarkson University, 8 Clarkson Avenue, Potsdam, NY, 13699, USA
| | | | | |
Collapse
|
14
|
Kraus P, V S, Yu HB, Xing X, Lim SL, Adler T, Pimentel JAA, Becker L, Bohla A, Garrett L, Hans W, Hölter SM, Janas E, Moreth K, Prehn C, Puk O, Rathkolb B, Rozman J, Adamski J, Bekeredjian R, Busch DH, Graw J, Klingenspor M, Klopstock T, Neff F, Ollert M, Stoeger T, Yildrim AÖ, Eickelberg O, Wolf E, Wurst W, Fuchs H, Gailus-Durner V, de Angelis MH, Lufkin T, Stanton LW. Pleiotropic functions for transcription factor zscan10. PLoS One 2014; 9:e104568. [PMID: 25111779 PMCID: PMC4128777 DOI: 10.1371/journal.pone.0104568] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 07/12/2014] [Indexed: 12/17/2022] Open
Abstract
The transcription factor Zscan10 had been attributed a role as a pluripotency factor in embryonic stem cells based on its interaction with Oct4 and Sox2 in in vitro assays. Here we suggest a potential role of Zscan10 in controlling progenitor cell populations in vivo. Mice homozygous for a Zscan10 mutation exhibit reduced weight, mild hypoplasia in the spleen, heart and long bones and phenocopy an eye malformation previously described for Sox2 hypomorphs. Phenotypic abnormalities are supported by the nature of Zscan10 expression in midgestation embryos and adults suggesting a role for Zscan10 in either maintaining progenitor cell subpopulation or impacting on fate choice decisions thereof.
Collapse
Affiliation(s)
- Petra Kraus
- Stem Cell and Developmental Biology, Genome Institute of Singapore, Singapore, Singapore
- Department of Biology, Clarkson University, Potsdam, New York, United States of America
| | - Sivakamasundari V
- Stem Cell and Developmental Biology, Genome Institute of Singapore, Singapore, Singapore
| | - Hong Bing Yu
- Stem Cell and Developmental Biology, Genome Institute of Singapore, Singapore, Singapore
| | - Xing Xing
- Stem Cell and Developmental Biology, Genome Institute of Singapore, Singapore, Singapore
| | - Siew Lan Lim
- Stem Cell and Developmental Biology, Genome Institute of Singapore, Singapore, Singapore
| | - Thure Adler
- German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Juan Antonio Aguilar Pimentel
- German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Klinikum rechts der Isar der Technischen Universität München, Klinik und Poliklinik für Dermatologie und Allergologie am Biederstein, Munich, Germany
| | - Lore Becker
- German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Alexander Bohla
- German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Lillian Garrett
- German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Wolfgang Hans
- German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Sabine M. Hölter
- German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Eva Janas
- German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Kristin Moreth
- German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Cornelia Prehn
- German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Oliver Puk
- German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Birgit Rathkolb
- German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Jan Rozman
- German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Jerzy Adamski
- German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Raffi Bekeredjian
- German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Department of Medicine III, Division of Cardiology, University of Heidelberg, Heidelberg, Germany
| | - Dirk H. Busch
- German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Medical Microbiology, Immunology, and Hygiene, Technische Universität München, Munich, Germany
| | - Jochen Graw
- German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Martin Klingenspor
- German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Molecular Nutritional Medicine, Else Kröner-Fresenius Center, Technische Universität München, Freising-Weihenstephan, Germany
| | - Thomas Klopstock
- German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Department of Neurology, Friedrich-Baur-Institut, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Frauke Neff
- German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Markus Ollert
- German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Klinikum rechts der Isar der Technischen Universität München, Klinik und Poliklinik für Dermatologie und Allergologie am Biederstein, Munich, Germany
| | - Tobias Stoeger
- German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Ali Önder Yildrim
- German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Oliver Eickelberg
- German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Eckhard Wolf
- German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Wolfgang Wurst
- German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Chair of Developmental Biology, Technische Universität München, Freising-Weihenstephan, Germany
- Max Planck Institute of Psychiatry, Munich, Germany
- Deutsches Institut für Neurodegenerative Erkrankungen Site Munich, Munich, Germany
- Munich Cluster for Systems Neurology, Munich, Germany
| | - Helmut Fuchs
- German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Valérie Gailus-Durner
- German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Martin Hrabě de Angelis
- German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Chair of Experimental Genetics, Center of Life and Food Sciences Weihenstephan, Technische Universität München, Freising-Weihenstephan, Germany
- Member of German Center for Diabetes Research, Neuherberg, Germany
| | - Thomas Lufkin
- Stem Cell and Developmental Biology, Genome Institute of Singapore, Singapore, Singapore
- Department of Biology, Clarkson University, Potsdam, New York, United States of America
| | - Lawrence W. Stanton
- Stem Cell and Developmental Biology, Genome Institute of Singapore, Singapore, Singapore
- * E-mail:
| |
Collapse
|
15
|
Kraus P, Sivakamasundari V, Xing X, Lufkin T. Generating mouse lines for lineage tracing and knockout studies. Methods Mol Biol 2014; 1194:37-62. [PMID: 25064097 DOI: 10.1007/978-1-4939-1215-5_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In 2007 Capecchi, Evans, and Smithies received the Nobel Prize in recognition for discovering the principles for introducing specific gene modifications in mice via embryonic stem cells, a technology, which has revolutionized the field of biomedical science allowing for the generation of genetically engineered animals. Here we describe detailed protocols based on and developed from these ground-breaking discoveries, allowing for the modification of genes not only to create mutations to study gene function but additionally to modify genes with fluorescent markers, thus permitting the isolation of specific rare wild-type and mutant cell types for further detailed analysis at the biochemical, pathological, and genomic levels.
Collapse
Affiliation(s)
- Petra Kraus
- Department of Biology, Clarkson University, Potsdam, 13699-5808, USA
| | | | | | | |
Collapse
|
16
|
A conditional mouse line for lineage tracing of Sox9 loss-of-function cells using enhanced green fluorescent protein. Biotechnol Lett 2013; 35:1991-6. [PMID: 23907671 DOI: 10.1007/s10529-013-1303-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 07/10/2013] [Indexed: 10/26/2022]
Abstract
Traditionally, conditional knockout studies in mouse have utilized the Cre or Flpe technology to activate the expression of reporter genes such as lacZ or PLAP. Employing these reporter genes, however, requires tissue fixation. To make way for downstream in vivo or in vitro applications, we have inserted enhanced green fluorescent protein (EGFP) into the endogenous Sox9 locus and generated a novel conditional Sox9 null allele, by flanking the entire Sox9 coding region with loxP sites and inserting an EGFP reporter gene into the 3'-UTR allowing for EGFP to be expressed upon Sox9 loss of function yet under the control of the endogenous Sox9 promoter. Mating this new allele to any Cre-expressing line, the fate of Sox9 null cells can be traced in the cell type of interest in vivo or in vitro after fluorescence-activated cell sorting.
Collapse
|
17
|
Kraus P, Sivakamasundari V, Lim SL, Xing X, Lipovich L, Lufkin T. Making sense of Dlx1 antisense RNA. Dev Biol 2013; 376:224-35. [PMID: 23415800 DOI: 10.1016/j.ydbio.2013.01.035] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 01/27/2013] [Accepted: 01/29/2013] [Indexed: 12/13/2022]
Abstract
Long non-coding RNAs (lncRNAs) have been recently recognized as a major class of regulators in mammalian systems. LncRNAs function by diverse and heterogeneous mechanisms in gene regulation, and are key contributors to development, neurological disorders, and cancer. This emerging importance of lncRNAs, along with recent reports of a functional lncRNA encoded by the mouse Dlx5-Dlx6 locus, led us to interrogate the biological significance of another distal-less antisense lncRNA, the previously uncharacterized Dlx1 antisense (Dlx1as) transcript. We have functionally ablated this antisense RNA via a highly customized gene targeting approach in vivo. Mice devoid of Dlx1as RNA are viable and fertile, and display a mild skeletal and neurological phenotype reminiscent of a Dlx1 gain-of function phenotype, suggesting a role for this non-coding antisense RNA in modulating Dlx1 transcript levels and stability. The reciprocal relationship between Dlx1as and Dlx1 places this sense-antisense pair into a growing class of mammalian lncRNA-mRNA pairs characterized by inverse regulation.
Collapse
Affiliation(s)
- Petra Kraus
- Stem Cell and Developmental Biology, Genome Institute of Singapore, Singapore 138672, Singapore
| | | | | | | | | | | |
Collapse
|
18
|
Sivakamasundari V, Chan HY, Yap SP, Xing X, Kraus P, Lufkin T. New Bapx1(Cre-EGFP) mouse lines for lineage tracing and conditional knockout studies. Genesis 2012; 50:375-83. [PMID: 21913311 DOI: 10.1002/dvg.20802] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 08/23/2011] [Accepted: 08/31/2011] [Indexed: 11/10/2022]
Abstract
To gain insight into the roles of various genes in development and to circumvent embryonic lethality that hinders genetic studies, lineage tracing and conditional knockout techniques have been widely performed on mice using the increasing numbers of gene-targeted Cre mouse lines. Employing the internal ribosome entry site (IRES) and the 2A peptide multicistronic expression strategies, we report two new Bapx1 mouse lines with functional Bapx1 whereby Cre and enhanced green fluorescence protein (EGFP) are expressed discretely under the control of the Bapx1 promoter. These mouse lines, when mated with the Rosa26R-lacZ reporter line, can be used to trace the lineage of Bapx1-expressing cells whereas stage-specific, spatial expression of Bapx1 can be visualized by the EGFP fluorescence. In addition, both of our Bapx1(Cre-EGFP) mouse lines can be used to enrich for Bapx1-specific cells and also serve as effective conditional knockout tools to investigate gene functions in the skeleton and/or visceral organs.
Collapse
Affiliation(s)
- V Sivakamasundari
- Stem Cell and Developmental Biology, Genome Institute of Singapore, Singapore 138672
| | | | | | | | | | | |
Collapse
|
19
|
Comparison of IRES and F2A-based locus-specific multicistronic expression in stable mouse lines. PLoS One 2011; 6:e28885. [PMID: 22216134 PMCID: PMC3244433 DOI: 10.1371/journal.pone.0028885] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 11/16/2011] [Indexed: 12/24/2022] Open
Abstract
Efficient and stoichiometric expression of genes concatenated by bi- or multi-cistronic vectors has become an invaluable tool not only in basic biology to track and visualize proteins in vivo, but also for vaccine development and in the clinics for gene therapy. To adequately compare, in vivo, the effectiveness of two of the currently popular co-expression strategies - the internal ribosome entry site (IRES) derived from the picornavirus and the 2A peptide from the foot-and-mouth disease virus (FDMV) (F2A), we analyzed two locus-specific knock-in mouse lines co-expressing SRY-box containing gene 9 (Sox9) and enhanced green fluorescent protein (EGFP) linked by the IRES (Sox9IRES-EGFP) or the F2A (Sox9F2A-EGFP) sequence. Both the constructs expressed Sox9 and EGFP proteins in the appropriate Sox9 expression domains, with the IRES construct expressing reduced levels of EGFP compared to that of the F2A. The latter, on the other hand, produced about 42.2% Sox9-EGFP fusion protein, reflecting an inefficient ribosome ‘skipping’ mechanism. To investigate if the discrepancy in the ‘skipping’ process was locus-dependent, we further analyzed the FLAG3-Bapx1F2A-EGFP mouse line and found similar levels of fusion protein being produced. To assess if EGFP was hindering the ‘skipping’ mechanism, we examined another mouse line co-expressing Bagpipe homeobox gene 1 homolog (Bapx1), Cre recombinase and EGFP (Bapx1F2A-Cre-F2A-EGFP). While the ‘skipping’ was highly efficient between Bapx1 and Cre, the ‘skipping’ between Cre and EGFP was highly inefficient. We have thus demonstrated in our comparison study that the efficient and close to equivalent expression of genes linked by F2A is achievable in stable mouse lines, but the EGFP reporter may cause undesirable inhibition of the ‘skipping’ at the F2A sequence. Hence, the use of other reporter genes should be explored when utilizing F2A peptides.
Collapse
|
20
|
Lee WJ, Kraus P, Lufkin T. Endogenous tagging of the murine transcription factor Sox5 with hemaglutinin for functional studies. Transgenic Res 2011; 21:293-301. [PMID: 21732189 DOI: 10.1007/s11248-011-9531-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Accepted: 06/13/2011] [Indexed: 01/21/2023]
Abstract
Gene expression is usually studied at the transcript level rather than at the protein level due to the lack of a specific and sensitive antibody. A way to overcome this is to fuse to the protein of interest an immunoreactive tag that has well-characterized antibodies. This epitope tagging approach is often used for in vitro experiments but for in vivo studies, the success rate of protein tagging has not been extensively analyzed and our study seeks to cover the void. A small epitope, hemaglutinin derived from the influenza virus was used to tag a transcription factor, Sox5 at the N-terminal via homologous recombination in the mouse. Sox5 is part of the Sry-related high-mobility-group box gene family and plays multiple roles in essential biological processes. Understanding of its molecular function in relation to its biological roles remains incomplete. In our study, we show that the longer isoform of Sox5 can be tagged endogenously with hemaglutinin without affecting its biological function in vivo. The tagged protein is easily and specifically detected with an anti-hemaglutinin antibody using immunohistochemistry with its expression matching the endogenous expression of Sox5. Immunoprecipitation of Sox5 was also carried out successfully using an anti-hemaglutinin antibody. The transgenic line generated from this study is predicted to be useful for future experiments such as co-immunoprecipitation and chromatin immunoprecipitation, allowing the further understanding of Sox5. Lastly, this approach can be easily employed for the investigation of other transcription factors and proteins in vivo to overcome technical limitations such as antibody cross-reactivity and to perform isoform-specific studies.
Collapse
Affiliation(s)
- Wenqing Jean Lee
- Stem Cell and Developmental Biology, Genome Institute of Singapore, 60 Biopolis Street, Singapore, 138672, Singapore
| | | | | |
Collapse
|
21
|
Yap SP, Xing X, Kraus P, Sivakamasundari V, Chan HY, Lufkin T. Generation of mice with a novel conditional null allele of the Sox9 gene. Biotechnol Lett 2011; 33:1551-8. [PMID: 21484342 DOI: 10.1007/s10529-011-0608-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 03/29/2011] [Indexed: 11/26/2022]
Abstract
Sox9 is expressed in multiple tissues during mouse development and adulthood. Mutations in the Sox9 gene or changes in expression levels can be attributed to many congenital diseases. Heterozygous loss-of-function mutations in the human SOX9 gene cause Campomelic dysplasia, a semi-lethal skeletal malformation syndrome. Disruption of Sox9 by conventional gene targeting leads to perinatal lethality in heterozygous mice, hence hampering the feasibility to obtain the homozygous Sox9 null mice for in vivo functional studies. In this study, we generated a conditional allele of Sox9 (Sox9 ( tm4.Tlu )) by flanking exon 1 with loxP sites. Homozygous mice for the Sox9 ( tm4.Tlu ) allele (Sox9 ( flox/flox )) are viable, fertile and indistinguishable from wildtype (WT) mice, indicating that the Sox9 ( tm4.Tlu ) allele is a fully functional Sox9 allele. Furthermore, we demonstrated that Cre-mediated recombination using a Col2a1-Cre line resulted in specific ablation of Sox9 activity in cartilage tissues.
Collapse
Affiliation(s)
- Sook Peng Yap
- Stem Cell and Developmental Biology, Genome Institute of Singapore, 60 Biopolis Street, Singapore.
| | | | | | | | | | | |
Collapse
|