1
|
Conn K, Milton LK, Huang K, Munguba H, Ruuska J, Lemus MB, Greaves E, Homman-Ludiye J, Oldfield BJ, Foldi CJ. Psilocybin restrains activity-based anorexia in female rats by enhancing cognitive flexibility: contributions from 5-HT1A and 5-HT2A receptor mechanisms. Mol Psychiatry 2024; 29:3291-3304. [PMID: 38678087 PMCID: PMC11449803 DOI: 10.1038/s41380-024-02575-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 04/29/2024]
Abstract
Psilocybin has shown promise for alleviating symptoms of depression and is currently in clinical trials for the treatment of anorexia nervosa (AN), a condition that is characterised by persistent cognitive inflexibility. Considering that enhanced cognitive flexibility after psilocybin treatment is reported to occur in individuals with depression, it is plausible that psilocybin could improve symptoms of AN by breaking down cognitive inflexibility. A mechanistic understanding of the actions of psilocybin is required to tailor the clinical application of psilocybin to individuals most likely to respond with positive outcomes. This can only be achieved using incisive neurobiological approaches in animal models. Here, we use the activity-based anorexia (ABA) rat model and comprehensively assess aspects of reinforcement learning to show that psilocybin (post-acutely) improves body weight maintenance in female rats and facilitates cognitive flexibility, specifically via improved adaptation to the initial reversal of reward contingencies. Further, we reveal the involvement of signalling through the serotonin (5-HT) 1 A and 5-HT2A receptor subtypes in specific aspects of learning, demonstrating that 5-HT1A antagonism negates the cognitive enhancing effects of psilocybin. Moreover, we show that psilocybin elicits a transient increase and decrease in cortical transcription of these receptors (Htr2a and Htr1a, respectively), and a further reduction in the abundance of Htr2a transcripts in rats exposed to the ABA model. Together, these findings support the hypothesis that psilocybin could ameliorate cognitive inflexibility in the context of AN and highlight a need to better understand the therapeutic mechanisms independent of 5-HT2A receptor binding.
Collapse
MESH Headings
- Animals
- Female
- Psilocybin/pharmacology
- Rats
- Receptor, Serotonin, 5-HT2A/metabolism
- Receptor, Serotonin, 5-HT2A/drug effects
- Receptor, Serotonin, 5-HT1A/metabolism
- Receptor, Serotonin, 5-HT1A/drug effects
- Anorexia/metabolism
- Anorexia/drug therapy
- Cognition/drug effects
- Disease Models, Animal
- Anorexia Nervosa/drug therapy
- Anorexia Nervosa/metabolism
- Rats, Sprague-Dawley
- Body Weight/drug effects
- Reward
- Hallucinogens/pharmacology
Collapse
Affiliation(s)
- K Conn
- Monash University, Department of Physiology, 26 Innovation Walk, Clayton, VIC, 3800, Australia
- Monash Biomedicine Discovery Institute, 23 Innovation Walk, Clayton, VIC, 3800, Australia
| | - L K Milton
- Monash University, Department of Physiology, 26 Innovation Walk, Clayton, VIC, 3800, Australia
- Monash Biomedicine Discovery Institute, 23 Innovation Walk, Clayton, VIC, 3800, Australia
| | - K Huang
- Monash University, Department of Physiology, 26 Innovation Walk, Clayton, VIC, 3800, Australia
- Monash Biomedicine Discovery Institute, 23 Innovation Walk, Clayton, VIC, 3800, Australia
| | - H Munguba
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, 10065, USA
| | - J Ruuska
- University of Helsinki, Yliopistonkatu 4, 00100, Helsinki, Finland
| | - M B Lemus
- Monash University, Department of Physiology, 26 Innovation Walk, Clayton, VIC, 3800, Australia
- Monash Biomedicine Discovery Institute, 23 Innovation Walk, Clayton, VIC, 3800, Australia
| | - E Greaves
- Monash University, Department of Physiology, 26 Innovation Walk, Clayton, VIC, 3800, Australia
- Monash Biomedicine Discovery Institute, 23 Innovation Walk, Clayton, VIC, 3800, Australia
| | - J Homman-Ludiye
- Monash Micro Imaging, Monash University, 15 Innovation Walk, Clayton, VIC, 3800, Australia
| | - B J Oldfield
- Monash University, Department of Physiology, 26 Innovation Walk, Clayton, VIC, 3800, Australia
- Monash Biomedicine Discovery Institute, 23 Innovation Walk, Clayton, VIC, 3800, Australia
| | - C J Foldi
- Monash University, Department of Physiology, 26 Innovation Walk, Clayton, VIC, 3800, Australia.
- Monash Biomedicine Discovery Institute, 23 Innovation Walk, Clayton, VIC, 3800, Australia.
| |
Collapse
|
2
|
Conn K, Huang K, Gorrell S, Foldi CJ. A transdiagnostic and translational framework for delineating the neuronal mechanisms of compulsive exercise in anorexia nervosa. Int J Eat Disord 2024; 57:1406-1417. [PMID: 38174745 PMCID: PMC11222308 DOI: 10.1002/eat.24130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/21/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024]
Abstract
OBJECTIVE The development of novel treatments for anorexia nervosa (AN) requires a detailed understanding of the biological underpinnings of specific, commonly occurring symptoms, including compulsive exercise. There is considerable bio-behavioral overlap between AN and obsessive-compulsive disorder (OCD), therefore it is plausible that similar mechanisms underlie compulsive behavior in both populations. While the association between these conditions is widely acknowledged, defining the shared mechanisms for compulsive behavior in AN and OCD requires a novel approach. METHODS We present an argument that a better understanding of the neurobiological mechanisms that underpin compulsive exercise in AN can be achieved in two critical ways. First, by applying a framework of the neuronal control of OCD to exercise behavior in AN, and second, by taking better advantage of the activity-based anorexia (ABA) rodent model to directly test this framework in the context of feeding pathology. RESULTS A cross-disciplinary approach that spans preclinical, neuroimaging, and clinical research as well as compulsive neurocircuitry and behavior can advance our understanding of when, why, and how compulsive exercise develops in the context of AN and provide targets for novel treatment strategies. DISCUSSION In this article, we (i) link the expression of compulsive behavior in AN and OCD via a transition between goal-directed and habitual behavior, (ii) present disrupted cortico-striatal circuitry as a key substrate for the development of compulsive behavior in both conditions, and (iii) highlight the utility of the ABA rodent model to better understand the mechanisms of compulsive behavior relevant to AN. PUBLIC SIGNIFICANCE Individuals with AN who exercise compulsively are at risk of worse health outcomes and have poorer responses to standard treatments. However, when, why, and how compulsive exercise develops in AN remains inadequately understood. Identifying whether the neural circuitry underlying compulsive behavior in OCD also controls hyperactivity in the activity-based anorexia model will aid in the development of novel eating disorder treatment strategies for this high-risk population.
Collapse
Affiliation(s)
- K Conn
- Monash University, Department of Physiology, 26 Innovation Walk, 3800, Clayton, Australia
- Monash Biomedicine Discovery Institute, 23 Innovation Walk, 3800, Clayton, Australia
| | - K Huang
- Monash University, Department of Physiology, 26 Innovation Walk, 3800, Clayton, Australia
- Monash Biomedicine Discovery Institute, 23 Innovation Walk, 3800, Clayton, Australia
| | - S Gorrell
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, 675 18th street, San Francisco, CA 94143, USA
| | - CJ Foldi
- Monash University, Department of Physiology, 26 Innovation Walk, 3800, Clayton, Australia
- Monash Biomedicine Discovery Institute, 23 Innovation Walk, 3800, Clayton, Australia
| |
Collapse
|
3
|
Foldi CJ. Taking better advantage of the activity-based anorexia model. Trends Mol Med 2024; 30:330-338. [PMID: 38103992 DOI: 10.1016/j.molmed.2023.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/02/2023] [Accepted: 11/17/2023] [Indexed: 12/19/2023]
Abstract
The lack of specific treatments for anorexia nervosa (AN) is partly driven by an inadequate understanding of the neurobiological drivers of the condition. The activity-based anorexia (ABA) model recapitulates key characteristics of AN in rats and mice, and can be used to understand factors that predispose, maintain, and rescue anorectic behaviour. With the rapidly evolving suite of technologies to manipulate and record neural activity during the development of ABA, we are better placed than ever before to take advantage of this unique biobehavioural model in order to develop and refine novel treatments for AN. This will require a collective effort to bridge research disciplines in order to capitalise on knowledge gains from genetics, neurobiology, metabolism, and cognition.
Collapse
Affiliation(s)
- Claire J Foldi
- Monash University, Department of Physiology, 26 Innovation Walk, Clayton, VIC 3800, Australia; Monash Biomedicine Discovery Institute, 23 Innovation Walk, Clayton, VIC 3800, Australia.
| |
Collapse
|
4
|
Sutton Hickey AK, Duane SC, Mickelsen LE, Karolczak EO, Shamma AM, Skillings A, Li C, Krashes MJ. AgRP neurons coordinate the mitigation of activity-based anorexia. Mol Psychiatry 2023; 28:1622-1635. [PMID: 36577844 PMCID: PMC10782560 DOI: 10.1038/s41380-022-01932-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/29/2022]
Abstract
Anorexia nervosa (AN) is a debilitating and deadly disease characterized by low body mass index due to diminished food intake, and oftentimes concurrent hyperactivity. A high percentage of AN behavioral and metabolic phenotypes can be replicated in rodents given access to a voluntary running wheel and subject to food restriction, termed activity-based anorexia (ABA). Despite the well-documented bodyweight loss observed in AN human patients and ABA rodents, much less is understood regarding the neurobiological underpinnings of these maladaptive behaviors. Hunger-promoting hypothalamic agouti-related peptide (AgRP) neurons have been well characterized in their ability to regulate appetite, yet much less is known regarding their activity and function in the mediation of food intake during ABA. Here, feeding microstructure analysis revealed ABA mice decreased food intake due to increased interpellet interval retrieval and diminished meal number. Longitudinal activity recordings of AgRP neurons in ABA animals exhibited a maladaptive inhibitory response to food, independent of basal activity changes. We then demonstrated that ABA development or progression can be mitigated by chemogenetic AgRP activation through the reprioritization of food intake (increased meal number) over hyperactivity, but only during periods of food availability. These results elucidate a potential neural target for the amelioration of behavioral maladaptations present in AN patients.
Collapse
Affiliation(s)
- Ames K Sutton Hickey
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, USA.
| | - Sean C Duane
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, USA
| | - Laura E Mickelsen
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, USA
| | - Eva O Karolczak
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, USA
| | - Ahmed M Shamma
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, USA
| | - Anna Skillings
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, USA
| | - Chia Li
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, USA
| | - Michael J Krashes
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, USA.
- National Institute on Drug Abuse (NIDA), National Institutes of Health, Baltimore, MD, USA.
| |
Collapse
|
5
|
Trinh S, Keller L, Herpertz-Dahlmann B, Seitz J. The role of the brain-derived neurotrophic factor (BDNF) in anorexia nervosa. Psychoneuroendocrinology 2023; 151:106069. [PMID: 36878115 DOI: 10.1016/j.psyneuen.2023.106069] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 01/28/2023] [Accepted: 02/20/2023] [Indexed: 03/08/2023]
Abstract
The brain-derived neurotrophic factor (BDNF) is a growth factor belonging to the neurotrophin family which plays a pivotal role in the differentiation, survival, and plasticity of neurons in the central nervous system. Evidence suggests that BDNF is an important signal molecule in the regulation of energy balance and thus implicated in body weight control. The discovery of BDNF-expressing neurons in the paraventricular hypothalamus which is important in the regulation of energy intake, physical activity, and thermogenesis gives more evidence to the suggested participation of BDNF in eating behavior. Until now it remains questionable whether BDNF can be used as a reliable biomarker for eating disorders such as anorexia nervosa (AN) as available findings on BDNF levels in patients with AN are ambiguous. AN is an eating disorder characterized by a pathological low body weight in combination with a body image disturbance typically developing during adolescence. A severe drive for thinness leads to restrictive eating behavior often accompanied by physical hyperactivity. During therapeutic weight restoration an increase of BDNF expression levels seems desirable as it might improve neuronal plasticity and survival which is essential for learning processes and thereby essential for the success of the psychotherapeutic treatment of patients. On the contrary, the well-known anorexigenic effect of BDNF might favor relapse in patients as soon as the BDNF levels significantly increase during weight rehabilitation. The present review summarizes the association between BDNF and general eating behavior and especially focuses on the eating disorder AN. In this regard findings from preclinical AN studies (activity-based anorexia model) are outlined as well.
Collapse
Affiliation(s)
- Stefanie Trinh
- Institute for Neuroanatomy, University Hospital, RWTH University Aachen, Wendlingweg 2, Aachen D-52074, Germany.
| | - Lara Keller
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital, RWTH University Aachen, Neuenhofer Weg 21, Aachen D-52074, Germany.
| | - Beate Herpertz-Dahlmann
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital, RWTH University Aachen, Neuenhofer Weg 21, Aachen D-52074, Germany.
| | - Jochen Seitz
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital, RWTH University Aachen, Neuenhofer Weg 21, Aachen D-52074, Germany.
| |
Collapse
|
6
|
How Can Animal Models Inform the Understanding of Cognitive Inflexibility in Patients with Anorexia Nervosa? J Clin Med 2022; 11:jcm11092594. [PMID: 35566718 PMCID: PMC9105411 DOI: 10.3390/jcm11092594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/27/2022] [Accepted: 04/30/2022] [Indexed: 02/04/2023] Open
Abstract
Deficits in cognitive flexibility are consistently seen in patients with anorexia nervosa (AN). This type of cognitive impairment is thought to be associated with the persistence of AN because it leads to deeply ingrained patterns of thought and behaviour that are highly resistant to change. Neurobiological drivers of cognitive inflexibility have some commonalities with the abnormal brain functional outcomes described in patients with AN, including disrupted prefrontal cortical function, and dysregulated dopamine and serotonin neurotransmitter systems. The activity-based anorexia (ABA) model recapitulates the key features of AN in human patients, including rapid weight loss caused by self-starvation and hyperactivity, supporting its application in investigating the cognitive and neurobiological causes of pathological weight loss. The aim of this review is to describe the relationship between AN, neural function and cognitive flexibility in human patients, and to highlight how new techniques in behavioural neuroscience can improve the utility of animal models of AN to inform the development of novel therapeutics.
Collapse
|