1
|
Hartig EI, Day M, Jarysta A, Tarchini B. Proteins required for stereocilia elongation during mammalian hair cell development ensure precise and steady heights during adult life. Proc Natl Acad Sci U S A 2024; 121:e2405455121. [PMID: 39320919 PMCID: PMC11459194 DOI: 10.1073/pnas.2405455121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/05/2024] [Indexed: 09/26/2024] Open
Abstract
The hair bundle, or stereocilia bundle, is the mechanosensory compartment of hair cells (HCs) in the inner ear. To date, most mechanistic studies have focused on stereocilia bundle morphogenesis, and it remains unclear how this organelle critical for hearing preserves its precise dimensions during life in mammals. The GPSM2-GNAI complex occupies the distal tip of stereocilia in the tallest row and is required for their elongation during development. Here, we ablate GPSM2-GNAI in adult mouse HCs after normal stereocilia elongation is completed. We observe a progressive height reduction of the tallest row stereocilia totaling ~600 nm after 12 wk in Gpsm2 mutant inner HCs. To measure GPSM2 longevity at tips, we generated a HaloTag-Gpsm2 mouse strain and performed pulse-chase experiments in vivo. Estimates using pulse-chase or tracking loss of GPSM2 immunolabeling following Gpsm2 inactivation suggest that GPSM2 is relatively long-lived at stereocilia tips with a half-life of 9 to 10 d. Height reduction coincides with dampened auditory brainstem responses evoked by low-frequency stimuli in particular. Finally, GPSM2 is required for normal tip enrichment of elongation complex (EC) partners MYO15A, WHRN, and EPS8, mirroring their established codependence during development. Taken together, our results show that the EC is also essential in mature HCs to ensure precise and stable stereocilia height and for sensitive detection of a full range of sound frequencies.
Collapse
Affiliation(s)
- Elli I. Hartig
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA02111
- The Jackson Laboratory, Bar Harbor, ME04609
| | | | | | - Basile Tarchini
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA02111
- The Jackson Laboratory, Bar Harbor, ME04609
| |
Collapse
|
2
|
Pan Y, Li S, He S, Wang G, Li C, Liu Z, Xiang M. Fgf8 P2A-3×GFP/+: A New Genetic Mouse Model for Specifically Labeling and Sorting Cochlear Inner Hair Cells. Neurosci Bull 2023; 39:1762-1774. [PMID: 37233921 PMCID: PMC10661496 DOI: 10.1007/s12264-023-01069-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/08/2023] [Indexed: 05/27/2023] Open
Abstract
The cochlear auditory epithelium contains two types of sound receptors, inner hair cells (IHCs) and outer hair cells (OHCs). Mouse models for labelling juvenile and adult IHCs or OHCs exist; however, labelling for embryonic and perinatal IHCs or OHCs are lacking. Here, we generated a new knock-in Fgf8P2A-3×GFP/+ (Fgf8GFP/+) strain, in which the expression of a series of three GFP fragments is controlled by endogenous Fgf8 cis-regulatory elements. After confirming that GFP expression accurately reflects the expression of Fgf8, we successfully obtained both embryonic and neonatal IHCs with high purity, highlighting the power of Fgf8GFP/+. Furthermore, our fate-mapping analysis revealed, unexpectedly, that IHCs are also derived from inner ear progenitors expressing Insm1, which is currently regarded as an OHC marker. Thus, besides serving as a highly favorable tool for sorting early IHCs, Fgf8GFP/+ will facilitate the isolation of pure early OHCs by excluding IHCs from the entire hair cell pool.
Collapse
Affiliation(s)
- Yi Pan
- Department of Otolaryngology and Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Shuting Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shunji He
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Guangqin Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zhiyong Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, 201210, China.
| | - Mingliang Xiang
- Department of Otolaryngology and Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
3
|
Sun MR, Steward AC, Sweet EA, Martin AA, Lipinski RJ. Developmental malformations resulting from high-dose maternal tamoxifen exposure in the mouse. PLoS One 2021; 16:e0256299. [PMID: 34403436 PMCID: PMC8370643 DOI: 10.1371/journal.pone.0256299] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 08/03/2021] [Indexed: 12/27/2022] Open
Abstract
Tamoxifen is an estrogen receptor (ER) ligand with widespread use in clinical and basic research settings. Beyond its application in treating ER-positive cancer, tamoxifen has been co-opted into a powerful approach for temporal-specific genetic alteration. The use of tamoxifen-inducible Cre-recombinase mouse models to examine genetic, molecular, and cellular mechanisms of development and disease is now prevalent in biomedical research. Understanding off-target effects of tamoxifen will inform its use in both clinical and basic research applications. Here, we show that prenatal tamoxifen exposure can cause structural birth defects in the mouse. Administration of a single 200 mg/kg tamoxifen dose to pregnant wildtype C57BL/6J mice at gestational day 9.75 caused cleft palate and limb malformations in the fetuses, including posterior digit duplication, reduction, or fusion. These malformations were highly penetrant and consistent across independent chemical manufacturers. As opposed to 200 mg/kg, a single dose of 50 mg/kg tamoxifen at the same developmental stage did not result in overt structural malformations. Demonstrating that prenatal tamoxifen exposure at a specific time point causes dose-dependent developmental abnormalities, these findings argue for more considerate application of tamoxifen in Cre-inducible systems and further investigation of tamoxifen’s mechanisms of action.
Collapse
Affiliation(s)
- Miranda R. Sun
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Austin C. Steward
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Emma A. Sweet
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Alexander A. Martin
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Robert J. Lipinski
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States of America
- * E-mail:
| |
Collapse
|
4
|
Li C, Li X, Bi Z, Sugino K, Wang G, Zhu T, Liu Z. Comprehensive transcriptome analysis of cochlear spiral ganglion neurons at multiple ages. eLife 2020; 9:50491. [PMID: 31913118 PMCID: PMC7299348 DOI: 10.7554/elife.50491] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 01/07/2020] [Indexed: 12/26/2022] Open
Abstract
Inner ear cochlear spiral ganglion neurons (SGNs) transmit sound information to the brainstem. Recent single cell RNA-Seq studies have revealed heterogeneities within SGNs. Nonetheless, much remains unknown about the transcriptome of SGNs, especially which genes are specifically expressed in SGNs. To address these questions, we needed a deeper and broader gene coverage than that in previous studies. We performed bulk RNA-Seq on mouse SGNs at five ages, and on two reference cell types (hair cells and glia). Their transcriptome comparison identified genes previously unknown to be specifically expressed in SGNs. To validate our dataset and provide useful genetic tools for this research field, we generated two knockin mouse strains: Scrt2-P2A-tdTomato and Celf4-3xHA-P2A-iCreER-T2A-EGFP. Our comprehensive analysis confirmed the SGN-selective expression of the candidate genes, testifying to the quality of our transcriptome data. These two mouse strains can be used to temporally label SGNs or to sort them.
Collapse
Affiliation(s)
- Chao Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Xiang Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Zhenghong Bi
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Ken Sugino
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, United States
| | - Guangqin Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Tong Zhu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Zhiyong Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
| |
Collapse
|