1
|
Parey E, Ortega-Martinez O, Delroisse J, Piovani L, Czarkwiani A, Dylus D, Arya S, Dupont S, Thorndyke M, Larsson T, Johannesson K, Buckley KM, Martinez P, Oliveri P, Marlétaz F. The brittle star genome illuminates the genetic basis of animal appendage regeneration. Nat Ecol Evol 2024; 8:1505-1521. [PMID: 39030276 PMCID: PMC11310086 DOI: 10.1038/s41559-024-02456-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 05/29/2024] [Indexed: 07/21/2024]
Abstract
Species within nearly all extant animal lineages are capable of regenerating body parts. However, it remains unclear whether the gene expression programme controlling regeneration is evolutionarily conserved. Brittle stars are a species-rich class of echinoderms with outstanding regenerative abilities, but investigations into the genetic bases of regeneration in this group have been hindered by the limited genomic resources. Here we report a chromosome-scale genome assembly for the brittle star Amphiura filiformis. We show that the brittle star genome is the most rearranged among echinoderms sequenced so far, featuring a reorganized Hox cluster reminiscent of the rearrangements observed in sea urchins. In addition, we performed an extensive profiling of gene expression during brittle star adult arm regeneration and identified sequential waves of gene expression governing wound healing, proliferation and differentiation. We conducted comparative transcriptomic analyses with other invertebrate and vertebrate models for appendage regeneration and uncovered hundreds of genes with conserved expression dynamics, particularly during the proliferative phase of regeneration. Our findings emphasize the crucial importance of echinoderms to detect long-range expression conservation between vertebrates and classical invertebrate regeneration model systems.
Collapse
Affiliation(s)
- Elise Parey
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London, UK.
| | - Olga Ortega-Martinez
- Tjärnö Marine Laboratory, Department of Marine Sciences, University of Gothenburg, Strömstad, Sweden
| | - Jérôme Delroisse
- Biology of Marine Organisms and Biomimetics Unit, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Laura Piovani
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Anna Czarkwiani
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London, UK
- Technische Universität Dresden, Center for Regenerative Therapies Dresden (CRTD), Dresden, Germany
| | - David Dylus
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London, UK
- Roche Pharmaceutical Research and Early Development (pRED), Cardiovascular and Metabolism, Immunology, Infectious Disease, and Ophthalmology (CMI2O), F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Srishti Arya
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London, UK
- MRC Laboratory of Medical Sciences, Imperial College London, London, UK
| | - Samuel Dupont
- Department of Biology and Environmental Science, University of Gothenburg, Kristineberg Marine Research Station, Fiskebäckskil, Sweden
- IAEA Marine Environment Laboratories, Radioecology Laboratory, Quai Antoine 1er, Monaco
| | - Michael Thorndyke
- Department of Biology and Environmental Science, University of Gothenburg, Kristineberg Marine Research Station, Fiskebäckskil, Sweden
| | - Tomas Larsson
- Department of Cell and Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Kerstin Johannesson
- Tjärnö Marine Laboratory, Department of Marine Sciences, University of Gothenburg, Strömstad, Sweden
| | | | - Pedro Martinez
- Departament de Genètica, Microbiologia, i Estadística, Universitat de Barcelona, Barcelona, Spain
- Institut Català de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Paola Oliveri
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London, UK.
| | - Ferdinand Marlétaz
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London, UK.
| |
Collapse
|
2
|
Perillo M, Sepe RM, Paganos P, Toscano A, Annunziata R. Sea cucumbers: an emerging system in evo-devo. EvoDevo 2024; 15:3. [PMID: 38368336 PMCID: PMC10874539 DOI: 10.1186/s13227-023-00220-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 12/24/2023] [Indexed: 02/19/2024] Open
Abstract
A challenge for evolutionary developmental (evo-devo) biology is to expand the breadth of research organisms used to investigate how animal diversity has evolved through changes in embryonic development. New experimental systems should couple a relevant phylogenetic position with available molecular tools and genomic resources. As a phylum of the sister group to chordates, echinoderms extensively contributed to our knowledge of embryonic patterning, organ development and cell-type evolution. Echinoderms display a variety of larval forms with diverse shapes, making them a suitable group to compare the evolution of embryonic developmental strategies. However, because of the laboratory accessibility and the already available techniques, most studies focus on sea urchins and sea stars mainly. As a comparative approach, the field would benefit from including information on other members of this group, like the sea cucumbers (holothuroids), for which little is known on the molecular basis of their development. Here, we review the spawning and culture methods, the available morphological and molecular information, and the current state of genomic and transcriptomic resources on sea cucumbers. With the goal of making this system accessible to the broader community, we discuss how sea cucumber embryos and larvae can be a powerful system to address the open questions in evo-devo, including understanding the origins of bilaterian structures.
Collapse
Affiliation(s)
- Margherita Perillo
- Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, 7 MBL St., Woods Hole, MA, 02543, USA.
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy.
| | - Rosa Maria Sepe
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Periklis Paganos
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Alfonso Toscano
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | | |
Collapse
|
3
|
Formery L, Peluso P, Kohnle I, Malnick J, Thompson JR, Pitel M, Uhlinger KR, Rokhsar DS, Rank DR, Lowe CJ. Molecular evidence of anteroposterior patterning in adult echinoderms. Nature 2023; 623:555-561. [PMID: 37914929 DOI: 10.1038/s41586-023-06669-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 09/22/2023] [Indexed: 11/03/2023]
Abstract
The origin of the pentaradial body plan of echinoderms from a bilateral ancestor is one of the most enduring zoological puzzles1,2. Because echinoderms are defined by morphological novelty, even the most basic axial comparisons with their bilaterian relatives are problematic. To revisit this classical question, we used conserved anteroposterior axial molecular markers to determine whether the highly derived adult body plan of echinoderms masks underlying patterning similarities with other deuterostomes. We investigated the expression of a suite of conserved transcription factors with well-established roles in the establishment of anteroposterior polarity in deuterostomes3-5 and other bilaterians6-8 using RNA tomography and in situ hybridization in the sea star Patiria miniata. The relative spatial expression of these markers in P. miniata ambulacral ectoderm shows similarity with other deuterostomes, with the midline of each ray representing the most anterior territory and the most lateral parts exhibiting a more posterior identity. Strikingly, there is no ectodermal territory in the sea star that expresses the characteristic bilaterian trunk genetic patterning programme. This finding suggests that from the perspective of ectoderm patterning, echinoderms are mostly head-like animals and provides a developmental rationale for the re-evaluation of the events that led to the evolution of the derived adult body plan of echinoderms.
Collapse
Affiliation(s)
- L Formery
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA.
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA.
| | - P Peluso
- Pacific Biosciences, Menlo Park, CA, USA
| | - I Kohnle
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA
| | - J Malnick
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA
| | - J R Thompson
- School of Biological Sciences, University of Southampton, Southampton, UK
- School of Ocean and Earth Science, University of Southampton, Southampton, UK
| | - M Pitel
- Columbia Equine Hospital, Gresham, OR, USA
| | - K R Uhlinger
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA
| | - D S Rokhsar
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
- Chan Zuckerberg BioHub, San Francisco, CA, USA
- Molecular Genetics Unit, Okinawa Institute of Science and Technology, Onna, Okinawa, Japan
| | - D R Rank
- Pacific Biosciences, Menlo Park, CA, USA
| | - C J Lowe
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA.
- Chan Zuckerberg BioHub, San Francisco, CA, USA.
| |
Collapse
|
4
|
Marlétaz F, Couloux A, Poulain J, Labadie K, Da Silva C, Mangenot S, Noel B, Poustka AJ, Dru P, Pegueroles C, Borra M, Lowe EK, Lhomond G, Besnardeau L, Le Gras S, Ye T, Gavriouchkina D, Russo R, Costa C, Zito F, Anello L, Nicosia A, Ragusa MA, Pascual M, Molina MD, Chessel A, Di Carlo M, Turon X, Copley RR, Exposito JY, Martinez P, Cavalieri V, Ben Tabou de Leon S, Croce J, Oliveri P, Matranga V, Di Bernardo M, Morales J, Cormier P, Geneviève AM, Aury JM, Barbe V, Wincker P, Arnone MI, Gache C, Lepage T. Analysis of the P. lividus sea urchin genome highlights contrasting trends of genomic and regulatory evolution in deuterostomes. CELL GENOMICS 2023; 3:100295. [PMID: 37082140 PMCID: PMC10112332 DOI: 10.1016/j.xgen.2023.100295] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 12/24/2022] [Accepted: 03/06/2023] [Indexed: 04/22/2023]
Abstract
Sea urchins are emblematic models in developmental biology and display several characteristics that set them apart from other deuterostomes. To uncover the genomic cues that may underlie these specificities, we generated a chromosome-scale genome assembly for the sea urchin Paracentrotus lividus and an extensive gene expression and epigenetic profiles of its embryonic development. We found that, unlike vertebrates, sea urchins retained ancestral chromosomal linkages but underwent very fast intrachromosomal gene order mixing. We identified a burst of gene duplication in the echinoid lineage and showed that some of these expanded genes have been recruited in novel structures (water vascular system, Aristotle's lantern, and skeletogenic micromere lineage). Finally, we identified gene-regulatory modules conserved between sea urchins and chordates. Our results suggest that gene-regulatory networks controlling development can be conserved despite extensive gene order rearrangement.
Collapse
Affiliation(s)
- Ferdinand Marlétaz
- Center for Life’s Origin & Evolution, Department of Genetics, Evolution, & Environment, University College London, WC1 6BT London, UK
- Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, Commissariat à l’Énergie Atomique, CNRS, Université Évry, Université Paris-Saclay, 91057 Évry, France
- Genoscope, Institut de Biologie François-Jacob, Commissariat à l’Énergie Atomique (CEA), Université Paris-Saclay, Évry, France
| | - Arnaud Couloux
- Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, Commissariat à l’Énergie Atomique, CNRS, Université Évry, Université Paris-Saclay, 91057 Évry, France
| | - Julie Poulain
- Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, Commissariat à l’Énergie Atomique, CNRS, Université Évry, Université Paris-Saclay, 91057 Évry, France
| | - Karine Labadie
- Genoscope, Institut de Biologie François-Jacob, Commissariat à l’Énergie Atomique (CEA), Université Paris-Saclay, Évry, France
| | - Corinne Da Silva
- Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, Commissariat à l’Énergie Atomique, CNRS, Université Évry, Université Paris-Saclay, 91057 Évry, France
| | - Sophie Mangenot
- Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, Commissariat à l’Énergie Atomique, CNRS, Université Évry, Université Paris-Saclay, 91057 Évry, France
| | - Benjamin Noel
- Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, Commissariat à l’Énergie Atomique, CNRS, Université Évry, Université Paris-Saclay, 91057 Évry, France
| | - Albert J. Poustka
- Evolution and Development Group, Max-Planck-Institut für Molekulare Genetik, 14195 Berlin, Germany
- Dahlem Center for Genome Research and Medical Systems Biology (Environmental and Phylogenomics Group), 12489 Berlin, Germany
| | - Philippe Dru
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Sorbonne Université, CNRS, 06230 Villefranche-sur-Mer, France
| | - Cinta Pegueroles
- Institute for Research on Biodiversity (IRBio), Department of Genetics, Microbiology, and Statistics, University of Barcelona, 08028 Barcelona, Spain
| | - Marco Borra
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Elijah K. Lowe
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Guy Lhomond
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Sorbonne Université, CNRS, 06230 Villefranche-sur-Mer, France
| | - Lydia Besnardeau
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Sorbonne Université, CNRS, 06230 Villefranche-sur-Mer, France
| | - Stéphanie Le Gras
- Plateforme GenomEast, IGBMC, CNRS UMR7104, INSERM U1258, Université de Strasbourg, 67404 Illirch Cedex, France
| | - Tao Ye
- Plateforme GenomEast, IGBMC, CNRS UMR7104, INSERM U1258, Université de Strasbourg, 67404 Illirch Cedex, France
| | - Daria Gavriouchkina
- Molecular Genetics Unit, Okinawa Institute of Science and Technology, 904-0495 Onna-son, Japan
| | - Roberta Russo
- Consiglio Nazionale delle Ricerche, Istituto per la Ricerca e l’Innovazione Biomedica (IRIB), 90146 Palermo, Italy
| | - Caterina Costa
- Consiglio Nazionale delle Ricerche, Istituto per la Ricerca e l’Innovazione Biomedica (IRIB), 90146 Palermo, Italy
| | - Francesca Zito
- Consiglio Nazionale delle Ricerche, Istituto per la Ricerca e l’Innovazione Biomedica (IRIB), 90146 Palermo, Italy
| | - Letizia Anello
- Consiglio Nazionale delle Ricerche, Istituto per la Ricerca e l’Innovazione Biomedica (IRIB), 90146 Palermo, Italy
| | - Aldo Nicosia
- Consiglio Nazionale delle Ricerche, Istituto per la Ricerca e l’Innovazione Biomedica (IRIB), 90146 Palermo, Italy
| | - Maria Antonietta Ragusa
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy
| | - Marta Pascual
- Institute for Research on Biodiversity (IRBio), Department of Genetics, Microbiology, and Statistics, University of Barcelona, 08028 Barcelona, Spain
| | - M. Dolores Molina
- Departament de Genètica, Microbiologia, i Estadística, Universitat de Barcelona, 08028 Barcelona, Spain
- Institut Biology Valrose, Université Côte d’Azur, 06108 Nice Cedex 2, France
| | - Aline Chessel
- Institut Biology Valrose, Université Côte d’Azur, 06108 Nice Cedex 2, France
| | - Marta Di Carlo
- Institute for Biomedical Research and Innovation (CNR), 90146 Palermo, Italy
| | - Xavier Turon
- Department of Marine Ecology, Centre d’Estudis Avançats de Blanes (CEAB, CSIC), 17300 Blanes, Spain
| | - Richard R. Copley
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Sorbonne Université, CNRS, 06230 Villefranche-sur-Mer, France
| | - Jean-Yves Exposito
- Laboratoire de Biologie Tissulaire et d’Ingénierie Thérapeutique (LBTI), UMR CNRS 5305, Institut de Biologie et Chimie des Protéines, Université Lyon 1, 69367 Lyon, France
| | - Pedro Martinez
- Departament de Genètica, Microbiologia, i Estadística, Universitat de Barcelona, 08028 Barcelona, Spain
- Institut Català de Recerca i Estudis Avançats (ICREA), 08028 Barcelona, Spain
| | - Vincenzo Cavalieri
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy
| | - Smadar Ben Tabou de Leon
- Department of Marine Biology, Charney School of Marine Sciences, University of Haifa, 31095 Haifa, Israel
| | - Jenifer Croce
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Sorbonne Université, CNRS, 06230 Villefranche-sur-Mer, France
| | - Paola Oliveri
- Center for Life’s Origin & Evolution, Department of Genetics, Evolution, & Environment, University College London, WC1 6BT London, UK
| | - Valeria Matranga
- Consiglio Nazionale delle Ricerche, Istituto per la Ricerca e l’Innovazione Biomedica (IRIB), 90146 Palermo, Italy
| | - Maria Di Bernardo
- Consiglio Nazionale delle Ricerche, Istituto di Farmacologia Traslazionale, 90146 Palermo, Italy
| | - Julia Morales
- Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff, CNRS, Sorbonne Université, 29680 Roscoff, France
| | - Patrick Cormier
- Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff, CNRS, Sorbonne Université, 29680 Roscoff, France
| | - Anne-Marie Geneviève
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, 66650 Banyuls/Mer, France
| | - Jean Marc Aury
- Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, Commissariat à l’Énergie Atomique, CNRS, Université Évry, Université Paris-Saclay, 91057 Évry, France
| | - Valérie Barbe
- Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, Commissariat à l’Énergie Atomique, CNRS, Université Évry, Université Paris-Saclay, 91057 Évry, France
| | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, Commissariat à l’Énergie Atomique, CNRS, Université Évry, Université Paris-Saclay, 91057 Évry, France
| | - Maria Ina Arnone
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Christian Gache
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Sorbonne Université, CNRS, 06230 Villefranche-sur-Mer, France
| | - Thierry Lepage
- Institut Biology Valrose, Université Côte d’Azur, 06108 Nice Cedex 2, France
| |
Collapse
|
5
|
Tominaga H, Nishitsuji K, Satoh N. A single-cell RNA-seq analysis of early larval cell-types of the starfish, Patiria pectinifera: Insights into evolution of the chordate body plan. Dev Biol 2023; 496:52-62. [PMID: 36717049 DOI: 10.1016/j.ydbio.2023.01.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 01/10/2023] [Accepted: 01/23/2023] [Indexed: 01/29/2023]
Abstract
Ambulacrarians (echinoderms and hemichordates) are a sister group to chordates; thus, their larval cell-types may provide clues about evolution of chordate body plans. Although most genic information accumulated to date pertains to sea urchin embryogenesis, starfish embryogenesis represents a more ancestral mode than that of sea urchins. We performed single-cell RNA-seq analysis of cell-types from gastrulae and bipinnarial larvae of the starfish, Patiria pectinifera, and categorized them into 22 clusters, each of which is composed of cells with specific, shared profiles of development-relevant gene expression. Oral and aboral ectoderm, apical plate, hindgut or archenteron, midgut or intestine, pharynx, endomesoderm, stomodeum, and mesenchyme of the gastrulae, and neurons, ciliary bands, enterocoel and muscle of larvae were characterized by expression profiles of at least two relevant transcription factor genes and signaling molecular genes. Expression of Hox2, Hox7, Hox9/10, and Hox11/13b was detected in cells of clusters that form the larval enterocoel. By comparing homologous gene expression profiles in chordate embryos, we discuss and propose how the chordate body plan evolved from a deuterostome ancestor, from which the echinoderm body plan also evolved.
Collapse
Affiliation(s)
- Hitoshi Tominaga
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan.
| | - Koki Nishitsuji
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan.
| |
Collapse
|
6
|
Nanglu K, Cole SR, Wright DF, Souto C. Worms and gills, plates and spines: the evolutionary origins and incredible disparity of deuterostomes revealed by fossils, genes, and development. Biol Rev Camb Philos Soc 2023; 98:316-351. [PMID: 36257784 DOI: 10.1111/brv.12908] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 01/12/2023]
Abstract
Deuterostomes are the major division of animal life which includes sea stars, acorn worms, and humans, among a wide variety of ecologically and morphologically disparate taxa. However, their early evolution is poorly understood, due in part to their disparity, which makes identifying commonalities difficult, as well as their relatively poor early fossil record. Here, we review the available morphological, palaeontological, developmental, and molecular data to establish a framework for exploring the origins of this important and enigmatic group. Recent fossil discoveries strongly support a vermiform ancestor to the group Hemichordata, and a fusiform active swimmer as ancestor to Chordata. The diverse and anatomically bewildering variety of forms among the early echinoderms show evidence of both bilateral and radial symmetry. We consider four characteristics most critical for understanding the form and function of the last common ancestor to Deuterostomia: Hox gene expression patterns, larval morphology, the capacity for biomineralization, and the morphology of the pharyngeal region. We posit a deuterostome last common ancestor with a similar antero-posterior gene regulatory system to that found in modern acorn worms and cephalochordates, a simple planktonic larval form, which was later elaborated in the ambulacrarian lineage, the ability to secrete calcium minerals in a limited fashion, and a pharyngeal respiratory region composed of simple pores. This animal was likely to be motile in adult form, as opposed to the sessile origins that have been historically suggested. Recent debates regarding deuterostome monophyly as well as the wide array of deuterostome-affiliated problematica further suggest the possibility that those features were not only present in the last common ancestor of Deuterostomia, but potentially in the ur-bilaterian. The morphology and development of the early deuterostomes, therefore, underpin some of the most significant questions in the study of metazoan evolution.
Collapse
Affiliation(s)
- Karma Nanglu
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA
| | - Selina R Cole
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, 10th & Constitution Avenue NW, Washington, DC, 20560, USA.,Sam Noble Museum, University of Oklahoma, 2401 Chautauqua Avenue, Norman, OK, 73072, USA.,School of Geosciences, University of Oklahoma, 100 E Boyd Street, Norman, OK, 73019, USA
| | - David F Wright
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, 10th & Constitution Avenue NW, Washington, DC, 20560, USA.,Sam Noble Museum, University of Oklahoma, 2401 Chautauqua Avenue, Norman, OK, 73072, USA.,School of Geosciences, University of Oklahoma, 100 E Boyd Street, Norman, OK, 73019, USA
| | - Camilla Souto
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, 10th & Constitution Avenue NW, Washington, DC, 20560, USA.,School of Natural Sciences & Mathematics, Stockton University, 101 Vera King Farris Dr, Galloway, NJ, 08205, USA
| |
Collapse
|
7
|
Mashanov V, Machado DJ, Reid R, Brouwer C, Kofsky J, Janies DA. Twinkle twinkle brittle star: the draft genome of Ophioderma brevispinum (Echinodermata: Ophiuroidea) as a resource for regeneration research. BMC Genomics 2022; 23:574. [PMID: 35953768 PMCID: PMC9367165 DOI: 10.1186/s12864-022-08750-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 07/08/2022] [Indexed: 12/13/2022] Open
Abstract
Background Echinoderms are established models in experimental and developmental biology, however genomic resources are still lacking for many species. Here, we present the draft genome of Ophioderma brevispinum, an emerging model organism in the field of regenerative biology. This new genomic resource provides a reference for experimental studies of regenerative mechanisms. Results We report a de novo nuclear genome assembly for the brittle star O. brevispinum and annotation facilitated by the transcriptome assembly. The final assembly is 2.68 Gb in length and contains 146,703 predicted protein-coding gene models. We also report a mitochondrial genome for this species, which is 15,831 bp in length, and contains 13 protein-coding, 22 tRNAs, and 2 rRNAs genes, respectively. In addition, 29 genes of the Notch signaling pathway are identified to illustrate the practical utility of the assembly for studies of regeneration. Conclusions The sequenced and annotated genome of O. brevispinum presented here provides the first such resource for an ophiuroid model species. Considering the remarkable regenerative capacity of this species, this genome will be an essential resource in future research efforts on molecular mechanisms regulating regeneration. Supplementary Information The online version contains supplementary material available at (10.1186/s12864-022-08750-y).
Collapse
Affiliation(s)
- Vladimir Mashanov
- Wake Forest Institute for Regenerative Medicine, 391 Technology Way, Winston-Salem, 27101, NC, USA. .,University of North Florida, Department of Biology, 1 UNF Drive, Jacksonville, 32224, FL, USA.
| | - Denis Jacob Machado
- University of North Carolina at Charlotte, College of Computing and Informatics, Department of Bioinformatics and Genomics, 9201 University City Blvd, Charlotte, 28223, NC, USA
| | - Robert Reid
- University of North Carolina at Charlotte, College of Computing and Informatics, North Carolina Research Campus, 150 Research Campus Drive, Kannapolis, 28081, NC, USA
| | - Cory Brouwer
- University of North Carolina at Charlotte, College of Computing and Informatics, North Carolina Research Campus, 150 Research Campus Drive, Kannapolis, 28081, NC, USA
| | - Janice Kofsky
- University of North Carolina at Charlotte, College of Computing and Informatics, Department of Bioinformatics and Genomics, 9201 University City Blvd, Charlotte, 28223, NC, USA
| | - Daniel A Janies
- University of North Carolina at Charlotte, College of Computing and Informatics, Department of Bioinformatics and Genomics, 9201 University City Blvd, Charlotte, 28223, NC, USA
| |
Collapse
|
8
|
Ahmed W, Gupta S, Singh D, Singh R. Insight of genetic features prevalent in three Echinoderm species (Apostichopus japonicus, Heliocedaris erythrogramma and Asterias rubens) and their evolutionary association using comparative codon pattern analysis. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Hajirnis N, Mishra RK. Homeotic Genes: Clustering, Modularity, and Diversity. Front Cell Dev Biol 2021; 9:718308. [PMID: 34458272 PMCID: PMC8386295 DOI: 10.3389/fcell.2021.718308] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/22/2021] [Indexed: 11/13/2022] Open
Abstract
Hox genes code for transcription factors and are evolutionarily conserved. They regulate a plethora of downstream targets to define the anterior-posterior (AP) body axis of a developing bilaterian embryo. Early work suggested a possible role of clustering and ordering of Hox to regulate their expression in a spatially restricted manner along the AP axis. However, the recent availability of many genome assemblies for different organisms uncovered several examples that defy this constraint. With recent advancements in genomics, the current review discusses the arrangement of Hox in various organisms. Further, we revisit their discovery and regulation in Drosophila melanogaster. We also review their regulation in different arthropods and vertebrates, with a significant focus on Hox expression in the crustacean Parahyale hawaiensis. It is noteworthy that subtle changes in the levels of Hox gene expression can contribute to the development of novel features in an organism. We, therefore, delve into the distinct regulation of these genes during primary axis formation, segment identity, and extra-embryonic roles such as in the formation of hair follicles or misregulation leading to cancer. Toward the end of each section, we emphasize the possibilities of several experiments involving various organisms, owing to the advancements in the field of genomics and CRISPR-based genome engineering. Overall, we present a holistic view of the functioning of Hox in the animal world.
Collapse
Affiliation(s)
- Nikhil Hajirnis
- CSIR – Centre for Cellular and Molecular Biology (CCMB), Hyderabad, India
| | - Rakesh K. Mishra
- CSIR – Centre for Cellular and Molecular Biology (CCMB), Hyderabad, India
- AcSIR – Academy of Scientific and Innovative Research, Ghaziabad, India
- Tata Institute for Genetics and Society (TIGS), Bangalore, India
| |
Collapse
|
10
|
Physical Laws Shape Up HOX Gene Collinearity. J Dev Biol 2021; 9:jdb9020017. [PMID: 34066586 PMCID: PMC8162341 DOI: 10.3390/jdb9020017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 01/15/2023] Open
Abstract
Hox gene collinearity (HGC) is a multi-scalar property of many animal phyla particularly important in embryogenesis. It relates entities and events occurring in Hox clusters inside the chromosome DNA and in embryonic tissues. These two entities differ in linear size by more than four orders of magnitude. HGC is observed as spatial collinearity (SC), where the Hox genes are located in the order (Hox1, Hox2, Hox3 …) along the 3′ to 5′ direction of DNA in the genome and a corresponding sequence of ontogenetic units (E1, E2, E3, …) located along the Anterior—Posterior axis of the embryo. Expression of Hox1 occurs in E1, Hox2 in E2, Hox3 in E3, etc. Besides SC, a temporal collinearity (TC) has been also observed in many vertebrates. According to TC, first Hox1 is expressed in E1; later, Hox2 is expressed in E2, followed by Hox3 in E3, etc. Lately, doubt has been raised about whether TC really exists. A biophysical model (BM) was formulated and tested during the last 20 years. According to BM, physical forces are created which pull the Hox genes one after the other, driving them to a transcription factory domain where they are transcribed. The existing experimental data support this BM description. Symmetry is a physical–mathematical property of matter that was explored in depth by Noether who formulated a ground-breaking theory (NT) that applies to all sizes of matter. NT may be applied to biology in order to explain the origin of HGC in animals developing not only along the A/P axis, but also to animals with circular symmetry.
Collapse
|
11
|
Byrne M, Koop D, Strbenac D, Cisternas P, Balogh R, Yang JYH, Davidson PL, Wray G. Transcriptomic analysis of sea star development through metamorphosis to the highly derived pentameral body plan with a focus on neural transcription factors. DNA Res 2021; 27:5825731. [PMID: 32339242 PMCID: PMC7315356 DOI: 10.1093/dnares/dsaa007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 04/20/2020] [Indexed: 12/13/2022] Open
Abstract
The Echinodermata is characterized by a secondarily evolved pentameral body plan. While the evolutionary origin of this body plan has been the subject of debate, the molecular mechanisms underlying its development are poorly understood. We assembled a de novo developmental transcriptome from the embryo through metamorphosis in the sea star Parvulastra exigua. We use the asteroid model as it represents the basal-type echinoderm body architecture. Global variation in gene expression distinguished the gastrula profile and showed that metamorphic and juvenile stages were more similar to each other than to the pre-metamorphic stages, pointing to the marked changes that occur during metamorphosis. Differential expression and gene ontology (GO) analyses revealed dynamic changes in gene expression throughout development and the transition to pentamery. Many GO terms enriched during late metamorphosis were related to neurogenesis and signalling. Neural transcription factor genes exhibited clusters with distinct expression patterns. A suite of these genes was up-regulated during metamorphosis (e.g. Pax6, Eya, Hey, NeuroD, FoxD, Mbx, and Otp). In situ hybridization showed expression of neural genes in the CNS and sensory structures. Our results provide a foundation to understand the metamorphic transition in echinoderms and the genes involved in development and evolution of pentamery.
Collapse
Affiliation(s)
- Maria Byrne
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia.,School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Demian Koop
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Dario Strbenac
- School of Mathematics and Statistics, The University of Sydney, Sydney, NSW 2006, Australia
| | - Paula Cisternas
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Regina Balogh
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Jean Yee Hwa Yang
- School of Mathematics and Statistics, The University of Sydney, Sydney, NSW 2006, Australia
| | | | - Gregory Wray
- Department of Biology, Duke University, Durham, NC 27708, USA.,Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
12
|
Abstract
Hemichordates, along with echinoderms and chordates, belong to the lineage of bilaterians called the deuterostomes. Their phylogenetic position as an outgroup to chordates provides an opportunity to investigate the evolutionary origins of the chordate body plan and reconstruct ancestral deuterostome characters. The body plans of the hemichordates and chordates are organizationally divergent making anatomical comparisons very challenging. The developmental underpinnings of animal body plans are often more conservative than the body plans they regulate, and offer a novel data set for making comparisons between morphologically divergent body architectures. Here I review the hemichordate developmental data generated over the past 20 years that further test hypotheses of proposed morphological affinities between the two taxa, but also compare the conserved anteroposterior, dorsoventral axial patterning programs and germ layer specification programs. These data provide an opportunity to determine which developmental programs are ancestral deuterostome or bilaterian innovations, and which ones occurred in stem chordates or vertebrates representing developmental novelties of the chordate body plan.
Collapse
|
13
|
Li Y, Omori A, Flores RL, Satterfield S, Nguyen C, Ota T, Tsurugaya T, Ikuta T, Ikeo K, Kikuchi M, Leong JCK, Reich A, Hao M, Wan W, Dong Y, Ren Y, Zhang S, Zeng T, Uesaka M, Uchida Y, Li X, Shibata TF, Bino T, Ogawa K, Shigenobu S, Kondo M, Wang F, Chen L, Wessel G, Saiga H, Cameron RA, Livingston B, Bradham C, Wang W, Irie N. Genomic insights of body plan transitions from bilateral to pentameral symmetry in Echinoderms. Commun Biol 2020; 3:371. [PMID: 32651448 PMCID: PMC7351957 DOI: 10.1038/s42003-020-1091-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 06/19/2020] [Indexed: 12/13/2022] Open
Abstract
Echinoderms are an exceptional group of bilaterians that develop pentameral adult symmetry from a bilaterally symmetric larva. However, the genetic basis in evolution and development of this unique transformation remains to be clarified. Here we report newly sequenced genomes, developmental transcriptomes, and proteomes of diverse echinoderms including the green sea urchin (L. variegatus), a sea cucumber (A. japonicus), and with particular emphasis on a sister group of the earliest-diverged echinoderms, the feather star (A. japonica). We learned that the last common ancestor of echinoderms retained a well-organized Hox cluster reminiscent of the hemichordate, and had gene sets involved in endoskeleton development. Further, unlike in other animal groups, the most conserved developmental stages were not at the body plan establishing phase, and genes normally involved in bilaterality appear to function in pentameric axis development. These results enhance our understanding of the divergence of protostomes and deuterostomes almost 500 Mya. Li et al. investigate the evolution and genetic basis of the adult pentameral body plan in echinoderms using genomic, transcriptomic, and proteomic data. They determine that the last common ancestor of echinoderms contained an organized Hox cluster and endoskeleton genes, and suggest that cooption of bilateral development genes was involved in evolution of the pentameric body plan.
Collapse
Affiliation(s)
- Yongxin Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Akihito Omori
- Sado Island Center for Ecological Sustainability, Niigata University, Niigata, Japan
| | - Rachel L Flores
- Dept. of Biological Sciences, California State Univesity, Long Beach, CA, USA
| | - Sheri Satterfield
- Dept. of Biological Sciences, California State Univesity, Long Beach, CA, USA
| | - Christine Nguyen
- Dept. of Biological Sciences, California State Univesity, Long Beach, CA, USA
| | | | | | - Tetsuro Ikuta
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Kanagawa, Japan.,Tokyo Metropolitan University, Yokosuka, Tokyo, Japan
| | | | | | - Jason C K Leong
- Dept. of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Adrian Reich
- Providence Institute of Molecular Oogenesis, Brown University, Providence, RI, USA
| | - Meng Hao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Wenting Wan
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yang Dong
- Yunnan Agricultural University, Kunming, China
| | - Yaondong Ren
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Si Zhang
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Tao Zeng
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Masahiro Uesaka
- RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Hyogo, Japan
| | - Yui Uchida
- Dept. of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.,Universal Biology Institute, University of Tokyo, Tokyo, Japan
| | - Xueyan Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Tomoko F Shibata
- Dept. of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Takahiro Bino
- NIBB Core Research Facilities, National Institute of Basic Biology, Okazaki, Aichi, Japan
| | - Kota Ogawa
- Faculty of Social and Cultural Studies, Kyushu University, Fukuoka, Japan
| | - Shuji Shigenobu
- NIBB Core Research Facilities, National Institute of Basic Biology, Okazaki, Aichi, Japan
| | - Mariko Kondo
- Dept. of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Fayou Wang
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Luonan Chen
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.,Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, China
| | - Gary Wessel
- Providence Institute of Molecular Oogenesis, Brown University, Providence, RI, USA
| | - Hidetoshi Saiga
- Tokyo Metropolitan University, Yokosuka, Tokyo, Japan.,Dept. of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.,Chuo University, Tokyo, Japan
| | - R Andrew Cameron
- Beckman Institute, Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Brian Livingston
- Dept. of Biological Sciences, California State Univesity, Long Beach, CA, USA
| | | | - Wen Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China. .,School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China.
| | - Naoki Irie
- Dept. of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan. .,Universal Biology Institute, University of Tokyo, Tokyo, Japan.
| |
Collapse
|
14
|
Szabó R, Ferrier DEK. Two more Posterior Hox genes and Hox cluster dispersal in echinoderms. BMC Evol Biol 2018; 18:203. [PMID: 30587111 PMCID: PMC6307216 DOI: 10.1186/s12862-018-1307-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 11/23/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hox genes are key elements in patterning animal development. They are renowned for their, often, clustered organisation in the genome, with supposed mechanistic links between the organisation of the genes and their expression. The widespread distribution and comparable functions of Hox genes across the animals has led to them being a major study system for comparing the molecular bases for construction and divergence of animal morphologies. Echinoderms (including sea urchins, sea stars, sea cucumbers, feather stars and brittle stars) possess one of the most unusual body plans in the animal kingdom with pronounced pentameral symmetry in the adults. Consequently, much interest has focused on their development, evolution and the role of the Hox genes in these processes. In this context, the organisation of echinoderm Hox gene clusters is distinctive. Within the classificatory system of Duboule, echinoderms constitute one of the clearest examples of Disorganized (D) clusters (i.e. intact clusters but with a gene order or orientation rearranged relative to the ancestral state). RESULTS Here we describe two Hox genes (Hox11/13d and e) that have been overlooked in most previous work and have not been considered in reconstructions of echinoderm Hox complements and cluster organisation. The two genes are related to Posterior Hox genes and are present in all classes of echinoderm. Importantly, they do not reside in the Hox cluster of any species for which genomic linkage data is available. CONCLUSION Incorporating the two neglected Posterior Hox genes into assessments of echinoderm Hox gene complements and organisation shows that these animals in fact have Split (S) Hox clusters rather than simply Disorganized (D) clusters within the Duboule classification scheme. This then has implications for how these genes are likely regulated, with them no longer covered by any potential long-range Hox cluster-wide, or multigenic sub-cluster, regulatory mechanisms.
Collapse
Affiliation(s)
- Réka Szabó
- The Scottish Oceans Institute, Gatty Marine Laboratory, School of Biology, University of St Andrews, East Sands, St Andrews, Fife, KY16 8LB UK
| | - David E. K. Ferrier
- The Scottish Oceans Institute, Gatty Marine Laboratory, School of Biology, University of St Andrews, East Sands, St Andrews, Fife, KY16 8LB UK
| |
Collapse
|
15
|
Irie N, Satoh N, Kuratani S. The phylum Vertebrata: a case for zoological recognition. ZOOLOGICAL LETTERS 2018; 4:32. [PMID: 30607258 PMCID: PMC6307173 DOI: 10.1186/s40851-018-0114-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 12/05/2018] [Indexed: 06/09/2023]
Abstract
The group Vertebrata is currently placed as a subphylum in the phylum Chordata, together with two other subphyla, Cephalochordata (lancelets) and Urochordata (ascidians). The past three decades, have seen extraordinary advances in zoological taxonomy and the time is now ripe for reassessing whether the subphylum position is truly appropriate for vertebrates, particularly in light of recent advances in molecular phylogeny, comparative genomics, and evolutionary developmental biology. Four lines of current research are discussed here. First, molecular phylogeny has demonstrated that Deuterostomia comprises Ambulacraria (Echinodermata and Hemichordata) and Chordata (Cephalochordata, Urochordata, and Vertebrata), each clade being recognized as a mutually comparable phylum. Second, comparative genomic studies show that vertebrates alone have experienced two rounds of whole-genome duplication, which makes the composition of their gene family unique. Third, comparative gene-expression profiling of vertebrate embryos favors an hourglass pattern of development, the most conserved stage of which is recognized as a phylotypic period characterized by the establishment of a body plan definitively associated with a phylum. This mid-embryonic conservation is supported robustly in vertebrates, but only weakly in chordates. Fourth, certain complex patterns of body plan formation (especially of the head, pharynx, and somites) are recognized throughout the vertebrates, but not in any other animal groups. For these reasons, we suggest that it is more appropriate to recognize vertebrates as an independent phylum, not as a subphylum of the phylum Chordata.
Collapse
Affiliation(s)
- Naoki Irie
- Department of Biological Sciences, School of Science, University of Tokyo, Tokyo, 113-0033 Japan
- Universal Biology Institute, University of Tokyo, Tokyo, 113-0033 Japan
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495 Japan
| | - Shigeru Kuratani
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research, and Evolutionary Morphology Laboratory, RIKEN Cluster for Pioneering Research, 2-2-3 Minatojima-minami, Chuo-ku, Kobe, 650-0047 Japan
| |
Collapse
|
16
|
Li Y, Wang R, Xun X, Wang J, Bao L, Thimmappa R, Ding J, Jiang J, Zhang L, Li T, Lv J, Mu C, Hu X, Zhang L, Liu J, Li Y, Yao L, Jiao W, Wang Y, Lian S, Zhao Z, Zhan Y, Huang X, Liao H, Wang J, Sun H, Mi X, Xia Y, Xing Q, Lu W, Osbourn A, Zhou Z, Chang Y, Bao Z, Wang S. Sea cucumber genome provides insights into saponin biosynthesis and aestivation regulation. Cell Discov 2018; 4:29. [PMID: 29951224 PMCID: PMC6018497 DOI: 10.1038/s41421-018-0030-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 03/18/2018] [Accepted: 04/08/2018] [Indexed: 12/27/2022] Open
Abstract
Echinoderms exhibit several fascinating evolutionary innovations that are rarely seen in the animal kingdom, but how these animals attained such features is not well understood. Here we report the sequencing and analysis of the genome and extensive transcriptomes of the sea cucumber Apostichopus japonicus, a species from a special echinoderm group with extraordinary potential for saponin synthesis, aestivation and organ regeneration. The sea cucumber does not possess a reorganized Hox cluster as previously assumed for all echinoderms, and the spatial expression of Hox7 and Hox11/13b potentially guides the embryo-to-larva axial transformation. Contrary to the typical production of lanosterol in animal cholesterol synthesis, the oxidosqualene cyclase of sea cucumber produces parkeol for saponin synthesis and has "plant-like" motifs suggestive of convergent evolution. The transcriptional factors Klf2 and Egr1 are identified as key regulators of aestivation, probably exerting their effects through a clock gene-controlled process. Intestinal hypometabolism during aestivation is driven by the DNA hypermethylation of various metabolic gene pathways, whereas the transcriptional network of intestine regeneration involves diverse signaling pathways, including Wnt, Hippo and FGF. Decoding the sea cucumber genome provides a new avenue for an in-depth understanding of the extraordinary features of sea cucumbers and other echinoderms.
Collapse
Affiliation(s)
- Yuli Li
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Ruijia Wang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003 China
| | - Xiaogang Xun
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003 China
| | - Jing Wang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003 China
| | - Lisui Bao
- The Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637 USA
| | - Ramesha Thimmappa
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH United Kingdom
| | - Jun Ding
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023 China
| | - Jingwei Jiang
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023 China
| | - Liheng Zhang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023 China
| | - Tianqi Li
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003 China
| | - Jia Lv
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003 China
| | - Chuang Mu
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003 China
| | - Xiaoli Hu
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Lingling Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Jing Liu
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003 China
| | - Yuqiang Li
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003 China
| | - Lijie Yao
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003 China
| | - Wenqian Jiao
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003 China
| | - Yangfan Wang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003 China
| | - Shanshan Lian
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003 China
| | - Zelong Zhao
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023 China
| | - Yaoyao Zhan
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023 China
| | - Xiaoting Huang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003 China
| | - Huan Liao
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003 China
| | - Jia Wang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003 China
| | - Hongzhen Sun
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003 China
| | - Xue Mi
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003 China
| | - Yu Xia
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003 China
| | - Qiang Xing
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003 China
| | - Wei Lu
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003 China
| | - Anne Osbourn
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH United Kingdom
| | - Zunchun Zhou
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023 China
| | - Yaqing Chang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023 China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Shi Wang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| |
Collapse
|
17
|
The sea cucumber genome provides insights into morphological evolution and visceral regeneration. PLoS Biol 2017; 15:e2003790. [PMID: 29023486 PMCID: PMC5638244 DOI: 10.1371/journal.pbio.2003790] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 09/11/2017] [Indexed: 11/25/2022] Open
Abstract
Apart from sharing common ancestry with chordates, sea cucumbers exhibit a unique morphology and exceptional regenerative capacity. Here we present the complete genome sequence of an economically important sea cucumber, A. japonicus, generated using Illumina and PacBio platforms, to achieve an assembly of approximately 805 Mb (contig N50 of 190 Kb and scaffold N50 of 486 Kb), with 30,350 protein-coding genes and high continuity. We used this resource to explore key genetic mechanisms behind the unique biological characters of sea cucumbers. Phylogenetic and comparative genomic analyses revealed the presence of marker genes associated with notochord and gill slits, suggesting that these chordate features were present in ancestral echinoderms. The unique shape and weak mineralization of the sea cucumber adult body were also preliminarily explained by the contraction of biomineralization genes. Genome, transcriptome, and proteome analyses of organ regrowth after induced evisceration provided insight into the molecular underpinnings of visceral regeneration, including a specific tandem-duplicated prostatic secretory protein of 94 amino acids (PSP94)-like gene family and a significantly expanded fibrinogen-related protein (FREP) gene family. This high-quality genome resource will provide a useful framework for future research into biological processes and evolution in deuterostomes, including remarkable regenerative abilities that could have medical applications. Moreover, the multiomics data will be of prime value for commercial sea cucumber breeding programs. Echinoderms, ubiquitous in the marine environment, are important from evolutionary, ecological, and socioeconomic perspectives. Together with chordates and hemichordates, they form the deuterostome clade, making them a crucial node in the study of chordate ancestry. Within echinoderms, class Holothuroidea is unique; its members (the sea cucumbers) display remarkable regenerative abilities and play key roles as sediment bioturbators and symbiotic hosts, and many are prized in the seafood and pharmaceutical industries. The sea cucumber genome therefore has the potential to significantly contribute to our understanding of important evolutionary and biological processes and help enhance aquaculture programs. Here we present a high-quality genome sequence for the economically important species Apostichopus japonicus. Through comparative analyses, we identified 763 echinoderm-specific gene families enriched in genes encoding membrane proteins, ion channels, and signal transduction proteins. Marker genes associated with the notochord and gill slits were also found, providing valuable insight into the origin of chordates. The reduced number and low expression levels of biomineralization genes reflect the skeletal degeneration seen in sea cucumbers. Importantly, 2 gene families appeared to be expanded in A. japonicus and may play crucial roles in its heightened regenerative potential. Together, findings from the sea cucumber genome provide important and novel insights into echinoderm and deuterostome biology.
Collapse
|
18
|
Hall MR, Kocot KM, Baughman KW, Fernandez-Valverde SL, Gauthier MEA, Hatleberg WL, Krishnan A, McDougall C, Motti CA, Shoguchi E, Wang T, Xiang X, Zhao M, Bose U, Shinzato C, Hisata K, Fujie M, Kanda M, Cummins SF, Satoh N, Degnan SM, Degnan BM. The crown-of-thorns starfish genome as a guide for biocontrol of this coral reef pest. Nature 2017; 544:231-234. [PMID: 28379940 DOI: 10.1038/nature22033] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 03/05/2017] [Indexed: 01/02/2023]
Abstract
The crown-of-thorns starfish (COTS, the Acanthaster planci species group) is a highly fecund predator of reef-building corals throughout the Indo-Pacific region. COTS population outbreaks cause substantial loss of coral cover, diminishing the integrity and resilience of reef ecosystems. Here we sequenced genomes of COTS from the Great Barrier Reef, Australia and Okinawa, Japan to identify gene products that underlie species-specific communication and could potentially be used in biocontrol strategies. We focused on water-borne chemical plumes released from aggregating COTS, which make the normally sedentary starfish become highly active. Peptide sequences detected in these plumes by mass spectrometry are encoded in the COTS genome and expressed in external tissues. The exoproteome released by aggregating COTS consists largely of signalling factors and hydrolytic enzymes, and includes an expanded and rapidly evolving set of starfish-specific ependymin-related proteins. These secreted proteins may be detected by members of a large family of olfactory-receptor-like G-protein-coupled receptors that are expressed externally, sometimes in a sex-specific manner. This study provides insights into COTS-specific communication that may guide the generation of peptide mimetics for use on reefs with COTS outbreaks.
Collapse
Affiliation(s)
- Michael R Hall
- Australian Institute of Marine Science (AIMS), Cape Ferguson, Townsville, Queensland 4810, Australia
| | - Kevin M Kocot
- Centre for Marine Science, School of Biological Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Kenneth W Baughman
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Selene L Fernandez-Valverde
- Centre for Marine Science, School of Biological Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Marie E A Gauthier
- Centre for Marine Science, School of Biological Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - William L Hatleberg
- Centre for Marine Science, School of Biological Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Arunkumar Krishnan
- Centre for Marine Science, School of Biological Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Carmel McDougall
- Centre for Marine Science, School of Biological Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Cherie A Motti
- Australian Institute of Marine Science (AIMS), Cape Ferguson, Townsville, Queensland 4810, Australia
| | - Eiichi Shoguchi
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Tianfang Wang
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia
| | - Xueyan Xiang
- Centre for Marine Science, School of Biological Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Min Zhao
- Centre for Marine Science, School of Biological Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia.,Genecology Research Centre, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia
| | - Utpal Bose
- Australian Institute of Marine Science (AIMS), Cape Ferguson, Townsville, Queensland 4810, Australia.,Genecology Research Centre, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia
| | - Chuya Shinzato
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Kanako Hisata
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Manabu Fujie
- DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Miyuki Kanda
- DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Scott F Cummins
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Sandie M Degnan
- Centre for Marine Science, School of Biological Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Bernard M Degnan
- Centre for Marine Science, School of Biological Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
19
|
Inoue J, Yasuoka Y, Takahashi H, Satoh N. The chordate ancestor possessed a single copy of the Brachyury gene for notochord acquisition. ZOOLOGICAL LETTERS 2017; 3:4. [PMID: 28344820 PMCID: PMC5363035 DOI: 10.1186/s40851-017-0064-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/22/2017] [Indexed: 06/06/2023]
Abstract
BACKGROUND The T-box family transcription-factor gene, Brachyury, has two expression domains with discrete functions during animal embryogenesis. The primary domain, associated with the blastopore, is shared by most metazoans, while the secondary domain, involved in the notochord, is specific to chordates. In most animals, Brachyury is present in a single copy, but in cephalochordates, the most basal of the chordates, the gene is present in two copies, suggesting allotment of the two domains to each of the duplicates. RESULTS In order to clarify whether Brachyury duplication occurred in the common ancestor of chordates after which one of duplicates was lost in the urochordate and vertebrate lineages, we estimated phylogenetic relationships of Brachyury genes and examined the synteny of a Brachyury-containing genomic region of deuterostomes with decoded genomes. The monophyletic origin of tandemly arranged Brachyury genes of cephalochordates indicates that the tandem duplication occurred in the cephalochordate lineage, but not in the chordate ancestor. CONCLUSIONS Our results thus suggest that, in the common ancestor of chordates, a single copy of Brachyury acquired two expression domains and that the duplication was not involved in the acquisition of the notochord. However, in relation to regulatory mechanisms, both possibilities-namely a single copy with two domains and two copies with different domains-should be considered in future studies of Brachyury.
Collapse
Affiliation(s)
- Jun Inoue
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495 Japan
| | - Yuuri Yasuoka
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495 Japan
| | - Hiroki Takahashi
- Developmental Biology, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585 Japan
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495 Japan
| |
Collapse
|
20
|
Cary GA, Hinman VF. Echinoderm development and evolution in the post-genomic era. Dev Biol 2017; 427:203-211. [PMID: 28185788 DOI: 10.1016/j.ydbio.2017.02.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 02/04/2017] [Accepted: 02/06/2017] [Indexed: 01/01/2023]
Abstract
The highly recognizable animals within the phylum Echinodermata encompass an enormous disparity of adult and larval body plans. The extensive knowledge of sea urchin development has culminated in the description of the exquisitely detailed gene regulatory network (GRN) that governs the specification of various embryonic territories. This information provides a unique opportunity for comparative studies in other echinoderm taxa to understand the evolution and developmental mechanisms underlying body plan change. This review focuses on recent work that has utilized new genomic resources and systems-level experiments to address questions of evolutionary developmental biology. In particular, we synthesize the results of several recent studies from various echinoderm classes that have explored the development and evolution of the larval skeleton, which is a major feature that distinguishes the two predominant larval subtypes within the Phylum. We specifically examine the ways in which GRNs can evolve, either through cis regulatory and/or protein-level changes in transcription factors. We also examine recent work comparing evolution across shorter time scales that occur within and between species of sea urchin, and highlight the kinds of questions that can be addressed by these comparisons. The advent of new genomic and transcriptomic datasets in additional species from all classes of echinoderm will continue to empower the use of these taxa for evolutionary developmental studies.
Collapse
Affiliation(s)
- Gregory A Cary
- Department of Biological Sciences, Carnegie Mellon University, Mellon Institute, 4400 Fifth Ave, Pittsburgh, PA 15213, United States
| | - Veronica F Hinman
- Department of Biological Sciences, Carnegie Mellon University, Mellon Institute, 4400 Fifth Ave, Pittsburgh, PA 15213, United States.
| |
Collapse
|
21
|
Papageorgiou S. Hox Gene Collinearity: From A-P Patterning to Radially Symmetric Animals. Curr Genomics 2016; 17:444-449. [PMID: 28217001 PMCID: PMC5267470 DOI: 10.2174/1389202917666160616082436] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 04/14/2016] [Accepted: 06/10/2016] [Indexed: 11/22/2022] Open
Abstract
Hox gene collinearity relates the gene order of the Hox cluster in the chromosome (telomeric to centromeric end) with the serial activation of these genes in the ontogenetic units along the Anterior-Posterior embryonic axis. Although this collinearity property is well respected in bilaterians (e.g. vertebrates), it is violated in other animals. The A-P axis is established in the early embryo of the sea urchin. Subsequently, rotational symmetry is superimposed when the vestibula larva is formed. In analogy to the linear A-P case, it is here hypothesized that the circular topology of the ontogenetic modules is associated to the architectural restructuring of the Hox loci where the two discrete ends of the Hox cluster approach each other so that an almost circular DNA contour is created. In the evolutionary process the circular mode undergoes double strand breaks and the generated cluster ends are attached to the open ends of the flanking chromosome. This event may lead to a novel gene ordering associated with an evolutionary innovation. For example, the loss of Hox4 is followed by the formation of a shorter gene circular arrangement. The opening of this contour at the missing Hox4 location and its connection to the chromosomal flanking ends leads to a new diversification namely the creation of the unusual gene order of the sea urchin Hox cluster.
Collapse
|
22
|
Hemichordate models. Curr Opin Genet Dev 2016; 39:71-78. [DOI: 10.1016/j.gde.2016.05.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/28/2016] [Accepted: 05/30/2016] [Indexed: 11/23/2022]
|
23
|
Acemel RD, Tena JJ, Irastorza-Azcarate I, Marlétaz F, Gómez-Marín C, de la Calle-Mustienes E, Bertrand S, Diaz SG, Aldea D, Aury JM, Mangenot S, Holland PWH, Devos DP, Maeso I, Escrivá H, Gómez-Skarmeta JL. A single three-dimensional chromatin compartment in amphioxus indicates a stepwise evolution of vertebrate Hox bimodal regulation. Nat Genet 2016; 48:336-41. [PMID: 26829752 DOI: 10.1038/ng.3497] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 12/30/2015] [Indexed: 12/19/2022]
Abstract
The HoxA and HoxD gene clusters of jawed vertebrates are organized into bipartite three-dimensional chromatin structures that separate long-range regulatory inputs coming from the anterior and posterior Hox-neighboring regions. This architecture is instrumental in allowing vertebrate Hox genes to pattern disparate parts of the body, including limbs. Almost nothing is known about how these three-dimensional topologies originated. Here we perform extensive 4C-seq profiling of the Hox cluster in embryos of amphioxus, an invertebrate chordate. We find that, in contrast to the architecture in vertebrates, the amphioxus Hox cluster is organized into a single chromatin interaction domain that includes long-range contacts mostly from the anterior side, bringing distant cis-regulatory elements into contact with Hox genes. We infer that the vertebrate Hox bipartite regulatory system is an evolutionary novelty generated by combining ancient long-range regulatory contacts from DNA in the anterior Hox neighborhood with new regulatory inputs from the posterior side.
Collapse
Affiliation(s)
- Rafael D Acemel
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide, Seville, Spain
| | - Juan J Tena
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide, Seville, Spain
| | - Ibai Irastorza-Azcarate
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide, Seville, Spain
| | | | - Carlos Gómez-Marín
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide, Seville, Spain
| | - Elisa de la Calle-Mustienes
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide, Seville, Spain
| | - Stéphanie Bertrand
- Université Pierre et Marie Curie Université Paris 6, CNRS, UMR 7232, Biologie Integrative des Organismes Marins (BIOM), Observatoire Océanologique de Banyuls-sur-Mer, Banyuls-sur-Mer, France
| | - Sergio G Diaz
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide, Seville, Spain
| | - Daniel Aldea
- Université Pierre et Marie Curie Université Paris 6, CNRS, UMR 7232, Biologie Integrative des Organismes Marins (BIOM), Observatoire Océanologique de Banyuls-sur-Mer, Banyuls-sur-Mer, France
| | - Jean-Marc Aury
- Commissariat à l'Energie Atomique (CEA), Institut de Génomique (IG), Genoscope, Evry, France
| | - Sophie Mangenot
- Commissariat à l'Energie Atomique (CEA), Institut de Génomique (IG), Genoscope, Evry, France
| | | | - Damien P Devos
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide, Seville, Spain
| | - Ignacio Maeso
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide, Seville, Spain
| | - Hector Escrivá
- Université Pierre et Marie Curie Université Paris 6, CNRS, UMR 7232, Biologie Integrative des Organismes Marins (BIOM), Observatoire Océanologique de Banyuls-sur-Mer, Banyuls-sur-Mer, France
| | - José Luis Gómez-Skarmeta
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide, Seville, Spain
| |
Collapse
|
24
|
Byrne M, Martinez P, Morris V. Evolution of a pentameral body plan was not linked to translocation of anterior Hox genes: the echinoderm HOX cluster revisited. Evol Dev 2016; 18:137-43. [DOI: 10.1111/ede.12172] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Maria Byrne
- Schools of Medical and Biological SciencesThe University of SydneySydneyNSW2006Australia
| | - Pedro Martinez
- Departament de GenèticaUniversitat de BarcelonaAv. Diagonal, 643Barcelona08028Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA)Passeig Lluís Companys, 23Barcelona08010Spain
| | - Valerie Morris
- School of Biological SciencesThe University of SydneySydneyNSW2006Australia
| |
Collapse
|
25
|
Simakov O, Kawashima T, Marlétaz F, Jenkins J, Koyanagi R, Mitros T, Hisata K, Bredeson J, Shoguchi E, Gyoja F, Yue JX, Chen YC, Freeman RM, Sasaki A, Hikosaka-Katayama T, Sato A, Fujie M, Baughman KW, Levine J, Gonzalez P, Cameron C, Fritzenwanker JH, Pani AM, Goto H, Kanda M, Arakaki N, Yamasaki S, Qu J, Cree A, Ding Y, Dinh HH, Dugan S, Holder M, Jhangiani SN, Kovar CL, Lee SL, Lewis LR, Morton D, Nazareth LV, Okwuonu G, Santibanez J, Chen R, Richards S, Muzny DM, Gillis A, Peshkin L, Wu M, Humphreys T, Su YH, Putnam NH, Schmutz J, Fujiyama A, Yu JK, Tagawa K, Worley KC, Gibbs RA, Kirschner MW, Lowe CJ, Satoh N, Rokhsar DS, Gerhart J. Hemichordate genomes and deuterostome origins. Nature 2015; 527:459-65. [PMID: 26580012 PMCID: PMC4729200 DOI: 10.1038/nature16150] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 10/13/2015] [Indexed: 12/12/2022]
Abstract
Acorn worms, also known as enteropneust (literally, 'gut-breathing') hemichordates, are marine invertebrates that share features with echinoderms and chordates. Together, these three phyla comprise the deuterostomes. Here we report the draft genome sequences of two acorn worms, Saccoglossus kowalevskii and Ptychodera flava. By comparing them with diverse bilaterian genomes, we identify shared traits that were probably inherited from the last common deuterostome ancestor, and then explore evolutionary trajectories leading from this ancestor to hemichordates, echinoderms and chordates. The hemichordate genomes exhibit extensive conserved synteny with amphioxus and other bilaterians, and deeply conserved non-coding sequences that are candidates for conserved gene-regulatory elements. Notably, hemichordates possess a deuterostome-specific genomic cluster of four ordered transcription factor genes, the expression of which is associated with the development of pharyngeal 'gill' slits, the foremost morphological innovation of early deuterostomes, and is probably central to their filter-feeding lifestyle. Comparative analysis reveals numerous deuterostome-specific gene novelties, including genes found in deuterostomes and marine microbes, but not other animals. The putative functions of these genes can be linked to physiological, metabolic and developmental specializations of the filter-feeding ancestor.
Collapse
Affiliation(s)
- Oleg Simakov
- Molecular Genetics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan.,Department of Molecular Evolution, Centre for Organismal Studies, University of Heidelberg, 69115 Heidelberg, Germany
| | - Takeshi Kawashima
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | | | - Jerry Jenkins
- HudsonAlpha Institute of Biotechnology, Huntsville, Alabama 35806, USA
| | - Ryo Koyanagi
- DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Therese Mitros
- Department of Molecular and Cell Biology, University of California, Berkeley California 94720-3200, USA
| | - Kanako Hisata
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Jessen Bredeson
- Department of Molecular and Cell Biology, University of California, Berkeley California 94720-3200, USA
| | - Eiichi Shoguchi
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Fuki Gyoja
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Jia-Xing Yue
- Department of Ecology and Evolutionary Biology, Rice University, Houston, Texas 77005, USA
| | - Yi-Chih Chen
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Robert M Freeman
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Akane Sasaki
- Marine Biological Laboratory, Graduate School of Science, Hiroshima University, Onomichi, Hiroshima 722-0073, Japan
| | - Tomoe Hikosaka-Katayama
- Natural Science Center for Basic Research and Development, Gene Science Division, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | - Atsuko Sato
- Marine Biological Association of the UK, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK
| | - Manabu Fujie
- DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Kenneth W Baughman
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Judith Levine
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, California 93950, USA
| | - Paul Gonzalez
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, California 93950, USA
| | - Christopher Cameron
- Départment de sciences biologiques, University of Montreal, Quebec H3C 3J7, Canada
| | - Jens H Fritzenwanker
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, California 93950, USA
| | - Ariel M Pani
- University of North Caroline at Chapel Hill, North Carolina 27599, USA
| | - Hiroki Goto
- DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Miyuki Kanda
- DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Nana Arakaki
- DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Shinichi Yamasaki
- DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Jiaxin Qu
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, MS BCM226, Houston, Texas 77030, USA
| | - Andrew Cree
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, MS BCM226, Houston, Texas 77030, USA
| | - Yan Ding
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, MS BCM226, Houston, Texas 77030, USA
| | - Huyen H Dinh
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, MS BCM226, Houston, Texas 77030, USA
| | - Shannon Dugan
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, MS BCM226, Houston, Texas 77030, USA
| | - Michael Holder
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, MS BCM226, Houston, Texas 77030, USA
| | - Shalini N Jhangiani
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, MS BCM226, Houston, Texas 77030, USA
| | - Christie L Kovar
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, MS BCM226, Houston, Texas 77030, USA
| | - Sandra L Lee
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, MS BCM226, Houston, Texas 77030, USA
| | - Lora R Lewis
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, MS BCM226, Houston, Texas 77030, USA
| | - Donna Morton
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, MS BCM226, Houston, Texas 77030, USA
| | - Lynne V Nazareth
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, MS BCM226, Houston, Texas 77030, USA
| | - Geoffrey Okwuonu
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, MS BCM226, Houston, Texas 77030, USA
| | - Jireh Santibanez
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, MS BCM226, Houston, Texas 77030, USA
| | - Rui Chen
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, MS BCM226, Houston, Texas 77030, USA
| | - Stephen Richards
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, MS BCM226, Houston, Texas 77030, USA
| | - Donna M Muzny
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, MS BCM226, Houston, Texas 77030, USA
| | - Andrew Gillis
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Leonid Peshkin
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Michael Wu
- Department of Molecular and Cell Biology, University of California, Berkeley California 94720-3200, USA
| | - Tom Humphreys
- Institute for Biogenesis Research, University of Hawaii, Hawaii 96822, USA
| | - Yi-Hsien Su
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Nicholas H Putnam
- Department of Ecology and Evolutionary Biology, Rice University, Houston, Texas 77005, USA
| | - Jeremy Schmutz
- HudsonAlpha Institute of Biotechnology, Huntsville, Alabama 35806, USA
| | - Asao Fujiyama
- National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Jr-Kai Yu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Kunifumi Tagawa
- Marine Biological Laboratory, Graduate School of Science, Hiroshima University, Onomichi, Hiroshima 722-0073, Japan
| | - Kim C Worley
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, MS BCM226, Houston, Texas 77030, USA
| | - Richard A Gibbs
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, MS BCM226, Houston, Texas 77030, USA
| | - Marc W Kirschner
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Christopher J Lowe
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, California 93950, USA
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Daniel S Rokhsar
- Molecular Genetics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan.,Department of Molecular and Cell Biology, University of California, Berkeley California 94720-3200, USA.,US Department of Energy Joint Genome Institute, Walnut Creek, California 94598, USA
| | - John Gerhart
- Department of Molecular and Cell Biology, University of California, Berkeley California 94720-3200, USA
| |
Collapse
|
26
|
Matassi G, Imai JH, Di Gregorio A. Molecular phylogeny of four homeobox genes from the purple sea star Pisaster ochraceus. Dev Genes Evol 2015; 225:359-65. [PMID: 26432455 DOI: 10.1007/s00427-015-0516-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 09/04/2015] [Indexed: 11/29/2022]
Abstract
Homeobox genes cloned from the purple sea star Pisaster ochraceus (Phylum Echinodermata/Class Asteroidea) were used along with related sequences available from members of other representative animal phyla to generate molecular phylogenies for Distal-less/Dlx, Hox5, Hox7, and Hox9/10 homeobox genes. Phylogenetic relationships were inferred based on the predicted 60 amino acid homeodomain, using amino acid (AA) and nucleotide (NT) models as well as the recently developed codon substitution models of sequence evolution. The resulting phylogenetic trees were mostly congruent with the consensus species-tree, grouping these newly identified genes with those isolated from other Asteroidea. This analysis also allowed a preliminary comparison of the performance of codon models with that of NT and AA evolutionary models in the inference of homeobox phylogeny. We found that, overall, the NT models displayed low reliability in recovering major clades at the Superphylum/Phylum level, and that codon models were slightly more dependable than AA models. Remarkably, in the majority of cases, codon substitution models seemed to outperform both AA and NT models at both the Class level and homeobox paralogy-group level of classification.
Collapse
Affiliation(s)
- Giorgio Matassi
- Department of Agricultural and Environmental Sciences, University of Udine, Via delle Scienze 208, 33100, Udine, Italy.
| | - Janice Hitomi Imai
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
| | - Anna Di Gregorio
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA. .,Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, 345 E 24th Street, New York, NY, 10010, USA.
| |
Collapse
|
27
|
Kikuchi M, Omori A, Kurokawa D, Akasaka K. Patterning of anteroposterior body axis displayed in the expression of Hox genes in sea cucumber Apostichopus japonicus. Dev Genes Evol 2015; 225:275-86. [PMID: 26250612 DOI: 10.1007/s00427-015-0510-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Accepted: 07/01/2015] [Indexed: 12/28/2022]
Abstract
The presence of an anteroposterior body axis is a fundamental feature of bilateria. Within this group, echinoderms have secondarily evolved pentameral symmetric body plans. Although all echinoderms present bilaterally symmetric larval stages, they dramatically rearrange their body axis and develop a pentaradial body plan during metamorphosis. Therefore, the location of their anteroposterior body axis in adult forms remains a contentious issue. Unlike other echinoderms, sea cucumbers present an obvious anteroposterior axis not rearranged during metamorphosis, thus representing an interesting group to study their anteroposterior axis patterning. Hox genes are known to play a broadly conserved role in anteroposterior axis patterning in deuterostomes. Here, we report the expression patterns of Hox genes from early development to pentactula stage in sea cucumber. In early larval stages, five Hox genes (AjHox1, AjHox7, AjHox8, AjHox11/13a, and AjHox11/13b) were expressed sequentially along the archenteron, suggesting that the role of anteroposterior patterning of the Hox genes is conserved in bilateral larvae of echinoderms. In doliolaria and pentactula stages, eight Hox genes (AjHox1, AjHox5, AjHox7, AjHox8, AjHox9/10, AjHox11/13a, AjHox11/13b, and AjHox11/13c) were expressed sequentially along the digestive tract, following a similar expression pattern to that found in the visceral mesoderm of other bilateria. Unlike other echinoderms, pentameral expression patterns of AjHox genes were not observed in sea cucumber. Altogether, we concluded that AjHox genes are involved in the patterning of the digestive tract in both larvae and metamorphosis of sea cucumbers. In addition, the anteroposterior axis in sea cucumbers might be patterned like that of other bilateria.
Collapse
Affiliation(s)
- Mani Kikuchi
- Misaki Marine Biological Station, Graduate School of Science, The University of Tokyo, 1024 Koajiro, Misaki, Miura, Kanagawa, 238-0225, Japan.
| | - Akihito Omori
- Misaki Marine Biological Station, Graduate School of Science, The University of Tokyo, 1024 Koajiro, Misaki, Miura, Kanagawa, 238-0225, Japan
| | - Daisuke Kurokawa
- Misaki Marine Biological Station, Graduate School of Science, The University of Tokyo, 1024 Koajiro, Misaki, Miura, Kanagawa, 238-0225, Japan
| | - Koji Akasaka
- Misaki Marine Biological Station, Graduate School of Science, The University of Tokyo, 1024 Koajiro, Misaki, Miura, Kanagawa, 238-0225, Japan
| |
Collapse
|
28
|
The deuterostome context of chordate origins. Nature 2015; 520:456-65. [PMID: 25903627 DOI: 10.1038/nature14434] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 02/03/2015] [Indexed: 01/08/2023]
Abstract
Our understanding of vertebrate origins is powerfully informed by comparative morphology, embryology and genomics of chordates, hemichordates and echinoderms, which together make up the deuterostome clade. Striking body-plan differences among these phyla have historically hindered the identification of ancestral morphological features, but recent progress in molecular genetics and embryology has revealed deep similarities in body-axis formation and organization across deuterostomes, at stages before morphological differences develop. These developmental genetic features, along with robust support of pharyngeal gill slits as a shared deuterostome character, provide the foundation for the emergence of chordates.
Collapse
|