1
|
Rahajaharilaza K, Muller B, Violle C, Brocke KV, Ramavovololona, Morel JB, Balini E, Fort F. Upland rice varietal mixtures in Madagascar: evaluating the effects of varietal interaction on crop performance. FRONTIERS IN PLANT SCIENCE 2023; 14:1266704. [PMID: 38053764 PMCID: PMC10694222 DOI: 10.3389/fpls.2023.1266704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/25/2023] [Indexed: 12/07/2023]
Abstract
Introduction Rice plays a critical role in human livelihoods and food security. However, its cultivation requires inputs that are not accessible to all farming communities and can have negative effects on ecosystems. simultaneously, ecological research demonstrates that biodiversity management within fields contributes to ecosystem functioning. Methods This study aims to evaluate the mixture effect of four functionally distinct rice varieties in terms of characteristics and agronomic performance and their spatial arrangement on the upland rice performance in the highlands of Madagascar. The study was conducted during the 2021-2022 rainfall season at two close sites in Madagascar. Both site differ from each other's in soil properties and soil fertility management. The experimental design at each site included three modalities: i) plot composition, i.e., pure stand or binary mixture; ii) the balance between the varieties within a mixture; iii) and for the balanced mixture (50% of each variety), the spatial arrangement, i.e., row or checkerboard patterns. Data were collected on yields (grain and biomass), and resistance to Striga asiatica infestation, Pyricularia oryzea and bacterial leaf blight (BLB) caused by Xanthomonas oryzae-pv from each plot. Results and discussion Varietal mixtures produced significantly higher grain and biomass yields, and significantly lower incidence of Pyricularia oryzea compared to pure stands. No significant differences were observed for BLB and striga infestation. These effects were influenced by site fertility, the less fertilized site showed stronger mixture effects with greater gains in grain yield (60%) and biomass yield (42%). The most unbalanced repartition (75% and 25% of each variety) showed the greatest mixture effect for grain yield at both sites, with a strong impact of the varietal identity within the plot. The mixture was most effective when EARLY_MUTANT_IAC_165 constituted 75% of the density associated with other varieties at 25% density. The assessment of the net effect ratio of disease, an index evaluating the mixture effect in disease reduction, indicated improved disease resistance in mixtures, regardless of site conditions. Our study in limited environments suggests that varietal mixtures can enhance rice productivity, especially in low-input situations. Further research is needed to understand the ecological mechanisms behind the positive mixture effect.
Collapse
Affiliation(s)
- Koloina Rahajaharilaza
- University of Antananarivo, Faculty of Sciences, Antananarivo, Madagascar
- CIRAD, UMR AGAP Institut, Montpellier, France
- Dispositif en Partenariat Système de Production d’Altitudes Durable, CIRAD, Antsirabe, Madagascar
| | - Bertrand Muller
- CIRAD, UMR AGAP Institut, Montpellier, France
- Dispositif en Partenariat Système de Production d’Altitudes Durable, CIRAD, Antsirabe, Madagascar
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Cyrille Violle
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Kirsten vom Brocke
- CIRAD, UMR AGAP Institut, Montpellier, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Ramavovololona
- University of Antananarivo, Faculty of Sciences, Antananarivo, Madagascar
| | - Jean Benoît Morel
- PHIM Plant Health Institute, Université de Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| | - Elsa Balini
- PHIM Plant Health Institute, Université de Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| | - Florian Fort
- CEFE, Univ. Montpellier, L’Institut Agro, CNRS, EPHE, IRD, Montpellier, France
| |
Collapse
|
2
|
Complex agricultural landscapes host more biodiversity than simple ones: A global meta-analysis. Proc Natl Acad Sci U S A 2022; 119:e2203385119. [PMID: 36095174 PMCID: PMC9499564 DOI: 10.1073/pnas.2203385119] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Agricultural land, the world’s largest human-managed ecosystem, forms the matrix that connects remnant and fragmented patches of natural vegetation where nondomesticated biodiversity struggles to survive. Increasing the resources that this matrix can offer to biodiversity is critical to halting biodiversity loss. Our comprehensive meta-analysis demonstrates the positive and significant effect on biodiversity of increasing landscape complexity in agricultural lands. We found more biodiversity in complex landscapes, potentially contributing to agriculture production, ecosystem resilience, and human well-being. Current biodiversity conservation strategies tend to focus on natural ecosystems, often ignoring opportunities to boost biodiversity in agricultural landscapes. Our findings provide a strong scientific evidence base for synergistically managing agriculture at the landscape level for biodiversity conservation and sustainable production. Managing agricultural landscapes to support biodiversity conservation requires profound structural changes worldwide. Often, discussions are centered on management at the field level. However, a wide and growing body of evidence calls for zooming out and targeting agricultural policies, research, and interventions at the landscape level to halt and reverse the decline in biodiversity, increase biodiversity-mediated ecosystem services in agricultural landscapes, and improve the resilience and adaptability of these ecosystems. We conducted the most comprehensive assessment to date on landscape complexity effects on nondomesticated terrestrial biodiversity through a meta-analysis of 1,134 effect sizes from 157 peer-reviewed articles. Increasing landscape complexity through changes in composition, configuration, or heterogeneity significatively and positively affects biodiversity. More complex landscapes host more biodiversity (richness, abundance, and evenness) with potential benefits to sustainable agricultural production and conservation, and effects are likely underestimated. The few articles that assessed the combined contribution of linear (e.g., hedgerows) and areal (e.g., woodlots) elements resulted in a near-doubling of the effect sizes (i.e., biodiversity level) compared to the dominant number of studies measuring these elements separately. Similarly, positive effects on biodiversity are stronger in articles monitoring biodiversity for at least 2 y compared to the dominant 1-y monitoring efforts. Besides, positive and stronger effects exist when monitoring occurs in nonoverlapping landscapes, highlighting the need for long-term and robustly designed monitoring efforts. Living in harmony with nature will require shifting paradigms toward valuing and promoting multifunctional agriculture at the farm and landscape levels with a research agenda that untangles complex agricultural landscapes’ contributions to people and nature under current and future conditions.
Collapse
|
3
|
Thomine E, Mumford J, Rusch A, Desneux N. Using crop diversity to lower pesticide use: Socio-ecological approaches. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:150156. [PMID: 34509833 DOI: 10.1016/j.scitotenv.2021.150156] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
The farming practices adopted since the end of the Second World War, based on large areas of monocultures and chemical use, have adversely affected the health of farmers and consumers and dramatically reduced farmland biodiversity. As a consequence, many studies over more than twenty years have stated that agriculture is facing three main challenges: (1) feeding the growing world population (2) with more environmentally friendly products (3) at a reasonable return for the producer. Increasing the efficacy of biocontrol could be one lever for agriculture to meet these expectations. In this study we propose implementation of a relatively under-researched system based on the management of landscape level crop diversity that would reduce demand for pesticide use and increase conservation biocontrol. The principle of manipulating crop diversity over space and time at a landscape scale is to optimize resource continuity, such as food and shelter for natural enemies to increase biocontrol services, reduce pest outbreaks and crop losses. The feasibility of such management options is discussed in relation to environmental, social and economic aspects. The operational and institutional inputs and conditions needed to make the system work are explored, as well as the potential added values of such a system for different stakeholders.
Collapse
Affiliation(s)
- Eva Thomine
- Université Côte d'Azur, INRAE, CNRS, UMR ISA, 06000 Nice, France; L@bisen, ISEN Yncréa Ouest, 29200 Brest, France.
| | - John Mumford
- Imperial College London, Silwood Park Campus, Ascot SL5 7PY, United Kingdom
| | - Adrien Rusch
- INRAE, ISVV, Univ. Bordeaux, Bordeaux Sciences Agro, UMR SAVE, F-33883 Villenave d'Ornon, France
| | - Nicolas Desneux
- Université Côte d'Azur, INRAE, CNRS, UMR ISA, 06000 Nice, France.
| |
Collapse
|
4
|
Snyder LD, Gómez MI, Mudrak EL, Power AG. Landscape-dependent effects of varietal mixtures on insect pest control and implications for farmer profits. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2021; 31:e02246. [PMID: 33124091 PMCID: PMC7988554 DOI: 10.1002/eap.2246] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 05/14/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
Intraspecific plant diversity can significantly impact insect herbivore populations in natural systems. Yet, its role as an insect pest control strategy in agriculture has received less attention, and little is known about which crop traits are important to herbivores in different landscape contexts. Moreover, empirical economic analyses on the cost-effectiveness of varietal mixtures are lacking. We used varietal mixtures of Brassica oleracea crops on working farms to examine how two metrics of intraspecific crop diversity, varietal richness and number of plant colors (color richness), affect crop damage and the incidence and abundance of two insect pest species: Pieris rapae and Phyllotreta spp. We evaluated the context-dependency of varietal mixtures by sampling early- and late-season plantings of B. oleracea crops in farms across a gradient of landscape composition. We developed crop budgets and used a net present value analysis to assess the impact of varietal mixtures on input and labor costs, crop revenues, and profit. We found context-dependent effects of varietal mixtures on both pests. In early-season plantings, color richness did not affect Phyllotreta spp. populations. However, increasing varietal richness reduced Phyllotreta spp. incidence in simple landscapes dominated by cropland, but this trend was reversed in complex landscapes dominated by natural habitats. In late-season plantings, color richness reduced the incidence and abundance of P. rapae larvae, but only in complex landscapes where their populations were highest. Varietal richness had the same effect on P. rapae larvae as color richness. Unexpectedly, we consistently found lower pest pressure and reduced crop damage in simple landscapes. Although varietal mixtures did not affect crop damage, increasing color richness corresponded with increased profits, due to increased revenue and a marginal reduction in labor and input costs. We demonstrate varietal mixtures can significantly impact pest populations, and this effect can be mediated by intraspecific variation in crop color. However, the strength and direction of these effects vary by season, landscape composition, and pest species. The association between varietal color richness and profitability indicates farmers could design mixtures to enhance economic returns. We recommend additional research on the benefits of intraspecific trait variation for farmers.
Collapse
Affiliation(s)
- Lauren D. Snyder
- Department of Ecology and Evolutionary BiologyCornell UniversityIthacaNew York14853USA
| | - Miguel I. Gómez
- Charles H. Dyson School of Applied Economics and ManagementCornell UniversityIthacaNew York14853USA
| | - Erika L. Mudrak
- Cornell Statistical Consulting UnitCornell UniversityIthacaNew York14853USA
| | - Alison G. Power
- Department of Ecology and Evolutionary BiologyCornell UniversityIthacaNew York14853USA
| |
Collapse
|