1
|
Hoenle PO, Plowman NS, Matos-Maraví P, de Bello F, Bishop TR, Libra M, Idigel C, Rimandai M, Klimes P. Forest disturbance increases functional diversity but decreases phylogenetic diversity of an arboreal tropical ant community. J Anim Ecol 2024; 93:501-516. [PMID: 38409804 DOI: 10.1111/1365-2656.14060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 01/19/2024] [Indexed: 02/28/2024]
Abstract
Tropical rainforest trees host a diverse arthropod fauna that can be characterised by their functional diversity (FD) and phylogenetic diversity (PD). Human disturbance degrades tropical forests, often coinciding with species invasion and altered assembly that leads to a decrease in FD and PD. Tree canopies are thought to be particularly vulnerable, but rarely investigated. Here, we studied the effects of forest disturbance on an ecologically important invertebrate group, the ants, in a lowland rainforest in New Guinea. We compared an early successional disturbed plot (secondary forest) to an old-growth plot (primary forest) by exhaustively sampling their ant communities in a total of 852 trees. We expected that for each tree community (1) disturbance would decrease FD and PD in tree-dwelling ants, mediated through species invasion. (2) Disturbance would decrease ant trait variation due to a more homogeneous environment. (3) The main drivers behind these changes would be different contributions of true tree-nesting species and visiting species. We calculated FD and PD based on a species-level phylogeny and 10 ecomorphological traits. Furthermore, we assessed by data exclusion the influence of species, which were not nesting in individual trees (visitors) or only nesting species (nesters), and of non-native species on FD and PD. Primary forests had higher ant species richness and PD than secondary forest. However, we consistently found increased FD in secondary forest. This pattern was robust even if we decoupled functional and phylogenetic signals, or if non-native ant species were excluded from the data. Visitors did not contribute strongly to FD, but they increased PD and their community weighted trait means often varied from nesters. Moreover, all community-weighted trait means changed after forest disturbance. Our finding of contradictory FD and PD patterns highlights the importance of integrative measures of diversity. Our results indicate that the tree community trait diversity is not negatively affected, but possibly even enhanced by disturbance. Therefore, the functional diversity of arboreal ants is relatively robust when compared between old-growth and young trees. However, further study with higher plot-replication is necessary to solidify and generalise our findings.
Collapse
Affiliation(s)
- Philipp O Hoenle
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czech Republic
| | - Nichola S Plowman
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Pável Matos-Maraví
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czech Republic
| | - Francesco de Bello
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
- Centro de Investigaciones sobre Desertificación (CSIC-UV-GV), Valencia, Spain
| | - Tom R Bishop
- School of Biosciences, Cardiff University, Cardiff, UK
- Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Martin Libra
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czech Republic
| | - Cliffson Idigel
- New Guinea Binatang Research Center, Madang, Papua New Guinea
| | - Maling Rimandai
- New Guinea Binatang Research Center, Madang, Papua New Guinea
| | - Petr Klimes
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czech Republic
| |
Collapse
|
2
|
Müller J, Mitesser O, Schaefer HM, Seibold S, Busse A, Kriegel P, Rabl D, Gelis R, Arteaga A, Freile J, Leite GA, de Melo TN, LeBien J, Campos-Cerqueira M, Blüthgen N, Tremlett CJ, Böttger D, Feldhaar H, Grella N, Falconí-López A, Donoso DA, Moriniere J, Buřivalová Z. Soundscapes and deep learning enable tracking biodiversity recovery in tropical forests. Nat Commun 2023; 14:6191. [PMID: 37848442 PMCID: PMC10582010 DOI: 10.1038/s41467-023-41693-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/07/2023] [Indexed: 10/19/2023] Open
Abstract
Tropical forest recovery is fundamental to addressing the intertwined climate and biodiversity loss crises. While regenerating trees sequester carbon relatively quickly, the pace of biodiversity recovery remains contentious. Here, we use bioacoustics and metabarcoding to measure forest recovery post-agriculture in a global biodiversity hotspot in Ecuador. We show that the community composition, and not species richness, of vocalizing vertebrates identified by experts reflects the restoration gradient. Two automated measures - an acoustic index model and a bird community composition derived from an independently developed Convolutional Neural Network - correlated well with restoration (adj-R² = 0.62 and 0.69, respectively). Importantly, both measures reflected composition of non-vocalizing nocturnal insects identified via metabarcoding. We show that such automated monitoring tools, based on new technologies, can effectively monitor the success of forest recovery, using robust and reproducible data.
Collapse
Affiliation(s)
- Jörg Müller
- Field Station Fabrikschleichach, Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Glashüttenstr. 5, 96181, Rauhenebrach, Germany.
- Bavarian Forest National Park, Freyungerstr. 2, 94481, Grafenau, Germany.
| | - Oliver Mitesser
- Field Station Fabrikschleichach, Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Glashüttenstr. 5, 96181, Rauhenebrach, Germany
| | - H Martin Schaefer
- Fundación Jocotoco, Valladolid N24-414 y Luis Cordero, Quito, Ecuador
| | - Sebastian Seibold
- Technical University of Munich, School of Life Sciences, Ecosystem Dynamics and Forest Management Research Group, Hans-Carl-von-Carlowitz-Platz 2, 85354, Freising, Germany
- Berchtesgaden National Park, Doktorberg 6, Berchtesgaden, 83471, Germany
| | - Annika Busse
- Saxon-Switzerland National Park, An der Elbe 4, 01814, Bad Schandau, Germany
| | - Peter Kriegel
- Field Station Fabrikschleichach, Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Glashüttenstr. 5, 96181, Rauhenebrach, Germany
| | - Dominik Rabl
- Field Station Fabrikschleichach, Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Glashüttenstr. 5, 96181, Rauhenebrach, Germany
| | - Rudy Gelis
- Yanayacu Research Center, Cosanga, Ecuador
| | | | - Juan Freile
- Pasaje El Moro E4-216 y Norberto Salazar, EC 170902, Tumbaco, DMQ, Ecuador
| | - Gabriel Augusto Leite
- Rainforest Connection, Science Department, 440 Cobia Drive, Suite 1902, Katy, TX, 77494, USA
| | | | - Jack LeBien
- Rainforest Connection, Science Department, 440 Cobia Drive, Suite 1902, Katy, TX, 77494, USA
| | | | - Nico Blüthgen
- Ecological Networks Lab, Department of Biology, Technische Universität Darmstadt, Schnittspahnstr. 3, 64287, Darmstadt, Germany
| | - Constance J Tremlett
- Ecological Networks Lab, Department of Biology, Technische Universität Darmstadt, Schnittspahnstr. 3, 64287, Darmstadt, Germany
| | - Dennis Böttger
- Phyletisches Museum, Institute for Zoology and Evolutionary Research, Friedrich-Schiller-University Jena, Jena, Germany
| | - Heike Feldhaar
- Animal Population Ecology, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, 95440, Bayreuth, Germany
| | - Nina Grella
- Animal Population Ecology, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, 95440, Bayreuth, Germany
| | - Ana Falconí-López
- Field Station Fabrikschleichach, Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Glashüttenstr. 5, 96181, Rauhenebrach, Germany
- Grupo de Investigación en Biodiversidad, Medio Ambiente y Salud-BIOMAS-Universidad de las Américas, Quito, Ecuador
| | - David A Donoso
- Grupo de Investigación en Biodiversidad, Medio Ambiente y Salud-BIOMAS-Universidad de las Américas, Quito, Ecuador
- Departamento de Biología, Facultad de Ciencias, Escuela Politécnica Nacional, Av. Ladrón de Guevara E11-253, CP 17-01-2759, Quito, Ecuador
| | - Jerome Moriniere
- AIM - Advanced Identification Methods GmbH, Niemeyerstr. 1, 04179, Leipzig, Germany
| | - Zuzana Buřivalová
- University of Wisconsin-Madison, Department of Forest and Wildlife Ecology and The Nelson Institute for Environmental Studies, 1630 Linden Drive, Madison, WI, 53706, USA
| |
Collapse
|
3
|
Slade EM, Ong XR. The future of tropical insect diversity: strategies to fill data and knowledge gaps. CURRENT OPINION IN INSECT SCIENCE 2023; 58:101063. [PMID: 37247774 DOI: 10.1016/j.cois.2023.101063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/17/2023] [Accepted: 05/23/2023] [Indexed: 05/31/2023]
Abstract
The decline of insect diversity is a much-discussed, yet understudied phenomenon, particularly in the tropics, where the majority of insect abundance, diversity and biomass is found. Integrated approaches involving traditional taxonomic methods, new molecular approaches, and novel monitoring and identification tools and applications are needed to address related and challenging questions regarding how many species of tropical insects exist, their distributions and natural history, the relative impacts of global change drivers on insect diversity across complex tropical landscapes, and the effects of insect declines on ecosystem functions and services. The main barriers to addressing these challenges are a lack of capacity and funding for research on insects in tropical countries and a lack of recognition of their importance for ecosystem functioning and human wellbeing. Insects must be brought into policy agendas, local capacity and funding through cross-boundary collaborations and equitable scientific practices increased, and their importance emphasized.
Collapse
Affiliation(s)
- Eleanor M Slade
- Tropical Ecology & Entomology Lab, Asian School of the Environment, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore.
| | - Xin Rui Ong
- Tropical Ecology & Entomology Lab, Asian School of the Environment, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| |
Collapse
|
4
|
Hoenle PO, Staab M, Donoso DA, Argoti A, Blüthgen N. Stratification and recovery time jointly shape ant functional reassembly in a neotropical forest. J Anim Ecol 2023. [PMID: 36748273 DOI: 10.1111/1365-2656.13896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 01/19/2023] [Indexed: 02/08/2023]
Abstract
Microhabitat differentiation of species communities such as vertical stratification in tropical forests contributes to species coexistence and thus biodiversity. However, little is known about how the extent of stratification changes during forest recovery and influences community reassembly. Environmental filtering determines community reassembly in time (succession) and in space (stratification), hence functional and phylogenetic composition of species communities are highly dynamic. It is poorly understood if and how these two concurrent filters-forest recovery and stratification-interact. In a tropical forest chronosequence in Ecuador spanning 34 years of natural recovery, we investigated the recovery trajectory of ant communities in three overlapping strata (ground, leaf litter, lower tree trunk) by quantifying 13 traits, as well as the functional and phylogenetic diversity of the ants. We expected that functional and phylogenetic diversity would increase with recovery time and that each ant community within each stratum would show a distinct functional reassembly. We predicted that traits related to ant diet would show divergent trajectories reflecting an increase in niche differentiation with recovery time. On the other hand, traits related to the abiotic environment were predicted to show convergent trajectories due to a more similar microclimate across strata with increasing recovery age. Most of the functional traits and the phylogenetic diversity of the ants were clearly stratified, confirming previous findings. However, neither functional nor phylogenetic diversity increased with recovery time. Community-weighted trait means had complex relationships to recovery time and the majority were shaped by a statistical interaction between recovery time and stratum, confirming our expectations. However, most trait trajectories converged among strata with increasing recovery time regardless of whether they were related to ant diet or environmental conditions. We confirm the hypothesized interaction among environmental filters during the functional reassembly in tropical forests. Communities in individual strata respond differently to recovery, and possible filter mechanisms likely arise from both abiotic (e.g. microclimate) and biotic (e.g. diet) conditions. Since vertical stratification is prevalent across animal and plant taxa, our results highlight the importance of stratum-specific analysis in dynamic ecosystems and may generalize beyond ants.
Collapse
Affiliation(s)
- Philipp O Hoenle
- Ecological Networks, Department of Biology, Technical University of Darmstadt, Darmstadt, Germany.,Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czech Republic
| | - Michael Staab
- Ecological Networks, Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - David A Donoso
- Departamento de Biología, Escuela Politécnica Nacional, Quito, Ecuador.,Centro de Investigación de la Biodiversidad y Cambio Climático, Universidad Tecnológica Indoamérica, Quito, Ecuador
| | - Adriana Argoti
- Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Nico Blüthgen
- Ecological Networks, Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| |
Collapse
|
5
|
Hoenle PO, Donoso DA, Argoti A, Staab M, von Beeren C, Blüthgen N. Rapid ant community reassembly in a Neotropical forest: Recovery dynamics and land-use legacy. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e2559. [PMID: 35112764 DOI: 10.1002/eap.2559] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 08/24/2021] [Accepted: 09/23/2021] [Indexed: 06/14/2023]
Abstract
Regrowing secondary forests dominate tropical regions today, and a mechanistic understanding of their recovery dynamics provides important insights for conservation. In particular, land-use legacy effects on the fauna have rarely been investigated. One of the most ecologically dominant and functionally important animal groups in tropical forests are the ants. Here, we investigated the recovery of ant communities in a forest-agricultural habitat mosaic in the Ecuadorian Chocó region. We used a replicated chronosequence of previously used cacao plantations and pastures with 1-34 years of regeneration time to study the recovery dynamics of species communities and functional diversity across the two land-use legacies. We compared two independent components of responses on these community properties: resistance, which is measured as the proportion of an initial property that remains following the disturbance; and resilience, which is the rate of recovery relative to its loss. We found that compositional and trait structure similarity to old-growth forest communities increased with regeneration age, whereas ant species richness remained always at a high level along the chronosequence. Land-use legacies influenced species composition, with former cacao plantations showing higher resemblance to old-growth forests than former pastures along the chronosequence. While resistance was low for species composition and high for species richness and traits, all community properties had similarly high resilience. In essence, our results show that ant communities of the Chocó recovery rapidly, with former cacao reaching predicted old-growth forest community levels after 21 years and pastures after 29 years. Recovery in this community was faster than reported from other ecosystems and was likely facilitated by the low-intensity farming in agricultural sites and their proximity to old-growth forest remnants. Our study indicates the great recovery potential for this otherwise highly threatened biodiversity hotspot.
Collapse
Affiliation(s)
- Philipp O Hoenle
- Ecological Networks, Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - David A Donoso
- Departamento de Biología, Escuela Politécnica Nacional, Quito, Ecuador
- Centro de Investigación de la Biodiversidad y Cambio Climático, Universidad Tecnológica Indoamérica, Quito, Ecuador
| | - Adriana Argoti
- Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Michael Staab
- Ecological Networks, Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Christoph von Beeren
- Ecological Networks, Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Nico Blüthgen
- Ecological Networks, Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| |
Collapse
|