1
|
Saadi AJ, de Oliveira AL, Kocot KM, Schwaha T. Genomic and transcriptomic survey of bryozoan Hox and ParaHox genes with emphasis on phylactolaemate bryozoans. BMC Genomics 2023; 24:711. [PMID: 38001438 PMCID: PMC10675955 DOI: 10.1186/s12864-023-09826-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/22/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND Bryozoans are mostly sessile aquatic colonial invertebrates belonging to the clade Lophotrochozoa, which unites many protostome bilaterian phyla such as molluscs, annelids and brachiopods. While Hox and ParaHox genes have been extensively studied in various lophotrochozoan lineages, investigations on Hox and ParaHox gene complements in bryozoans are scarce. RESULTS Herein, we present the most comprehensive survey of Hox and ParaHox gene complements in bryozoans using four genomes and 35 transcriptomes representing all bryozoan clades: Cheilostomata, Ctenostomata, Cyclostomata and Phylactolaemata. Using similarity searches, phylogenetic analyses and detailed manual curation, we have identified five Hox genes in bryozoans (pb, Dfd, Lox5, Lox4 and Post2) and one ParaHox gene (Cdx). Interestingly, we observed lineage-specific duplication of certain Hox and ParaHox genes (Dfd, Lox5 and Cdx) in some bryozoan lineages. CONCLUSIONS The bryozoan Hox cluster does not retain the ancestral lophotrochozoan condition but appears relatively simple (includes only five genes) and broken into two genomic regions, characterized by the loss and duplication of serval genes. Importantly, bryozoans share the lack of two Hox genes (Post1 and Scr) with their proposed sister-taxon, Phoronida, which suggests that those genes were missing in the most common ancestor of bryozoans and phoronids.
Collapse
Affiliation(s)
- Ahmed J Saadi
- Department of Evolutionary Biology, Unit for Integrative Zoology, University of Vienna, Schlachthausgasse 43, Vienna, A-1030, Austria.
| | - André Luiz de Oliveira
- Department of Symbiosis, Max-Planck-Institute for Marine Microbiology, Celsiustraße,1, D-28359, Bremen, Germany
| | - Kevin M Kocot
- Department of Biological Sciences and Alabama Museum of Natural History, University of Alabama, Tuscaloosa, Alabama, 35487, USA
| | - Thomas Schwaha
- Department of Evolutionary Biology, Unit for Integrative Zoology, University of Vienna, Schlachthausgasse 43, Vienna, A-1030, Austria
| |
Collapse
|
2
|
Song H, Wang Y, Shao H, Li Z, Hu P, Yap-Chiongco MK, Shi P, Zhang T, Li C, Wang Y, Ma P, Vinther J, Wang H, Kocot KM. Scaphopoda is the sister taxon to Bivalvia: Evidence of ancient incomplete lineage sorting. Proc Natl Acad Sci U S A 2023; 120:e2302361120. [PMID: 37738291 PMCID: PMC10556646 DOI: 10.1073/pnas.2302361120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 08/18/2023] [Indexed: 09/24/2023] Open
Abstract
The almost simultaneous emergence of major animal phyla during the early Cambrian shaped modern animal biodiversity. Reconstructing evolutionary relationships among such closely spaced branches in the animal tree of life has proven to be a major challenge, hindering understanding of early animal evolution and the fossil record. This is particularly true in the species-rich and highly varied Mollusca where dramatic inconsistency among paleontological, morphological, and molecular evidence has led to a long-standing debate about the group's phylogeny and the nature of dozens of enigmatic fossil taxa. A critical step needed to overcome this issue is to supplement available genomic data, which is plentiful for well-studied lineages, with genomes from rare but key lineages, such as Scaphopoda. Here, by presenting chromosome-level genomes from both extant scaphopod orders and leveraging complete genomes spanning Mollusca, we provide strong support for Scaphopoda as the sister taxon of Bivalvia, revitalizing the morphology-based Diasoma hypothesis originally proposed 50 years ago. Our molecular clock analysis confidently dates the split between Bivalvia and Scaphopoda at ~520 Ma, prompting a reinterpretation of controversial laterally compressed Early Cambrian fossils, including Anabarella, Watsonella, and Mellopegma, as stem diasomes. Moreover, we show that incongruence in the phylogenetic placement of Scaphopoda in previous phylogenomic studies was due to ancient incomplete lineage sorting (ILS) that occurred during the rapid radiation of Conchifera. Our findings highlight the need to consider ILS as a potential source of error in deep phylogeny reconstruction, especially in the context of the unique nature of the Cambrian Explosion.
Collapse
Affiliation(s)
- Hao Song
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao266237, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Yunan Wang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao266071, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Haojing Shao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen518000, China
| | - Zhuoqing Li
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao266071, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Pinli Hu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen518000, China
| | | | - Pu Shi
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao266071, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Tao Zhang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao266237, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Cui Li
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao266071, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Yiguan Wang
- Institute of Ecology and Evolution, University of Edinburgh, EdinburghEH9 3FL, United Kingdom
| | - Peizhen Ma
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao266071, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Jakob Vinther
- School of Biological Sciences, University of Bristol, BristolBS8 1TQ, United Kingdom
- School of Earth Sciences, University of Bristol, BristolBS8 1TQ, United Kingdom
| | - Haiyan Wang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao266237, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Kevin M. Kocot
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL35487
- Alabama Museum of Natural History, University of Alabama, Tuscaloosa, AL35487
| |
Collapse
|
3
|
High-Density Genetic Linkage Map of the Southern Blue-ringed Octopus (Octopodidae: Hapalochlaena maculosa). DIVERSITY 2022. [DOI: 10.3390/d14121068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Genetic linkage maps provide a useful resource for non-model genomes and can aid in genome reassembly to form more contiguous pseudo-chromosomes. We present the first linkage map of any cephalopod, H. maculosa, composed of 47 linkage groups (LG). A total of 2166 single nucleotide polymorphisms and 2455 presence–absence variant loci were utilised by Lep-Map3 in linkage map construction. The map length spans 2016.62 cM with an average marker distance of 0.85 cM. Integration of the recent H. maculosa genome allowed 1151 scaffolds comprising 34% of the total genomic sequence to be orientated and/or placed using 1278 markers across all 47 LG. The linkage map generated provides a new perspective on HOX gene distribution in octopods. In the H. maculosa linkage map three (SCR, LOX4 and POST1) of six identified HOX genes (HOX1/LAB, SCR, LOX2, LOX4, LOX5, POST1) were located within the same LG (LG 9). The generation of a linkage map for H. maculosa has provided a valuable resource for understanding the evolution of cephalopod genomes and will provide a base for future work.
Collapse
|
4
|
Wei M, Qin Z, Kong D, Liu D, Zheng Q, Bai S, Zhang Z, Ma Y. Echiuran Hox genes provide new insights into the correspondence between Hox subcluster organization and collinearity pattern. Proc Biol Sci 2022; 289:20220705. [PMID: 36264643 PMCID: PMC9449475 DOI: 10.1098/rspb.2022.0705] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 07/29/2022] [Indexed: 09/16/2023] Open
Abstract
In many bilaterians, Hox genes are generally clustered along the chromosomes and expressed in spatial and temporal order. In vertebrates, the expression of Hox genes follows a whole-cluster spatio-temporal collinearity (WSTC) pattern, whereas in some invertebrates the expression of Hox genes exhibits a subcluster-level spatio-temporal collinearity pattern. In bilaterians, the diversity of collinearity patterns and the cause of collinearity differences in Hox gene expression remain poorly understood. Here, we investigate genomic organization and expression pattern of Hox genes in the echiuran worm Urechis unicinctus (Annelida, Echiura). Urechis unicinctus has a split cluster with four subclusters divided by non-Hox genes: first subcluster (Hox1 and Hox2), second subcluster (Hox3), third subcluster (Hox4, Hox5, Lox5, Antp and Lox4), fourth subcluster (Lox2 and Post2). The expression of U. unicinctus Hox genes shows a subcluster-based whole-cluster spatio-temporal collinearity (S-WSTC) pattern: the anterior-most genes in each subcluster are activated in a spatially and temporally colinear manner (reminiscent of WSTC), with the subsequent genes in each subcluster then being very similar to their respective anterior-most subcluster gene. Combining genomic organization and expression profiles of Hox genes in different invertebrate lineages, we propose that the spatio-temporal collinearity of invertebrate Hox is subcluster-based.
Collapse
Affiliation(s)
- Maokai Wei
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Zhenkui Qin
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Dexu Kong
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Danwen Liu
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Qiaojun Zheng
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Shumiao Bai
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Zhifeng Zhang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, People's Republic of China
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, People's Republic of China
| | - Yubin Ma
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, People's Republic of China
| |
Collapse
|
5
|
Hombría JCG, García-Ferrés M, Sánchez-Higueras C. Anterior Hox Genes and the Process of Cephalization. Front Cell Dev Biol 2021; 9:718175. [PMID: 34422836 PMCID: PMC8374599 DOI: 10.3389/fcell.2021.718175] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/16/2021] [Indexed: 11/13/2022] Open
Abstract
During evolution, bilateral animals have experienced a progressive process of cephalization with the anterior concentration of nervous tissue, sensory organs and the appearance of dedicated feeding structures surrounding the mouth. Cephalization has been achieved by the specialization of the unsegmented anterior end of the body (the acron) and the sequential recruitment to the head of adjacent anterior segments. Here we review the key developmental contribution of Hox1-5 genes to the formation of cephalic structures in vertebrates and arthropods and discuss how this evolved. The appearance of Hox cephalic genes preceded the evolution of a highly specialized head in both groups, indicating that Hox gene involvement in the control of cephalic structures was acquired independently during the evolution of vertebrates and invertebrates to regulate the genes required for head innovation.
Collapse
Affiliation(s)
- James C-G Hombría
- Centro Andaluz de Biología del Desarrollo (Consejo Superior de Investigaciones Científicas/Junta de Andalucía/Universidad Pablo de Olavide), Seville, Spain
| | - Mar García-Ferrés
- Centro Andaluz de Biología del Desarrollo (Consejo Superior de Investigaciones Científicas/Junta de Andalucía/Universidad Pablo de Olavide), Seville, Spain
| | - Carlos Sánchez-Higueras
- Centro Andaluz de Biología del Desarrollo (Consejo Superior de Investigaciones Científicas/Junta de Andalucía/Universidad Pablo de Olavide), Seville, Spain
| |
Collapse
|
6
|
Yang Z, Zhang L, Hu J, Wang J, Bao Z, Wang S. The evo-devo of molluscs: Insights from a genomic perspective. Evol Dev 2020; 22:409-424. [PMID: 32291964 DOI: 10.1111/ede.12336] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Molluscs represent one of ancient and evolutionarily most successful groups of marine invertebrates, with a tremendous diversity of morphology, behavior, and lifestyle. Molluscs are excellent subjects for evo-devo studies; however, understanding of the evo-devo of molluscs has been largely hampered by incomplete fossil records and limited molecular data. Recent advancement of genomics and other technologies has greatly fueled the molluscan "evo-devo" field, and decoding of several molluscan genomes provides unprecedented insights into molluscan biology and evolution. Here, we review the recent progress of molluscan genome sequencing as well as novel insights gained from their genomes, by emphasizing how molluscan genomics enhances our understanding of the evo-devo of molluscs.
Collapse
Affiliation(s)
- Zhihui Yang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Lingling Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jingjie Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Jing Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Shi Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,The Sars-Fang Centre, Ocean University of China, Qingdao, China
| |
Collapse
|
7
|
Jattiot R, Fara E, Brayard A, Urdy S, Goudemand N. Learning from beautiful monsters: phylogenetic and morphogenetic implications of left-right asymmetry in ammonoid shells. BMC Evol Biol 2019; 19:210. [PMID: 31722660 PMCID: PMC6854895 DOI: 10.1186/s12862-019-1538-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 10/28/2019] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Many pathologies that modify the shell geometry and ornamentation of ammonoids are known from the fossil record. Since they may reflect the developmental response of the organism to a perturbation (usually a sublethal injury), their study is essential for exploring the developmental mechanisms of these extinct animals. Ammonoid pathologies are also useful to assess the value of some morphological characters used in taxonomy, as well as to improve phylogenetic reconstructions and evolutionary scenarios. RESULTS We report on the discovery of an enigmatic pathological middle Toarcian (Lower Jurassic) ammonoid specimen from southern France, characterized by a pronounced left-right asymmetry in both ornamentation and suture lines. For each side independently, the taxonomic interpretations of ornamentation and suture lines are congruent, suggesting a Hildoceras semipolitum species assignment for the left side and a Brodieia primaria species assignment for the right side. The former exhibits a lateral groove whereas the second displays sinuous ribs. This specimen, together with the few analogous cases reported in the literature, lead us to erect a new forma-type pathology herein called "forma janusa" for specimens displaying a left-right asymmetry in the absence of any clear evidence of injury or parasitism, whereby the two sides match with the regular morphology of two distinct, known species. CONCLUSIONS Since "forma janusa" specimens reflect the underlying developmental plasticity of the ammonoid taxa, we hypothesize that such specimens may also indicate unsuspected phylogenetic closeness between the two displayed taxa and may even reveal a direct ancestor-descendant relationship. This hypothesis is not, as yet, contradicted by the stratigraphical data at hand: in all studied cases the two distinct taxa correspond to contemporaneous or sub-contemporaneous taxa. More generally, the newly described specimen suggests that a hitherto unidentified developmental link may exist between sinuous ribs and lateral grooves. Overall, we recommend an integrative approach for revisiting aberrant individuals that illustrate the intricate links among shell morphogenesis, developmental plasticity and phylogeny.
Collapse
Affiliation(s)
- Romain Jattiot
- Biogéosciences, UMR 6282, CNRS, Université Bourgogne Franche-Comté, 6 boulevard Gabriel, 21000 Dijon, France
| | - Emmanuel Fara
- Biogéosciences, UMR 6282, CNRS, Université Bourgogne Franche-Comté, 6 boulevard Gabriel, 21000 Dijon, France
| | - Arnaud Brayard
- Biogéosciences, UMR 6282, CNRS, Université Bourgogne Franche-Comté, 6 boulevard Gabriel, 21000 Dijon, France
| | - Séverine Urdy
- Univ. Lyon, ENS de Lyon, CNRS, Université Claude Bernard Lyon 1, Institut de Génomique Fonctionnelle de Lyon, UMR 5242, 46 allée d’Italie, F-69364 Lyon Cedex 07, France
| | - Nicolas Goudemand
- Univ. Lyon, ENS de Lyon, CNRS, Université Claude Bernard Lyon 1, Institut de Génomique Fonctionnelle de Lyon, UMR 5242, 46 allée d’Italie, F-69364 Lyon Cedex 07, France
| |
Collapse
|
8
|
Histone Methylation Participates in Gene Expression Control during the Early Development of the Pacific Oyster Crassostrea gigas. Genes (Basel) 2019; 10:genes10090695. [PMID: 31509985 PMCID: PMC6771004 DOI: 10.3390/genes10090695] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/30/2019] [Accepted: 09/06/2019] [Indexed: 12/20/2022] Open
Abstract
Histone methylation patterns are important epigenetic regulators of mammalian development, notably through stem cell identity maintenance by chromatin remodeling and transcriptional control of pluripotency genes. But, the implications of histone marks are poorly understood in distant groups outside vertebrates and ecdysozoan models. However, the development of the Pacific oyster Crassostrea gigas is under the strong epigenetic influence of DNA methylation, and Jumonji histone-demethylase orthologues are highly expressed during C. gigas early life. This suggests a physiological relevance of histone methylation regulation in oyster development, raising the question of functional conservation of this epigenetic pathway in lophotrochozoan. Quantification of histone methylation using fluorescent ELISAs during oyster early life indicated significant variations in monomethyl histone H3 lysine 4 (H3K4me), an overall decrease in H3K9 mono- and tri-methylations, and in H3K36 methylations, respectively, whereas no significant modification could be detected in H3K27 methylation. Early in vivo treatment with the JmjC-specific inhibitor Methylstat induced hypermethylation of all the examined histone H3 lysines and developmental alterations as revealed by scanning electronic microscopy. Using microarrays, we identified 376 genes that were differentially expressed under methylstat treatment, which expression patterns could discriminate between samples as indicated by principal component analysis. Furthermore, Gene Ontology revealed that these genes were related to processes potentially important for embryonic stages such as binding, cell differentiation and development. These results suggest an important physiological significance of histone methylation in the oyster embryonic and larval life, providing, to our knowledge, the first insights into epigenetic regulation by histone methylation in lophotrochozoan development.
Collapse
|
9
|
Brauchle M, Bilican A, Eyer C, Bailly X, Martínez P, Ladurner P, Bruggmann R, Sprecher SG. Xenacoelomorpha Survey Reveals That All 11 Animal Homeobox Gene Classes Were Present in the First Bilaterians. Genome Biol Evol 2018; 10:2205-2217. [PMID: 30102357 PMCID: PMC6125248 DOI: 10.1093/gbe/evy170] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2018] [Indexed: 11/13/2022] Open
Abstract
Homeodomain transcription factors are involved in many developmental processes across animals and have been linked to body plan evolution. Detailed classifications of these proteins identified 11 distinct classes of homeodomain proteins in animal genomes, each harboring specific sequence composition and protein domains. Although humans contain the full set of classes, Drosophila melanogaster and Caenorhabditis elegans each lack one specific class. Furthermore, representative previous analyses in sponges, ctenophores, and cnidarians could not identify several classes in those nonbilaterian metazoan taxa. Consequently, it is currently unknown when certain homeodomain protein classes first evolved during animal evolution. Here, we investigate representatives of the sister group to all remaining bilaterians, the Xenacoelomorpha. We analyzed three acoel, one nemertodermatid, and one Xenoturbella transcriptomes and identified their expressed homeodomain protein content. We report the identification of representatives of all 11 classes of animal homeodomain transcription factors in Xenacoelomorpha and we describe and classify their homeobox genes relative to the established animal homeodomain protein families. Our findings suggest that the genome of the last common ancestor of bilateria contained the full set of these gene classes, supporting the subsequent diversification of bilaterians.
Collapse
Affiliation(s)
- Michael Brauchle
- Department of Biology, Institute of Zoology, University of Fribourg, Switzerland.,Department of Biology, Institute of Cell Biology, University of Bern, Switzerland.,These authors contributed equally to this work
| | - Adem Bilican
- Department of Biology, Interfaculty Bioinformatics Unit, University of Bern, Switzerland.,These authors contributed equally to this work
| | - Claudia Eyer
- Department of Biology, Interfaculty Bioinformatics Unit, University of Bern, Switzerland
| | - Xavier Bailly
- UPMC-CNRS FR2424, Station Biologique de Roscoff, Roscoff, France
| | - Pedro Martínez
- Departament de Genètica, Universitat de Barcelona, Catalonia, Spain.,Institut Català de Recerca i Estudis Avancats (ICREA), Barcelona, Spain
| | - Peter Ladurner
- Institute of Zoology and Center of Molecular Bioscience Innsbruck, University of Innsbruck, Austria
| | - Rémy Bruggmann
- Department of Biology, Interfaculty Bioinformatics Unit, University of Bern, Switzerland
| | - Simon G Sprecher
- Department of Biology, Institute of Zoology, University of Fribourg, Switzerland
| |
Collapse
|
10
|
Abstract
Lophotrochozoa is a sister taxon of Ecdysozoa in the Protostomia that includes mollusks, annelids, brachiopods, and platyhelminths. Recent studies have clarified the structure, expression, and roles of lophotrochozoan Zic family genes. Zic genes in oligochaete annelid Tubifex tubifex (freshwater sludge worm) and polychaete annelid Capitella teleta (bristle worm) are commonly expressed in a subset of developing brain and mesoderm derivatives. The latter includes the naïve mesoderm and the associated chaetal sacs in each body segment, although the segmentation processes differ between the two species. Furthermore, in brachiopod Terebratalia transversa (lamp shell), Zic is expressed in the anterior ectodermal domains and mesodermal derivatives, including those associated with the chaetal sacs. This result suggests the common involvement of Zic genes in the development of chaetae, a lophotrochozoan novelty acquired in the course of evolution. In addition, the highly simplified lophotrochozoan Dicyema acuticephalum (dicyemid mesozoan, a cephalopod endoparasite), which lost its gut, nervous system, and muscles during evolution, expresses its Zic genes in hermaphroditic gonads, highlighting the role of Zic genes in germ cell development. The role of Zic in head regeneration was revealed in studies on platyhelminth Schmidtea mediterranea (freshwater planarian). Planarian Zic expression was induced in a subpopulation of neoblasts that includes adult pluripotent stem cells. It is needed for head regeneration and production of an anterior signaling center. Suppression of Wnt-β-catenin signaling underlies Zic-mediated head regeneration, reminiscent of Wnt-β-catenin suppression by vertebrate Zic genes. Taken together, studies on the lophotrochozoan Zic genes are essential to understanding not only the roles of these genes in body plan evolution but also the molecular mechanism underlying adult stem cell regulation.
Collapse
|
11
|
Wang S, Zhang J, Jiao W, Li J, Xun X, Sun Y, Guo X, Huan P, Dong B, Zhang L, Hu X, Sun X, Wang J, Zhao C, Wang Y, Wang D, Huang X, Wang R, Lv J, Li Y, Zhang Z, Liu B, Lu W, Hui Y, Liang J, Zhou Z, Hou R, Li X, Liu Y, Li H, Ning X, Lin Y, Zhao L, Xing Q, Dou J, Li Y, Mao J, Guo H, Dou H, Li T, Mu C, Jiang W, Fu Q, Fu X, Miao Y, Liu J, Yu Q, Li R, Liao H, Li X, Kong Y, Jiang Z, Chourrout D, Li R, Bao Z. Scallop genome provides insights into evolution of bilaterian karyotype and development. Nat Ecol Evol 2017; 1:120. [PMID: 28812685 PMCID: PMC10970998 DOI: 10.1038/s41559-017-0120] [Citation(s) in RCA: 266] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 02/16/2017] [Indexed: 12/21/2022]
Abstract
Reconstructing the genomes of bilaterian ancestors is central to our understanding of animal evolution, where knowledge from ancient and/or slow-evolving bilaterian lineages is critical. Here we report a high-quality, chromosome-anchored reference genome for the scallop Patinopecten yessoensis, a bivalve mollusc that has a slow-evolving genome with many ancestral features. Chromosome-based macrosynteny analysis reveals a striking correspondence between the 19 scallop chromosomes and the 17 presumed ancestral bilaterian linkage groups at a level of conservation previously unseen, suggesting that the scallop may have a karyotype close to that of the bilaterian ancestor. Scallop Hox gene expression follows a new mode of subcluster temporal co-linearity that is possibly ancestral and may provide great potential in supporting diverse bilaterian body plans. Transcriptome analysis of scallop mantle eyes finds unexpected diversity in phototransduction cascades and a potentially ancient Pax2/5/8-dependent pathway for noncephalic eyes. The outstanding preservation of ancestral karyotype and developmental control makes the scallop genome a valuable resource for understanding early bilaterian evolution and biology.
Collapse
Affiliation(s)
- Shi Wang
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003 China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Jinbo Zhang
- Novogene Bioinformatics Institute, Beijing, 100083 China
| | - Wenqian Jiao
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003 China
| | - Ji Li
- Novogene Bioinformatics Institute, Beijing, 100083 China
| | - Xiaogang Xun
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003 China
| | - Yan Sun
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003 China
| | - Ximing Guo
- Department of Marine and Coastal Sciences, Haskin Shellfish Research Laboratory, Rutgers University, Port Norris, 08349 New Jersey USA
| | - Pin Huan
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071 China
| | - Bo Dong
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003 China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Lingling Zhang
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003 China
| | - Xiaoli Hu
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003 China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Xiaoqing Sun
- Novogene Bioinformatics Institute, Beijing, 100083 China
| | - Jing Wang
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003 China
| | - Chengtian Zhao
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
| | - Yangfan Wang
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003 China
| | - Dawei Wang
- Novogene Bioinformatics Institute, Beijing, 100083 China
| | - Xiaoting Huang
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003 China
| | - Ruijia Wang
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003 China
| | - Jia Lv
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003 China
| | - Yuli Li
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003 China
| | - Zhifeng Zhang
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003 China
| | - Baozhong Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071 China
| | - Wei Lu
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003 China
| | - Yuanyuan Hui
- Novogene Bioinformatics Institute, Beijing, 100083 China
| | - Jun Liang
- Dalian Zhangzidao Group Co. Ltd, Dalian, 116001 China
| | - Zunchun Zhou
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023 China
| | - Rui Hou
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003 China
| | - Xue Li
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003 China
| | - Yunchao Liu
- Novogene Bioinformatics Institute, Beijing, 100083 China
| | - Hengde Li
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003 China
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture, Chinese Academy of Fishery Sciences, Beijing 100141, China
| | - Xianhui Ning
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003 China
| | - Yu Lin
- Novogene Bioinformatics Institute, Beijing, 100083 China
| | - Liang Zhao
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003 China
| | - Qiang Xing
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003 China
| | - Jinzhuang Dou
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003 China
| | - Yangping Li
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003 China
| | - Junxia Mao
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003 China
| | - Haobing Guo
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003 China
| | - Huaiqian Dou
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003 China
| | - Tianqi Li
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003 China
| | - Chuang Mu
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003 China
| | - Wenkai Jiang
- Novogene Bioinformatics Institute, Beijing, 100083 China
| | - Qiang Fu
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003 China
| | - Xiaoteng Fu
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003 China
| | - Yan Miao
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003 China
| | - Jian Liu
- Novogene Bioinformatics Institute, Beijing, 100083 China
| | - Qian Yu
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003 China
| | - Ruojiao Li
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003 China
| | - Huan Liao
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003 China
| | - Xuan Li
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003 China
| | - Yifan Kong
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003 China
| | - Zhi Jiang
- Novogene Bioinformatics Institute, Beijing, 100083 China
| | - Daniel Chourrout
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, N-5008 Norway
| | - Ruiqiang Li
- Novogene Bioinformatics Institute, Beijing, 100083 China
| | - Zhenmin Bao
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003 China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| |
Collapse
|
12
|
Kulakova MA, Bakalenko NI, Novikova EL. Early mesodermal expression of Hox genes in the polychaete Alitta virens (Annelida, Lophotrochozoa). Dev Genes Evol 2017; 227:69-74. [PMID: 27695997 DOI: 10.1007/s00427-016-0563-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 02/05/2016] [Indexed: 01/25/2023]
Abstract
Hox genes are the key regulators of axial regionalization of bilaterian animals. However, their main function is fulfilled differently in the development of animals from different evolutionary branches. Early patterning of the developing embryos by Hox gene expression in the representatives of protostomes (arthropods, mollusks) starts in the ectodermal cells. On the contrary, the instructive role of the mesoderm in the axial patterning was demonstrated for vertebrates. This makes it difficult to understand if during the axial regionalization of ancestral bilaterians Hox genes first expressed in the developing mesoderm or the ectoderm. To resolve this question, it is necessary to expand the number of models for investigation of the early axial patterning. Here, we show that three Hox genes of the polychaete Alitta virens (formerly Nereis virens, Annelida, Lophotrochozoa)-Hox2, Hox4, and Lox5-are expressed in the mesodermal anlagen of the three future larval chaetigerous segments in spatially colinear manner before the initiation of Hox expression in the larval ectoderm. This is the first evidence of sequential Hox gene expression in the mesoderm of protostomes to date.
Collapse
Affiliation(s)
- Milana A Kulakova
- Department of Embryology, Laboratory of Experimental Embryology, Saint Petersburg State University, Oranienbaumskoe sh., 2, Petergof, Saint Petersburg, Russia
| | - Nadezhda I Bakalenko
- Department of Embryology, Laboratory of Experimental Embryology, Saint Petersburg State University, Oranienbaumskoe sh., 2, Petergof, Saint Petersburg, Russia
| | - Elena L Novikova
- Department of Embryology, Laboratory of Experimental Embryology, Saint Petersburg State University, Oranienbaumskoe sh., 2, Petergof, Saint Petersburg, Russia.
| |
Collapse
|
13
|
Katz PS. Phylogenetic plasticity in the evolution of molluscan neural circuits. Curr Opin Neurobiol 2016; 41:8-16. [PMID: 27455462 DOI: 10.1016/j.conb.2016.07.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 06/17/2016] [Accepted: 07/13/2016] [Indexed: 01/06/2023]
Abstract
Recent research on molluscan nervous systems provides a unique perspective on the evolution of neural circuits. Molluscs evolved large, encephalized nervous systems independently from other phyla. Homologous body-patterning genes were re-specified in molluscs to create a plethora of body plans and nervous system organizations. Octopuses, having the largest brains of any invertebrate, independently evolved a learning circuit similar in organization and function to the mushroom body of insects and the hippocampus of mammals. In gastropods, homologous neurons have been re-specified for different functions. Even species exhibiting similar, possibly homologous behavior have fundamental differences in the connectivity of the neurons underlying that behavior. Thus, molluscan nervous systems provide clear examples of re-purposing of homologous genes and neurons for neural circuits.
Collapse
Affiliation(s)
- Paul S Katz
- Neuroscience Institute, Georgia State University, PO Box 5030, Atlanta, GA 30302-5030, USA.
| |
Collapse
|
14
|
Transcriptomic Analysis of Differentially Expressed Genes During Larval Development of Rapana venosa by Digital Gene Expression Profiling. G3-GENES GENOMES GENETICS 2016; 6:2181-93. [PMID: 27194808 PMCID: PMC4938671 DOI: 10.1534/g3.116.029314] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
During the life cycle of shellfish, larval development, especially metamorphosis, has a vital influence on the dynamics, distribution, and recruitment of natural populations, as well as seed breeding. Rapana venosa, a carnivorous gastropod, is an important commercial shellfish in China, and is an ecological invader in the United States, Argentina, and France. However, information about the mechanism of its early development is still limited, because research in this area has long suffered from a lack of genomic resources. In this study, 15 digital gene expression (DGE) libraries from five developmental stages of R. venosa were constructed and sequenced on the IIIumina Hi-Sequation 2500 platform. Bioinformaticsanalysis identified numerous differentially and specifically expressed genes, which revealed that genes associated with growth, nervous system, digestive system, immune system, and apoptosis participate in important developmental processes. The functional analysis of differentially expressed genes was further implemented by gene ontology, and Kyoto encyclopedia of genes and genomes enrichment. DGE profiling provided a general picture of the transcriptomic activities during the early development of R. venosa, which may provide interesting hints for further study. Our data represent the first comparative transcriptomic information available for the early development of R. venosa, which is a prerequisite for a better understanding of the physiological traits controlling development.
Collapse
|
15
|
Fritsch M, Wollesen T, Wanninger A. Hox and ParaHox gene expression in early body plan patterning of polyplacophoran mollusks. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2016; 326:89-104. [PMID: 27098677 PMCID: PMC4949717 DOI: 10.1002/jez.b.22671] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 02/29/2016] [Indexed: 11/22/2022]
Abstract
Molecular developmental studies of various bilaterians have shown that the identity of the anteroposterior body axis is controlled by Hox and ParaHox genes. Detailed Hox and ParaHox gene expression data are available for conchiferan mollusks, such as gastropods (snails and slugs) and cephalopods (squids and octopuses), whereas information on the putative conchiferan sister group, Aculifera, is still scarce (but see Fritsch et al., 2015 on Hox gene expression in the polyplacophoran Acanthochitona crinita). In contrast to gastropods and cephalopods, the Hox genes in polyplacophorans are expressed in an anteroposterior sequence similar to the condition in annelids and other bilaterians. Here, we present the expression patterns of the Hox genes Lox5, Lox4, and Lox2, together with the ParaHox gene caudal (Cdx) in the polyplacophoran A. crinita. To localize Hox and ParaHox gene transcription products, we also investigated the expression patterns of the genes FMRF and Elav, and the development of the nervous system. Similar to the other Hox genes, all three Acr‐Lox genes are expressed in an anteroposterior sequence. Transcripts of Acr‐Cdx are seemingly present in the forming hindgut at the posterior end. The expression patterns of both the central class Acr‐Lox genes and the Acr‐Cdx gene are strikingly similar to those in annelids and nemerteans. In Polyplacophora, the expression patterns of the Hox and ParaHox genes seem to be evolutionarily highly conserved, while in conchiferan mollusks these genes are co‐opted into novel functions that might have led to evolutionary novelties, at least in gastropods and cephalopods.
Collapse
Affiliation(s)
- Martin Fritsch
- Department of Integrative Zoology, Faculty of Life Sciences, University of Vienna, Vienna, 1090, Austria
| | - Tim Wollesen
- Department of Integrative Zoology, Faculty of Life Sciences, University of Vienna, Vienna, 1090, Austria
| | - Andreas Wanninger
- Department of Integrative Zoology, Faculty of Life Sciences, University of Vienna, Vienna, 1090, Austria
| |
Collapse
|
16
|
Barucca M, Canapa A, Biscotti MA. An Overview of Hox Genes in Lophotrochozoa: Evolution and Functionality. J Dev Biol 2016; 4:jdb4010012. [PMID: 29615580 PMCID: PMC5831810 DOI: 10.3390/jdb4010012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 03/02/2016] [Accepted: 03/12/2016] [Indexed: 11/29/2022] Open
Abstract
Hox genes are regulators of animal embryonic development. Changes in the number and sequence of Hox genes as well as in their expression patterns have been related to the evolution of the body plan. Lophotrochozoa is a clade of Protostomia characterized by several phyla which show a wide morphological diversity. Despite that the works summarized in this review emphasize the fragmentary nature of the data available regarding the presence and expression of Hox genes, they also offer interesting insight into the evolution of the Hox cluster and the role played by Hox genes in several phyla. However, the number of genes involved in the cluster of the lophotrochozoan ancestor is still a question of debate. The data presented here suggest that at least nine genes were present while two other genes, Lox4 and Post-2, may either have been present in the ancestor or may have arisen as a result of duplication in the Brachiopoda-Mollusca-Annelida lineage. Spatial and temporal collinearity is a feature of Hox gene expression which was probably present in the ancestor of deuterostomes and protostomes. However, in Lophotrochozoa, it has been detected in only a few species belonging to Annelida and Mollusca.
Collapse
Affiliation(s)
- Marco Barucca
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy.
| | - Adriana Canapa
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy.
| | - Maria Assunta Biscotti
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy.
| |
Collapse
|
17
|
Hueber SD, Frickey T. Solving Classification Problems for Large Sets of Protein Sequences with the Example of Hox and ParaHox Proteins. J Dev Biol 2016; 4:jdb4010008. [PMID: 29615576 PMCID: PMC5831817 DOI: 10.3390/jdb4010008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 01/25/2016] [Accepted: 01/27/2016] [Indexed: 11/16/2022] Open
Abstract
Phylogenetic methods are key to providing models for how a given protein family evolved. However, these methods run into difficulties when sequence divergence is either too low or too high. Here, we provide a case study of Hox and ParaHox proteins so that additional insights can be gained using a new computational approach to help solve old classification problems. For two (Gsx and Cdx) out of three ParaHox proteins the assignments differ between the currently most established view and four alternative scenarios. We use a non-phylogenetic, pairwise-sequence-similarity-based method to assess which of the previous predictions, if any, are best supported by the sequence-similarity relationships between Hox and ParaHox proteins. The overall sequence-similarities show Gsx to be most similar to Hox2–3, and Cdx to be most similar to Hox4–8. The results indicate that a purely pairwise-sequence-similarity-based approach can provide additional information not only when phylogenetic inference methods have insufficient information to provide reliable classifications (as was shown previously for central Hox proteins), but also when the sequence variation is so high that the resulting phylogenetic reconstructions are likely plagued by long-branch-attraction artifacts.
Collapse
Affiliation(s)
- Stefanie D Hueber
- Department of Biology, University of Konstanz, Konstanz 78464, Germany.
| | - Tancred Frickey
- Department of Biology, University of Konstanz, Konstanz 78464, Germany.
| |
Collapse
|
18
|
Song H, Yu ZL, Sun LN, Gao Y, Zhang T, Wang HY. De novo transcriptome sequencing and analysis of Rapana venosa from six different developmental stages using Hi-seq 2500. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2016; 17:48-57. [PMID: 26845471 DOI: 10.1016/j.cbd.2016.01.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 01/16/2016] [Accepted: 01/17/2016] [Indexed: 11/26/2022]
Abstract
The carnivorous whelk Rapana venosa is regarded as a biological invader with strong ecological fitness in the United States, Argentina, France and other countries. R. venosa may seriously damage bivalve resources. Nonetheless, in China, R. venosa is an important commercial species. Larval development, especially metamorphosis, influences the natural population and industrial breeding. However, there are few studies on the early development of R. venosa, and our understanding is further limited by a lack of genomic information. In this study, de novo sequencing was performed to obtain a comprehensive transcriptome profile during early development. A Hi-seq 2500 sequencing run produced 148,737,902 raw reads that were assembled into 1,137,556 unigenes (average length of 619 nucleotides, of which 49,673 could be annotated). The unigenes were assigned to biological processes and functions after annotation in Gene Ontology, eukaryotic Ortholog Groups and Kyoto Encyclopedia of Genes and Genomes. We also identified 93,196 simple sequence repeats among the unigenes. Six unique sequences associated with neuroendocrine function were analyzed by quantitative real-time PCR. Our data represent the first comprehensive transcriptomic resource for R. venosa. Functional annotation of the unigenes involved in various biological processes could stimulate research on the mechanisms of early development in this species. Understanding the mechanism of early development and metamorphosis would benefit antifouling research and aquaculture of R. venosa.
Collapse
Affiliation(s)
- Hao Song
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Zheng-Lin Yu
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Li-Na Sun
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, People's Republic of China
| | - Yan Gao
- Tianjin bohai sea fisheries research institute, Tianjin 300457, People's Republic of China
| | - Tao Zhang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, People's Republic of China.
| | - Hai-Yan Wang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, People's Republic of China.
| |
Collapse
|
19
|
Fritsch M, Wollesen T, de Oliveira AL, Wanninger A. Unexpected co-linearity of Hox gene expression in an aculiferan mollusk. BMC Evol Biol 2015; 15:151. [PMID: 26243538 PMCID: PMC4524011 DOI: 10.1186/s12862-015-0414-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 06/08/2015] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Mollusca is an extremely diverse animal phylum that includes the aculiferans (worm-like aplacophorans and eight-shelled polyplacophorans) and their sister group, the conchiferans, comprising monoplacophorans, bivalves (clams, mussels), gastropods (snails, slugs), scaphopods (tusk shells) and cephalopods (squids, octopuses). Studies on mollusks have revealed an overall number of 11 Hox genes in seven out of eight molluscan "class"-level taxa, but expression data of key developmental regulators such as homeotic genes are only available for three gastropod and two cephalopod species. These show that Hox genes are involved in the formation of specific features including shell, foot, funnel or tentacles and not in antero-posterior body plan patterning as in most other bilaterian animals. The role of Hox genes in non-conchiferan (i.e., aculiferan) mollusks remains entirely unknown. RESULTS Here we present the first data on the expression of seven Hox genes in apolyplacophoran mollusk, Acanthochitona crinita. In A. crinita the Hox genes Acr-Hox1-5, Hox7 and Post2 are expressed in a co-linear pattern along the antero-posterior axis, but not in molluscan-specific features such as the shell or the foot. The expression pattern is restricted to the post-trochal region and the transcripts are present in ecto-, endo- and mesodermal cell layers. Contrary to the situation in gastropods and cephalopods, we did neither find Hox gene expression in distinct neural subsets of A. crinita, nor in its developing shell plates. CONCLUSIONS Our analysis and comparison with other lophotrochozoans indicate that the basal role of Hox genes is in antero-posterior axis patterning in mollusks, similar to the vast majority of bilaterian animals, and that this role has been conserved in polyplacophorans, while co-option into patterning of evolutionary novelties emerged either at the base of Conchifera or independently in gastropods and cephalopods. These morphological innovations most likely contributed to the evolutionary success of its representatives, as exemplified by, e.g., the wide ecological range and species richness of gastropods.
Collapse
Affiliation(s)
- M Fritsch
- Department of Integrative Zoology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria.
| | - T Wollesen
- Department of Integrative Zoology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria.
| | - A L de Oliveira
- Department of Integrative Zoology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria.
| | - A Wanninger
- Department of Integrative Zoology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria.
| |
Collapse
|