1
|
Guo X, Luo J, Luo W, Du H, Zhao Y, Tao W, Li Z, Shehzadi K, Tao J, Liu J. Soil resource heterogeneity promotes species richness only at a fine scale at the early restoration of karst abandoned farmland. iScience 2024; 27:111408. [PMID: 39697595 PMCID: PMC11652898 DOI: 10.1016/j.isci.2024.111408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/27/2024] [Accepted: 11/13/2024] [Indexed: 12/20/2024] Open
Abstract
The relationship between heterogeneity and plant diversity remains unclear in low-resource karst. We made in situ observations at different spatial scales within a fixed plot on abandoned farmland that had been enclosed for 4 years. Species richness was spatially scale dependent, while species evenness remained consistently low across all scales. Species diversity was positively related to resource heterogeneity only at a fine scale (1 m × 1 m), mainly driven by an increase in the species richness of non-dominant groups. Resource heterogeneity reduced overall plant growth at a large scale. However, it reduced the growth of the dominant families (Asteraceae and Poaceae) at a fine scale, but promoted it at a large scale. Our results suggest that soil resource heterogeneity exerts a scale-dependent positive impact on species richness during the early restoration of abandoned farmland by low resource availability and highlight the importance of fine-scale ecological information in karst areas.
Collapse
Affiliation(s)
- Xuman Guo
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Jie Luo
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Weixue Luo
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, China
- Chongqing Jinfo Mountain Karst Ecosystem National Observation and Research Station, Southwest University, Chongqing 400715, China
| | - Haohan Du
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Yijie Zhao
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Wenjing Tao
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Zongfeng Li
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Kiran Shehzadi
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Jianping Tao
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, China
- Chongqing Jinfo Mountain Karst Ecosystem National Observation and Research Station, Southwest University, Chongqing 400715, China
| | - Jinchun Liu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, China
- Chongqing Jinfo Mountain Karst Ecosystem National Observation and Research Station, Southwest University, Chongqing 400715, China
| |
Collapse
|
2
|
Wojciechowski AA, Blair JM, Collins SL, Baer SG. Heterogeneity promotes resilience in restored prairie: Implications for the environmental heterogeneity hypothesis. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2024; 34:e3006. [PMID: 39030911 DOI: 10.1002/eap.3006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 03/04/2024] [Accepted: 04/22/2024] [Indexed: 07/22/2024]
Abstract
Enhancing resilience in formerly degraded ecosystems is an important goal of restoration ecology. However, evidence for the recovery of resilience and its underlying mechanisms require long-term experiments and comparison with reference ecosystems. We used data from an experimental prairie restoration that featured long-term soil heterogeneity manipulations and data from two long-term experiments located in a comparable remnant (reference) prairie to (1) quantify the recovery of ecosystem functioning (i.e., productivity) relative to remnant prairie, (2) compare the resilience of restored and remnant prairies to a natural drought, and (3) test whether soil heterogeneity enhances resilience of restored prairie. We compared sensitivity and legacy effects between prairie types (remnant and restored) and among four prairie sites that included two remnant prairie sites and prairie restored under homogeneous and heterogeneous soil conditions. We measured sensitivity and resilience as the proportional change in aboveground net primary productivity (ANPP) during and following drought (sensitivity and legacy effects, respectively) relative to average ANPP based on 4 pre-drought years (2014-2017). In nondrought years, total ANPP was similar between remnant and restored prairie, but remnant prairie had higher grass productivity and lower forb productivity compared with restored prairie. These ANPP patterns generally persisted during drought. The sensitivity of total ANPP to drought was similar between restored and remnant prairie, but grasses in the restored prairie were more sensitive to drought. Post-drought legacy effects were more positive in the restored prairie, and we attributed this to the more positive and less variable legacy response of forb ANPP in the restored prairie, especially in the heterogeneous soil treatment. Our results suggest that productivity recovers in restored prairie and exhibits similar sensitivity to drought as in remnant prairie. Furthermore, creating heterogeneity promotes forb productivity and enhances restored prairie resilience to drought.
Collapse
Affiliation(s)
- Ashley A Wojciechowski
- Kansas Biological Survey & Center for Ecological Research and Department of Ecology & Evolutionary Biology, University of Kansas, Lawrence, Kansas, USA
| | - John M Blair
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| | - Scott L Collins
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Sara G Baer
- Kansas Biological Survey & Center for Ecological Research and Department of Ecology & Evolutionary Biology, University of Kansas, Lawrence, Kansas, USA
| |
Collapse
|
3
|
Sturchio MA, Knapp AK. Ecovoltaic principles for a more sustainable, ecologically informed solar energy future. Nat Ecol Evol 2023; 7:1746-1749. [PMID: 37563466 DOI: 10.1038/s41559-023-02174-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Affiliation(s)
- Matthew A Sturchio
- Graduate Degree Program in Ecology, Department of Biology, Colorado State University, Fort Collins, CO, USA.
| | - Alan K Knapp
- Graduate Degree Program in Ecology, Department of Biology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
4
|
Funk JL, Kimball S, Nguyen MA, Lulow M, Vose GE. Interacting ecological filters influence success and functional composition in restored plant communities over time. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2023; 33:e2899. [PMID: 37335271 DOI: 10.1002/eap.2899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/05/2023] [Accepted: 05/18/2023] [Indexed: 06/21/2023]
Abstract
A trait-based community assembly framework has great potential to direct ecological restoration, but uncertainty over how traits and environmental factors interact to influence community composition over time limits the widespread application of this approach. In this study, we examined how the composition of seed mixes and environment (north- vs. south-facing slope aspect) influence functional composition and native plant cover over time in restored grassland and shrubland communities. Variation in native cover over 4 years was primarily driven by species mix, slope aspect, and a species mix by year interaction rather than an interaction between species mix and slope aspect as predicted. Although native cover was higher on wetter, north-facing slopes for most of the study, south-facing slopes achieved a similar cover (65%-70%) by year 4. While community-weighted mean (CWM) values generally became more resource conservative over time, we found shifts in particular traits across community types and habitats. For example, CWM for specific leaf area increased over time in grassland mixes. Belowground, CWM for root mass fraction increased while CWM for specific root length decreased across all seed mixes. Multivariate functional dispersion remained high in shrub-containing mixes throughout the study, which could enhance invasion resistance and recovery following disturbance. Functional diversity and species richness were initially higher in drier, south-facing slopes compared to north-facing slopes, but these metrics were similar across north- and south-facing slopes by the end of the 4-year study. Our finding that different combinations of traits were favored in south- and north-facing slopes and over time demonstrates that trait-based approaches can be used to identify good restoration candidate species and, ultimately, enhance native plant cover across community types and microhabitat. Changing the composition of planting mixes based on traits could be a useful strategy for restoration practitioners to match species to specific environmental conditions and may be more informative than using seed mixes based on growth form, as species within functional groups can vary tremendously in leaf and root traits.
Collapse
Affiliation(s)
- Jennifer L Funk
- Department of Plant Sciences, University of California, Davis, Davis, California, USA
| | - Sarah Kimball
- Center for Environmental Biology, University of California, Irvine, Irvine, California, USA
| | - Monica A Nguyen
- Schmid College of Science and Technology, Chapman University, Orange, California, USA
| | - Megan Lulow
- UCI Nature, University of California, Irvine, Irvine, California, USA
| | - Gregory E Vose
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, California, USA
| |
Collapse
|
5
|
Eckhoff KD, Scott DA, Manning G, Baer SG. Persistent decadal differences in plant communities assembled under contrasting climate conditions. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2023; 33:e2823. [PMID: 36808677 DOI: 10.1002/eap.2823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 01/11/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Plant community assembly outcomes can be contingent upon establishment year (year effects) due to variations in the environment. Stochastic events such as interannual variability in climate, particularly in the first year of community assembly, contribute to unpredictable community outcomes over the short term, but less is known about whether year effects produce transient or persistent states on a decadal timescale. To test for short-term (5-year) and persistent (decadal) effects of establishment year climate on community assembly outcomes, we restored prairie in an agricultural field using the same methods in four different years (2010, 2012, 2014, and 2016) that captured a wide range of initial (planting) year climate conditions. Species composition was measured for 5 years in all four restored prairies and for 9 and 11 years in the two oldest restored prairies established under average precipitation and extreme drought conditions. The composition of the four assembled communities showed large and significant differences in the first year of restoration, followed by dynamic change over time along a similar trajectory due to a temporary flush of annual volunteer species. Sown perennial species eventually came to dominate all communities, but communities remained distinct from each other in year five. Precipitation in June and July of the establishment year explained short-term coarse community metrics (i.e., species richness and grass/forb cover), with wet establishment years resulting in a higher cover of grasses and dry establishment years resulting in a higher cover of forbs in restored communities. Short-term differences in community composition, species richness, and grass/forb cover in restorations established under average precipitation and drought conditions persisted for 9-11 years, with low interannual variability in the composition of each prairie over the long term, indicating persistently different states on a decadal timescale. Thus, year effects resulting from stochastic variation in climate can have decadal effects on community assembly outcomes.
Collapse
Affiliation(s)
- Kathryn D Eckhoff
- Kansas Biological Survey & Center for Ecological Research, University of Kansas, Lawrence, Kansas, USA
| | - Drew A Scott
- USDA - Agricultural Research Service - Northern Great Plains Research, Mandan, North Dakota, USA
| | | | - Sara G Baer
- Kansas Biological Survey & Center for Ecological Research, University of Kansas, Lawrence, Kansas, USA
| |
Collapse
|
6
|
Wang P, Mou P, Hu L, Hu S. Effects of nutrient heterogeneity on root foraging and plant growth at the individual and community level. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7503-7515. [PMID: 36055760 DOI: 10.1093/jxb/erac358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Plants enhance nutrient uptake in heterogeneous nutrient environments through selective root placement. Many studies have documented that plants grow better under heterogeneous than under homogeneous nutrient distribution, but comprehensive syntheses are relatively few. In a meta-analysis, we examined the effects of patch scale and contrast on plant responses by synthesizing the effects of nutrient heterogeneity on root foraging and plant growth in 131 comparative studies. Plant responses to nutrient heterogeneity were phylogenetically conserved, and the response in shoot biomass was significantly correlated with the response in root biomass but not with root foraging precision. Root precision depended on the competition regime, and plants had lower precision in interspecific than in conspecific competition. Community-level growth was significantly promoted by nutrient heterogeneity and was less variable than individual-level responses. Along with increasing patch scale, overall shoot and root responses of individuals increased but root foraging precision declined. In addition, moderate patch contrast induced the highest root responses. Our results indicate that plants optimize nutrient acquisition from heterogeneous patches mainly through increasing root growth, and plant communities exploit heterogeneous nutrients more effectively than individuals. Understanding the roles of patch attributes in nutrient-heterogeneity effects may help in designing fertilization practices to promote productivity and conserve biodiversity.
Collapse
Affiliation(s)
- Peng Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Pu Mou
- College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Lingyan Hu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Shuijin Hu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
7
|
Gillespie MA, Buckley HL, Condron L, Wratten SD. Grassland plant and invertebrate species richness increases from mowing are mediated by impacts on soil chemistry. Basic Appl Ecol 2022. [DOI: 10.1016/j.baae.2022.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
8
|
Yang J, Su P, Zhou Z, Shi R, Ding X. Environmental filtering rather than dispersal limitation dominated plant community assembly in the Zoige Plateau. Ecol Evol 2022; 12:e9117. [PMID: 35845377 PMCID: PMC9272205 DOI: 10.1002/ece3.9117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 11/23/2022] Open
Abstract
Identifying the mechanisms that underlie the assembly of plant communities is critical to the conservation of terrestrial biodiversity. However, it is seldom measured or quantified how much deterministic versus stochastic processes contribute to community assembly in alpine meadows. Here, we measured the decay in community similarity with spatial and environmental distance in the Zoige Plateau. Furthermore, we used redundancy analysis (RDA) to divide the variations in the relative abundance of plant families into four components to assess the effects of environmental and spatial. Species assemblage similarity liner declined with geographical distance (p < .001, R 2 = .6388), and it decreased significantly with increasing distance of total phosphorus (TP), alkali-hydrolyzable nitrogen (AN), available potassium (AK), nitrate nitrogen (NO3 +-N), and ammonia nitrogen (NH4 +-N). Environmental and spatial variables jointly explained a large proportion (55.2%) of the variation in the relative abundance of plant families. Environmental variables accounted for 13.1% of the total variation, whereas spatial variables accounted for 11.4%, perhaps due to the pronounced abiotic gradients in the alpine areas. Our study highlights the mechanism of plant community assembly in the alpine ecosystem, where environmental filtering plays a more important role than dispersal limitation. In addition, a reasonably controlled abundance of Compositae (the family with the highest niche breadth and large niche overlap value with Gramineae and Cyperaceae) was expected to maintain sustainable development in pastoral production. These results suggest that management measures should be developed with the goal of improving or maintaining suitable local environmental conditions.
Collapse
Affiliation(s)
- Jianping Yang
- Key Laboratory of Land Surface Process and Climate Change in Cold and Arid RegionsNorthwest Institute of Eco‐Environment and Resources, CASLanzhouChina
- University of Chinese Academy of SciencesBeijingChina
| | - Peixi Su
- Key Laboratory of Land Surface Process and Climate Change in Cold and Arid RegionsNorthwest Institute of Eco‐Environment and Resources, CASLanzhouChina
| | - Zijuan Zhou
- Key Laboratory of Land Surface Process and Climate Change in Cold and Arid RegionsNorthwest Institute of Eco‐Environment and Resources, CASLanzhouChina
| | - Rui Shi
- Key Laboratory of Land Surface Process and Climate Change in Cold and Arid RegionsNorthwest Institute of Eco‐Environment and Resources, CASLanzhouChina
| | - Xinjing Ding
- Key Laboratory of Land Surface Process and Climate Change in Cold and Arid RegionsNorthwest Institute of Eco‐Environment and Resources, CASLanzhouChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
9
|
Bowker MA, Doherty KD, Antoninka AJ, Ramsey PW, DuPre ME, Durham RA. Biocrusts Influence Vascular Plant Community Development, Promoting Native Plant Dominance. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.840324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The soil and its biota can shape the development of colonizing vascular plant communities. Because they occupy soil surfaces where most seeds disperse to, biological soil crusts (biocrusts) are uniquely positioned to influence vascular plant communities established by direct seeding, e.g., for restoration. We created mesocosms of soil overtopped by intact biocrust transplants from the field, varying in key community attributes: total cover, species richness, and proportional cover of mosses relative to lichens. We seeded the same diverse mixture of vascular plants into all mesocosms, including desired native species and problematic exotic invasive species. We tracked plant community development for two full growing seasons, both under ambient outdoor conditions and with supplemental irrigation to remove the influence of water limitation. Under ambient conditions, we found that total biocrust cover suppressed exotic plant emergence and biocrust richness slightly promoted native emergence (r = −0.23 to −0.39) but had weaker and less consistent effects on cover of either native or exotic plants (r ≤ |0.25|). Early emergence events were generally strong drivers of vascular plant recruitment (r = 0.17–0.78) and continued to influence community composition after 2 years, suggesting a priority effect. Biocrust cover also promoted final plant biomass under ambient conditions (r = 0.17–0.33) but did not influence the total cumulative number of native species (r ≤ |0.07|) nor the fecundity of exotics (r ≤ |0.08|). Biocrusts’ influence on total vascular plant biomass was minor. When water was added, biocrust effects sometimes switched from positive or negative to neutral, or vice-versa, indicating that our detection probability of biocrust effects on plants changes with moisture availability. Our results demonstrate that the condition of pre-existing biocrust communities can influence—but not strongly dictate—the outcome of multi-species restoration seedings, mostly positively or neutrally under normal conditions, but switching to potentially negatively under irrigated conditions. Our study also suggests that locations with more intact and richer biocrust communities might be slightly more conducive to successful seeding outcomes, while also providing additional contributions to ecosystem functions. As such, biocrusts, alongside vascular plants, have a role in restoring damaged or degraded ecosystems.
Collapse
|
10
|
Zhang XM, Cao XX, He LX, Xue W, Gao JQ, Lei NF, Chen JS, Yu FH, Li MH. Soil heterogeneity in the horizontal distribution of microplastics influences productivity and species composition of plant communities. FRONTIERS IN PLANT SCIENCE 2022; 13:1075007. [PMID: 36570919 PMCID: PMC9772521 DOI: 10.3389/fpls.2022.1075007] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/23/2022] [Indexed: 05/21/2023]
Abstract
Contamination of soils by microplastics can have profound ecological impacts on terrestrial ecosystems and has received increasing attention. However, few studies have considered the impacts of soil microplastics on plant communities and none has tested the impacts of spatial heterogeneity in the horizontal distribution of microplastics in the soil on plant communities. We grew experimental plant communities in soils with either a homogeneous or a heterogeneous distribution of each of six common microplastics, i.e., polystyrene foam (EPS), polyethylene fiber (PET), polyethylene bead (HDPE), polypropylene fiber (PP), polylactic bead (PLA) and polyamide bead (PA6). The heterogeneous treatment consisted of two soil patches without microplastics and two with a higher (0.2%) concentration of microplastics, and the homogeneous treatment consisted of four patches all with a lower (0.1%) concentration of microplastics. Thus, the total amounts of microplastics in the soils were exactly the same in the two treatments. Total and root biomass of the plant communities were significantly higher in the homogeneous than in the heterogeneous treatment when the microplastic was PET and PP, smaller when it was PLA, but not different when it was EPS, HDPE or PA6. In the heterogeneous treatment, total and root biomass were significantly smaller in the patches with than without microplastics when the microplastic was EPS, but greater when the microplastic was PET or PP. Additionally, in the heterogeneous treatment, root biomass was significantly smaller in the patches with than without microplastics when the microplastic was HDPE, and shoot biomass was also significantly smaller when the microplastic was EPS or PET. The heterogeneous distribution of EPS in the soil significantly decreased community evenness, but the heterogeneous distribution of PET increased it. We conclude that soil heterogeneity in the horizontal distribution of microplastics can influence productivity and species composition of plant communities, but such an effect varies depending on microplastic chemical composition (types) and morphology (shapes).
Collapse
Affiliation(s)
- Xiao-Mei Zhang
- Institute of Wetland Ecology & Clone Ecology, Taizhou University, Taizhou, China
| | - Xiao-Xiao Cao
- Institute of Wetland Ecology & Clone Ecology, Taizhou University, Taizhou, China
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, China
| | - Lin-Xuan He
- Institute of Wetland Ecology & Clone Ecology, Taizhou University, Taizhou, China
| | - Wei Xue
- Institute of Wetland Ecology & Clone Ecology, Taizhou University, Taizhou, China
| | - Jun-Qin Gao
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Ning-Fei Lei
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, China
| | - Jin-Song Chen
- College of Life Science, Sichuan Normal University, Chengdu, China
| | - Fei-Hai Yu
- Institute of Wetland Ecology & Clone Ecology, Taizhou University, Taizhou, China
- *Correspondence: Fei-Hai Yu, ; Mai-He Li,
| | - Mai-He Li
- Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland
- *Correspondence: Fei-Hai Yu, ; Mai-He Li,
| |
Collapse
|
11
|
Xue W, Huang L, Yu FH. Increasing soil configurational heterogeneity promotes plant community evenness through equalizing differences in competitive ability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 750:142308. [PMID: 33182201 DOI: 10.1016/j.scitotenv.2020.142308] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/24/2020] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
Compared to homogeneous soils, soil heterogeneity is thought to promote plant species diversity through niche differentiation. The number of patch types within the heterogeneous soil (i.e. the difference in soil configurational heterogeneity) may also play a key role in regulating plant diversity. However, most empirical studies examining heterogeneity-diversity relationships involved only two contrasting types of patches. Moreover, the shape of heterogeneity-diversity relationships may also be changed by background soil fertility. To test how soil heterogeneity and number of patch types within the heterogeneous soil influence plant community evenness and their potential dependence on background soil fertility, we constructed plant communities consisting of four plant species in low- and high-nutrient soils, and manipulated the soils in heterogeneous configurations consisting of two or four types of soil patches and in a homogeneous condition where these soil patches were homogenized. Neither evenness of the plant community nor the difference in competitive ability between plants within the community was significantly different between the homogeneous soil and the heterogeneous soils, suggesting that soil heterogeneity overall had no effect on community evenness. However, evenness was higher and the difference in competitive ability between plants was lower in the heterogeneous soils with four types of soil patches than in the heterogeneous soils with two types of soil patches and also in the low-nutrient soils than in the high-nutrient soils. These results suggest that lowering soil fertility and increasing soil configurational heterogeneity can promote plant community evenness through reducing the difference in competitive ability between plant species within the community.
Collapse
Affiliation(s)
- Wei Xue
- Institute of Wetland Ecology & Clone Ecology/Zhejiang Provincial Key Laboratory of Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, China
| | - Lin Huang
- Institute of Wetland Ecology & Clone Ecology/Zhejiang Provincial Key Laboratory of Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, China
| | - Fei-Hai Yu
- Institute of Wetland Ecology & Clone Ecology/Zhejiang Provincial Key Laboratory of Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, China.
| |
Collapse
|