1
|
Zhang M, Feng J, Li Y, Qin PZ, Chai Y. Generation of tamoxifen-inducible Tfap2b-CreER T2 mice using CRISPR-Cas9. Genesis 2024; 62:e23582. [PMID: 38069547 PMCID: PMC11021159 DOI: 10.1002/dvg.23582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 01/11/2024]
Abstract
Tfap2b, a pivotal transcription factor, plays critical roles within neural crest cells and their derived lineage. To unravel the intricate lineage dynamics and contribution of these Tfap2b+ cells during craniofacial development, we established a Tfap2b-CreERT2 knock-in transgenic mouse line using the CRISPR-Cas9-mediated homologous direct repair. By breeding with tdTomato reporter mice and initiating Cre activity through tamoxifen induction at distinct developmental time points, we show the Tfap2b lineage within the key neural crest-derived domains, such as the facial mesenchyme, midbrain, cerebellum, spinal cord, and limbs. Notably, the migratory neurons stemming from the dorsal root ganglia are visible subsequent to Cre activity initiated at E8.5. Intriguingly, Tfap2b+ cells, serving as the progenitors for limb development, show activity predominantly commencing at E10.5. Across the mouse craniofacial landscape, Tfap2b exhibits a widespread presence throughout the facial organs. Here we validate its role as a marker of progenitors in tooth development and have confirmed that this process initiates from E12.5. Our study not only validates the Tfap2b-CreERT2 transgenic line, but also provides a powerful tool for lineage tracing and genetic targeting of Tfap2b-expressing cells and their progenitor in a temporally and spatially regulated manner during the intricate process of development and organogenesis.
Collapse
Affiliation(s)
- Mingyi Zhang
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Jifan Feng
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Yue Li
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Peter Z. Qin
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
2
|
Jing J, Feng J, Yuan Y, Guo T, Lei J, Pei F, Ho TV, Chai Y. Spatiotemporal single-cell regulatory atlas reveals neural crest lineage diversification and cellular function during tooth morphogenesis. Nat Commun 2022; 13:4803. [PMID: 35974052 PMCID: PMC9381504 DOI: 10.1038/s41467-022-32490-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 08/02/2022] [Indexed: 11/10/2022] Open
Abstract
Cranial neural crest cells are an evolutionary innovation of vertebrates for craniofacial development and function, yet the mechanisms that govern the cell fate decisions of postmigratory cranial neural crest cells remain largely unknown. Using the mouse molar as a model, we perform single-cell transcriptome profiling to interrogate the cell fate diversification of postmigratory cranial neural crest cells. We reveal the landscape of transcriptional heterogeneity and define the specific cellular domains during the progression of cranial neural crest cell-derived dental lineage diversification, and find that each domain makes a specific contribution to distinct molar mesenchymal tissues. Furthermore, IGF signaling-mediated cell-cell interaction between the cellular domains highlights the pivotal role of autonomous regulation of the dental mesenchyme. Importantly, we reveal cell-type-specific gene regulatory networks in the dental mesenchyme and show that Foxp4 is indispensable for the differentiation of periodontal ligament. Our single-cell atlas provides comprehensive mechanistic insight into the cell fate diversification process of the cranial neural crest cell-derived odontogenic populations.
Collapse
Affiliation(s)
- Junjun Jing
- grid.42505.360000 0001 2156 6853Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033 USA ,grid.13291.380000 0001 0807 1581State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Chengdu, Sichuan 610041 China
| | - Jifan Feng
- grid.42505.360000 0001 2156 6853Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033 USA
| | - Yuan Yuan
- grid.42505.360000 0001 2156 6853Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033 USA
| | - Tingwei Guo
- grid.42505.360000 0001 2156 6853Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033 USA
| | - Jie Lei
- grid.42505.360000 0001 2156 6853Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033 USA
| | - Fei Pei
- grid.42505.360000 0001 2156 6853Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033 USA
| | - Thach-Vu Ho
- grid.42505.360000 0001 2156 6853Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033 USA
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, 90033, USA.
| |
Collapse
|
3
|
Chen X, Li Y, Paiboonrungruang C, Li Y, Peters H, Kist R, Xiong Z. PAX9 in Cancer Development. Int J Mol Sci 2022; 23:5589. [PMID: 35628401 PMCID: PMC9147292 DOI: 10.3390/ijms23105589] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/12/2022] [Accepted: 05/14/2022] [Indexed: 02/05/2023] Open
Abstract
Paired box 9 (PAX9) is a transcription factor of the PAX family functioning as both a transcriptional activator and repressor. Its functional roles in the embryonic development of various tissues and organs have been well studied. However, its roles and molecular mechanisms in cancer development are largely unknown. Here, we review the current understanding of PAX9 expression, upstream regulation of PAX9, and PAX9 downstream events in cancer development. Promoter hypermethylation, promoter SNP, microRNA, and inhibition of upstream pathways (e.g., NOTCH) result in PAX9 silencing or downregulation, whereas gene amplification and an epigenetic axis upregulate PAX9 expression. PAX9 may contribute to carcinogenesis through dysregulation of its transcriptional targets and related molecular pathways. In summary, extensive studies on PAX9 in its cellular and tissue contexts are warranted in various cancers, in particular, HNSCC, ESCC, lung cancer, and cervical SCC.
Collapse
Affiliation(s)
- Xiaoxin Chen
- Cancer Research Program, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, 700 George Street, Durham, NC 27707, USA; (X.C.); (Y.L.); (C.P.); (Y.L.)
| | - Yahui Li
- Cancer Research Program, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, 700 George Street, Durham, NC 27707, USA; (X.C.); (Y.L.); (C.P.); (Y.L.)
| | - Chorlada Paiboonrungruang
- Cancer Research Program, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, 700 George Street, Durham, NC 27707, USA; (X.C.); (Y.L.); (C.P.); (Y.L.)
| | - Yong Li
- Cancer Research Program, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, 700 George Street, Durham, NC 27707, USA; (X.C.); (Y.L.); (C.P.); (Y.L.)
- Department of Thoracic Surgery, National Cancer Center, Cancer Hospital of Chinese Academy of Medical Sciences, 17 Panjiayuan Nanli Road, Beijing 100021, China
| | - Heiko Peters
- Newcastle University Biosciences Institute, Newcastle upon Tyne NE2 4BW, UK;
| | - Ralf Kist
- Newcastle University Biosciences Institute, Newcastle upon Tyne NE2 4BW, UK;
- School of Dental Sciences, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4BW, UK
| | - Zhaohui Xiong
- Cancer Research Program, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, 700 George Street, Durham, NC 27707, USA; (X.C.); (Y.L.); (C.P.); (Y.L.)
| |
Collapse
|
4
|
Yamazaki Y, Urrutia R, Franco LM, Giliani S, Zhang K, Alazami AM, Dobbs AK, Masneri S, Joshi A, Otaizo-Carrasquero F, Myers TG, Ganesan S, Bondioni MP, Ho ML, Marks C, Alajlan H, Mohammed RW, Zou F, Valencia CA, Filipovich AH, Facchetti F, Boisson B, Azzari C, Al-Saud BK, Al-Mousa H, Casanova JL, Abraham RS, Notarangelo LD. PAX1 is essential for development and function of the human thymus. Sci Immunol 2020; 5:5/44/eaax1036. [PMID: 32111619 DOI: 10.1126/sciimmunol.aax1036] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 01/28/2020] [Indexed: 02/05/2023]
Abstract
We investigated the molecular and cellular basis of severe combined immunodeficiency (SCID) in six patients with otofaciocervical syndrome type 2 who failed to attain T cell reconstitution after allogeneic hematopoietic stem cell transplantation, despite successful engraftment in three of them. We identified rare biallelic PAX1 rare variants in all patients. We demonstrated that these mutant PAX1 proteins have an altered conformation and flexibility of the paired box domain and reduced transcriptional activity. We generated patient-derived induced pluripotent stem cells and differentiated them into thymic epithelial progenitor cells and found that they have an altered transcriptional profile, including for genes involved in the development of the thymus and other tissues derived from pharyngeal pouches. These results identify biallelic, loss-of-function PAX1 mutations as the cause of a syndromic form of SCID due to altered thymus development.
Collapse
Affiliation(s)
- Yasuhiro Yamazaki
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Raul Urrutia
- Human and Molecular Genetics Center, Medical College Wisconsin, Milwaukee, MI, USA
| | - Luis M Franco
- Systemic Autoimmunity Branch, NIAMS, NIH, Bethesda, MD 20892, USA
| | - Silvia Giliani
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.,Cytogenetic and Medical Genetics Unit, "A. Nocivelli" Institute for Molecular Medicine, Spedali Civili Hospital, Brescia, Italy
| | - Kejian Zhang
- Coyote Bioscience USA Inc., San Jose, CA 95138, USA.,Division of Human Genetics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Anas M Alazami
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia.,Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - A Kerry Dobbs
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Stefania Masneri
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.,Cytogenetic and Medical Genetics Unit, "A. Nocivelli" Institute for Molecular Medicine, Spedali Civili Hospital, Brescia, Italy
| | - Avni Joshi
- Division of Pediatric Allergy and Immunology, Mayo Clinic Children's Center, Rochester, MN, USA
| | | | - Timothy G Myers
- Genomic Technologies Section, NIAID, NIH, Bethesda, MD 20892, USA
| | - Sundar Ganesan
- Research Technologies Branch, DIR, NIAID, NIH, Bethesda, MD 20892, USA
| | - Maria Pia Bondioni
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Mai Lan Ho
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | - Huda Alajlan
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | | | - Fanggeng Zou
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA.,GeneDx Inc., Gaithersburg, MD 20877, USA
| | - C Alexander Valencia
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA.,PerkinElmer Genomics, Pittsburgh, PA 15275, USA.,Department of Geriatrics, West China Hospital, Sichuan University, Chengdu, China.,Aperiomics Inc., Sterling, VA 20166, USA
| | - Alexandra H Filipovich
- Cancer and Blood Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Fabio Facchetti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Bertrand Boisson
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch INSERM, Necker Hospital for Sick Children, Paris, France.,Paris Descartes University, Imagine Institute, Paris, France
| | - Chiara Azzari
- Pediatric Immunology, Department of Health Sciences, University of Florence, Florence, Italy.,Meyer Children's Hospital, Florence, Italy
| | - Bander K Al-Saud
- Alfaisal University, Riyadh, Saudi Arabia.,Department of Pediatrics, Allergy and Immunology Section, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Hamoud Al-Mousa
- Alfaisal University, Riyadh, Saudi Arabia.,Department of Pediatrics, Allergy and Immunology Section, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Jean Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch INSERM, Necker Hospital for Sick Children, Paris, France.,Paris Descartes University, Imagine Institute, Paris, France.,Pediatrics Hematology-Immunology Unit, Necker Hospital for Sick Children, Paris, France.,Howard Hughes Medical Institute, New York, NY 10065, USA
| | - Roshini S Abraham
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA.,Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
5
|
Tamoxifen exposure induces cleft palate in mice. Br J Oral Maxillofac Surg 2020; 59:52-57. [PMID: 32723574 DOI: 10.1016/j.bjoms.2020.07.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 07/09/2020] [Indexed: 02/08/2023]
Abstract
Cleft palate is a common birth defect in mammals, which can be caused by genetic or environmental factors, or both. Decades have witnessed that many environmental exposures during gestation extremely increase the incidence of cleft palate. Tamoxifen (TAM), a widely-used drug in treating breast cancer, has been reported to be associated with craniofacial defects including micrognathia and cleft palate in humans. However, its exact effects on the developing palate remain unclear. Here we took advantage of a mouse model to explore how TAM affects palatal development at the molecular level. We showed that excess exposure of TAM in the early embryonic stages indeed leads to cleft palate in mice. RNA-sequencing results strongly suggest the involvement of mitogen-activated protein kinase (MAPK) signalling in TAM-induced cleft palate. Interestingly, in the anterior portion of the TAM-treated palatal shelf, phosphorylated (p)-AKT and p-ERK1/2 were activated but p-p38 was inhibited, while in the posterior palate, the p-AKT increased but the levels of p-p38 and p-JNK decreased. We conclude that excess TAM exposure causes cleft palate defects in mice by regulating MAPK pathways, which implicates the importance of tightly-regulated MAPK signalling in palatal development. This study provides a basis for further exploration of the molecular aetiology of cleft palate defects caused by environmental factors and, based on our results, we would give a serious warning regarding prescription of TAM and potential cleft palate defects in animal models involving the inducible Cre-LoxP system.
Collapse
|
6
|
Dong Z, Long J, Huang L, Hu Z, Chen P, Hu N, Zheng N, Huang X, Lu C, Pan M. Construction and application of an HSP70 promoter-inducible genome editing system in transgenic silkworm to induce resistance to Nosema bombycis. Appl Microbiol Biotechnol 2019; 103:9583-9592. [DOI: 10.1007/s00253-019-10135-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 08/19/2019] [Accepted: 09/10/2019] [Indexed: 01/08/2023]
|
7
|
Iglesias-Bartolome R, Uchiyama A, Molinolo AA, Abusleme L, Brooks SR, Callejas-Valera JL, Edwards D, Doci C, Asselin-Labat ML, Onaitis MW, Moutsopoulos NM, Gutkind JS, Morasso MI. Transcriptional signature primes human oral mucosa for rapid wound healing. Sci Transl Med 2019; 10:10/451/eaap8798. [PMID: 30045979 DOI: 10.1126/scitranslmed.aap8798] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 02/13/2018] [Accepted: 06/20/2018] [Indexed: 12/15/2022]
Abstract
Oral mucosal wound healing has long been regarded as an ideal system of wound resolution. However, the intrinsic characteristics that mediate optimal healing at mucosal surfaces are poorly understood, particularly in humans. We present a unique comparative analysis between human oral and cutaneous wound healing using paired and sequential biopsies during the repair process. Using molecular profiling, we determined that wound-activated transcriptional networks are present at basal state in the oral mucosa, priming the epithelium for wound repair. We show that oral mucosal wound-related networks control epithelial cell differentiation and regulate inflammatory responses, highlighting fundamental global mechanisms of repair and inflammatory responses in humans. The paired comparative analysis allowed for the identification of differentially expressed SOX2 (sex-determining region Y-box 2) and PITX1 (paired-like homeodomain 1) transcriptional regulators in oral versus skin keratinocytes, conferring a unique identity to oral keratinocytes. We show that SOX2 and PITX1 transcriptional function has the potential to reprogram skin keratinocytes to increase cell migration and improve wound resolution in vivo. Our data provide insights into therapeutic targeting of chronic and nonhealing wounds based on greater understanding of the biology of healing in human mucosal and cutaneous environments.
Collapse
Affiliation(s)
- Ramiro Iglesias-Bartolome
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD 20892, USA.,Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, Bethesda, MD 20892, USA
| | - Akihiko Uchiyama
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD 20892, USA
| | - Alfredo A Molinolo
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, Bethesda, MD 20892, USA.,Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Loreto Abusleme
- Oral Immunity and Inflammation Unit, National Institute of Dental and Craniofacial Research, Bethesda, MD 20892, USA
| | - Stephen R Brooks
- Biodata Mining and Discovery Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD 20892, USA
| | - Juan Luis Callejas-Valera
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, Bethesda, MD 20892, USA.,Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Dean Edwards
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, Bethesda, MD 20892, USA
| | - Colleen Doci
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, Bethesda, MD 20892, USA
| | | | - Mark W Onaitis
- Moores Cancer Center, University California, San Diego, La Jolla, CA 92093, USA
| | - Niki M Moutsopoulos
- Oral Immunity and Inflammation Unit, National Institute of Dental and Craniofacial Research, Bethesda, MD 20892, USA
| | - J S Gutkind
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, Bethesda, MD 20892, USA. .,Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Maria I Morasso
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD 20892, USA.
| |
Collapse
|
8
|
Twenty-Seven Tamoxifen-Inducible iCre-Driver Mouse Strains for Eye and Brain, Including Seventeen Carrying a New Inducible-First Constitutive-Ready Allele. Genetics 2019; 211:1155-1177. [PMID: 30765420 PMCID: PMC6456315 DOI: 10.1534/genetics.119.301984] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 02/11/2019] [Indexed: 12/25/2022] Open
Abstract
To understand gene function, the cre/loxP conditional system is the most powerful available for temporal and spatial control of expression in mouse. However, the research community requires more cre recombinase expressing transgenic mouse strains (cre-drivers) that restrict expression to specific cell types. To address these problems, a high-throughput method for large-scale production that produces high-quality results is necessary. Further, endogenous promoters need to be chosen that drive cell type specific expression, or we need to further focus the expression by manipulating the promoter. Here we test the suitability of using knock-ins at the docking site 5′ of Hprt for rapid development of numerous cre-driver strains focused on expression in adulthood, using an improved cre tamoxifen inducible allele (icre/ERT2), and testing a novel inducible-first, constitutive-ready allele (icre/f3/ERT2/f3). In addition, we test two types of promoters either to capture an endogenous expression pattern (MaxiPromoters), or to restrict expression further using minimal promoter element(s) designed for expression in restricted cell types (MiniPromoters). We provide new cre-driver mouse strains with applicability for brain and eye research. In addition, we demonstrate the feasibility and applicability of using the locus 5′ of Hprt for the rapid generation of substantial numbers of cre-driver strains. We also provide a new inducible-first constitutive-ready allele to further speed cre-driver generation. Finally, all these strains are available to the research community through The Jackson Laboratory.
Collapse
|
9
|
Yu N, Yang J, Mishina Y, Giannobile WV. Genome Editing: A New Horizon for Oral and Craniofacial Research. J Dent Res 2018; 98:36-45. [PMID: 30354846 DOI: 10.1177/0022034518805978] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Precise and efficient genetic manipulations have enabled researchers to understand gene functions in disease and development, providing a platform to search for molecular cures. Over the past decade, the unprecedented advancement of genome editing techniques has revolutionized the biological research fields. Early genome editing strategies involved many naturally occurring nucleases, including meganucleases, zinc finger nucleases, and transcription activator-like effector-based nucleases. More recently, the clustered regularly interspaced short palindromic repeats (CRISPR) / CRISPR-associated nucleases (CRISPR/Cas) system has greatly enriched genetic manipulation methods in conducting research. Those nucleases generate double-strand breaks in the target gene sequences and then utilize DNA repair mechanisms to permit precise yet versatile genetic manipulations. The oral and craniofacial field harbors a plethora of diseases and developmental defects that require genetic models that can exploit these genome editing techniques. This review provides an overview of the genome editing techniques, particularly the CRISPR/Cas9 technique, for the oral and craniofacial research community. We also discuss the details about the emerging applications of genome editing in oral and craniofacial biology.
Collapse
Affiliation(s)
- N Yu
- 1 Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - J Yang
- 2 Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, USA.,3 The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Y Mishina
- 2 Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - W V Giannobile
- 1 Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA.,4 Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
10
|
Abstract
The tooth root is an integral, functionally important part of our dentition. The formation of a functional root depends on epithelial-mesenchymal interactions and integration of the root with the jaw bone, blood supply and nerve innervations. The root development process therefore offers an attractive model for investigating organogenesis. Understanding how roots develop and how they can be bioengineered is also of great interest in the field of regenerative medicine. Here, we discuss recent advances in understanding the cellular and molecular mechanisms underlying tooth root formation. We review the function of cellular structure and components such as Hertwig's epithelial root sheath, cranial neural crest cells and stem cells residing in developing and adult teeth. We also highlight how complex signaling networks together with multiple transcription factors mediate tissue-tissue interactions that guide root development. Finally, we discuss the possible role of stem cells in establishing the crown-to-root transition, and provide an overview of root malformations and diseases in humans.
Collapse
Affiliation(s)
- Jingyuan Li
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, Los Angeles, CA 90033, USA.,Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing 100050, People's Republic of China
| | - Carolina Parada
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, Los Angeles, CA 90033, USA
| | - Yang Chai
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, Los Angeles, CA 90033, USA
| |
Collapse
|
11
|
Perrin A, Rousseau J, Tremblay JP. Increased Expression of Laminin Subunit Alpha 1 Chain by dCas9-VP160. MOLECULAR THERAPY. NUCLEIC ACIDS 2016; 6:68-79. [PMID: 28325301 PMCID: PMC5363410 DOI: 10.1016/j.omtn.2016.11.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 11/20/2016] [Accepted: 11/21/2016] [Indexed: 12/29/2022]
Abstract
Laminin-111 protein complex links the extracellular matrix to integrin α7β1 in sarcolemma, thus replacing in dystrophic muscles links normally insured by the dystrophin complex. Laminin-111 injection in mdx mouse stabilized sarcolemma, restored serum creatine kinase to wild-type levels, and protected muscles from exercised-induced damages. These results suggested that increased laminin-111 is a potential therapy for DMD. Laminin subunit beta 1 and laminin subunit gamma 1 are expressed in adult human muscle, but laminin subunit alpha 1 (LAMA1) gene is expressed only during embryogenesis. We thus developed an alternative method to laminin-111 protein repeated administration by inducing expression of the endogenous mouse Lama1 gene. This was done with the CRSPR/Cas9 system, i.e., by targeting the Lama1 promoter with one or several gRNAs and a dCas9 coupled with the VP160 transcription activation domain. Lama1 mRNA (qRT-PCR) and proteins (immunohistochemistry and western blot) were not detected in the control C2C12 myoblasts and in control muscles. However, significant expression was observed in cells transfected and in mouse muscles electroporated with plasmids coding for dCas9-VP160 and a gRNA. Larger synergic increases were observed by using two or three gRNAs. The increased Lama1 expression did not modify the expression of the α7 and β1 integrins. Increased expression of Lama1 by the CRISPR/Cas9 system will have to be further investigated by systemic delivery of the CRISPR/Cas9 components to verify whether this could be a treatment for several myopathies.
Collapse
Affiliation(s)
- Arnaud Perrin
- Unité de Génétique humaine, Axe Neurosciences, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, 2705 Boulevard Laurier, QC G1V4G2, Canada; Department of Molecular Medicine, Faculty of Medicine, Laval University, QC G1V0A6, Canada
| | - Joël Rousseau
- Unité de Génétique humaine, Axe Neurosciences, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, 2705 Boulevard Laurier, QC G1V4G2, Canada; Department of Molecular Medicine, Faculty of Medicine, Laval University, QC G1V0A6, Canada
| | - Jacques P Tremblay
- Unité de Génétique humaine, Axe Neurosciences, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, 2705 Boulevard Laurier, QC G1V4G2, Canada; Department of Molecular Medicine, Faculty of Medicine, Laval University, QC G1V0A6, Canada.
| |
Collapse
|