1
|
Leal-Cardín M, Bracamonte SE, Aldegunde J, Magalhaes IS, Ornelas-García CP, Barluenga M. Signatures of convergence in Neotropical cichlid fish. Mol Ecol 2024; 33:e17524. [PMID: 39279721 DOI: 10.1111/mec.17524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/17/2024] [Accepted: 08/02/2024] [Indexed: 09/18/2024]
Abstract
Convergent evolution of similar phenotypes suggests some predictability in the evolutionary trajectories of organisms, due to strong and repeated selective pressures, and/or developmental constraints. In adaptive radiations, particularly in cichlid fish radiations, convergent phenotypes are commonly found within and across geographical settings. Cichlids show major repeated axes of morphological diversification. Recurrent changes in body patterns reveal adaption to alternative habitats, and modifications of the trophic apparatus respond to the exploitation of different food resources. Here we compare morphologically and genetically two Neotropical cichlid assemblages, the Mexican desert cichlid and the Nicaraguan Midas cichlid, with similar polymorphic body and trophic adaptations despite their independent evolution. We found a common morphological axis of differentiation in trophic structures in both cichlid radiations, but two different axes of differentiation in body shape, defining two alternative limnetic body patterns. Adaptation to limnetic habitats implied regulation of immune functions in the Midas cichlid, while morphogenesis and metabolic functions in the desert cichlid. Convergent phenotypic adaptions could be associated to divergent gene regulation.
Collapse
Affiliation(s)
- Mariana Leal-Cardín
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
- University of Alcalá de Henares, Madrid, Spain
| | - Seraina E Bracamonte
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| | - Javier Aldegunde
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| | - Isabel S Magalhaes
- School of Life and Health Sciences, Centre for Integrated Research in Life and Health Sciences, University of Roehampton, London, UK
| | - Claudia Patricia Ornelas-García
- Colección Nacional de Peces, Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de Mexico, México City, Mexico
| | - Marta Barluenga
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| |
Collapse
|
2
|
Jónsdóttir GÓ, von Elm LM, Ingimarsson F, Tersigni S, Snorrason SS, Pálsson A, Steele SE. Diversity in the internal functional feeding elements of sympatric morphs of Arctic charr (Salvelinus alpinus). PLoS One 2024; 19:e0300359. [PMID: 38771821 PMCID: PMC11108142 DOI: 10.1371/journal.pone.0300359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/23/2024] [Indexed: 05/23/2024] Open
Abstract
The diversity of functional feeding anatomy is particularly impressive in fishes and correlates with various interspecific ecological specializations. Intraspecific polymorphism can manifest in divergent feeding morphology and ecology, often along a benthic-pelagic axis. Arctic charr (Salvelinus alpinus) is a freshwater salmonid known for morphological variation and sympatric polymorphism and in Lake Þingvallavatn, Iceland, four morphs of charr coexist that differ in preferred prey, behaviour, habitat use, and external feeding morphology. We studied variation in six upper and lower jaw bones in adults of these four morphs using geometric morphometrics and univariate statistics. We tested for allometric differences in bone size and shape among morphs, morph effects on bone size and shape, and divergence along the benthic-pelagic axis. We also examined the degree of integration between bone pairs. We found differences in bone size between pelagic and benthic morphs for two bones (dentary and premaxilla). There was clear bone shape divergence along a benthic-pelagic axis in four bones (dentary, articular-angular, premaxilla and maxilla), as well as allometric shape differences between morphs in the dentary. Notably for the dentary, morph explained more shape variation than bone size. Comparatively, benthic morphs possess a compact and taller dentary, with shorter dentary palate, consistent with visible (but less prominent) differences in external morphology. As these morphs emerged in the last 10,000 years, these results indicate rapid functional evolution of specific feeding structures in arctic charr. This sets the stage for studies of the genetics and development of rapid and parallel craniofacial evolution.
Collapse
Affiliation(s)
| | - Laura-Marie von Elm
- Institute of Life- and Environmental Science, University of Iceland, Reykjavik, Iceland
| | | | - Samuel Tersigni
- Institute of Life- and Environmental Science, University of Iceland, Reykjavik, Iceland
| | | | - Arnar Pálsson
- Institute of Life- and Environmental Science, University of Iceland, Reykjavik, Iceland
| | - Sarah Elizabeth Steele
- Institute of Life- and Environmental Science, University of Iceland, Reykjavik, Iceland
- Canadian Museum of Nature, Ottawa, Canada
| |
Collapse
|
3
|
DeLorenzo L, Mathews D, Brandon AA, Joglekar M, Carmona Baez A, Moore EC, Ciccotto PJ, Roberts NB, Roberts RB, Powder KE. Genetic basis of ecologically relevant body shape variation among four genera of cichlid fishes. Mol Ecol 2023; 32:3975-3988. [PMID: 37161914 PMCID: PMC10502943 DOI: 10.1111/mec.16977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 04/20/2023] [Accepted: 04/26/2023] [Indexed: 05/11/2023]
Abstract
Divergence in body shape is one of the most widespread and repeated patterns of morphological variation in fishes and is associated with habitat specification and swimming mechanics. Such ecological diversification is the first stage of the explosive adaptive radiation of cichlid fishes in the East African Rift Lakes. We use two hybrid crosses of cichlids (Metriaclima sp. × Aulonocara sp. and Labidochromis sp. × Labeotropheus sp., >975 animals total) to determine the genetic basis of body shape diversification that is similar to benthic-pelagic divergence across fishes. Using a series of both linear and geometric shape measurements, we identified 34 quantitative trait loci (QTL) that underlie various aspects of body shape variation. These QTL are spread throughout the genome, each explaining 3.2-8.6% of phenotypic variation, and are largely modular. Further, QTL are distinct both between these two crosses of Lake Malawi cichlids and compared to previously identified QTL for body shape in fishes such as sticklebacks. We find that body shape is controlled by many genes of small effect. In all, we find that convergent body shape phenotypes commonly observed across fish clades are most likely due to distinct genetic and molecular mechanisms.
Collapse
Affiliation(s)
- Leah DeLorenzo
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - Destiny Mathews
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - A. Allyson Brandon
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - Mansi Joglekar
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - Aldo Carmona Baez
- Department of Biological Sciences, and Genetics and Genomics Academy, North Carolina State University, Raleigh, NC 27695, USA
| | - Emily C. Moore
- Department of Biological Sciences, and Genetics and Genomics Academy, North Carolina State University, Raleigh, NC 27695, USA
- Department of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Patrick J. Ciccotto
- Department of Biological Sciences, and Genetics and Genomics Academy, North Carolina State University, Raleigh, NC 27695, USA
- Department of Biology, Warren Wilson College, Swannanoa, NC 28778, USA
| | - Natalie B. Roberts
- Department of Biological Sciences, and Genetics and Genomics Academy, North Carolina State University, Raleigh, NC 27695, USA
| | - Reade B. Roberts
- Department of Biological Sciences, and Genetics and Genomics Academy, North Carolina State University, Raleigh, NC 27695, USA
| | - Kara E. Powder
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
4
|
Carruthers M, Edgley DE, Saxon AD, Gabagambi NP, Shechonge A, Miska EA, Durbin R, Bridle JR, Turner GF, Genner MJ. Ecological Speciation Promoted by Divergent Regulation of Functional Genes Within African Cichlid Fishes. Mol Biol Evol 2022; 39:msac251. [PMID: 36376993 PMCID: PMC10101686 DOI: 10.1093/molbev/msac251] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Rapid ecological speciation along depth gradients has taken place repeatedly in freshwater fishes, yet molecular mechanisms facilitating such diversification are typically unclear. In Lake Masoko, an African crater lake, the cichlid Astatotilapia calliptera has diverged into shallow-littoral and deep-benthic ecomorphs with strikingly different jaw structures within the last 1,000 years. Using genome-wide transcriptome data, we explore two major regulatory transcriptional mechanisms, expression and splicing-QTL variants, and examine their contributions to differential gene expression underpinning functional phenotypes. We identified 7,550 genes with significant differential expression between ecomorphs, of which 5.4% were regulated by cis-regulatory expression QTLs, and 9.2% were regulated by cis-regulatory splicing QTLs. We also found strong signals of divergent selection on differentially expressed genes associated with craniofacial development. These results suggest that large-scale transcriptome modification plays an important role during early-stage speciation. We conclude that regulatory variants are important targets of selection driving ecologically relevant divergence in gene expression during adaptive diversification.
Collapse
Affiliation(s)
- Madeleine Carruthers
- School of Biological Sciences, University of Bristol,
Bristol BS8 1TQ, United
Kingdom
| | - Duncan E Edgley
- School of Biological Sciences, University of Bristol,
Bristol BS8 1TQ, United
Kingdom
| | - Andrew D Saxon
- School of Biological Sciences, University of Bristol,
Bristol BS8 1TQ, United
Kingdom
| | - Nestory P Gabagambi
- Tanzanian Fisheries Research Institute, Kyela Research
Centre, P.O. Box 98, Kyela, Mbeya, Tanzania
| | - Asilatu Shechonge
- Tanzanian Fisheries Research Institute, Dar es Salaam Research
Centre, P.O. Box 9750, Dar es Salaam, Tanzania
| | - Eric A Miska
- Wellcome/CRUK Gurdon Institute, University of Cambridge,
Cambridge CB2 1QN, United
Kingdom
- Department of Genetics, University of Cambridge,
Cambridge CB2 3EH, United
Kingdom
- Wellcome Sanger Institute, Wellcome Genome Campus,
Cambridge CB10 1SA, United Kingdom
| | - Richard Durbin
- Department of Genetics, University of Cambridge,
Cambridge CB2 3EH, United
Kingdom
- Wellcome Sanger Institute, Wellcome Genome Campus,
Cambridge CB10 1SA, United Kingdom
| | - Jon R Bridle
- School of Biological Sciences, University of Bristol,
Bristol BS8 1TQ, United
Kingdom
| | - George F Turner
- School of Natural Sciences, Bangor University,
Bangor, Wales LL57 2UW, United
Kingdom
| | - Martin J Genner
- School of Biological Sciences, University of Bristol,
Bristol BS8 1TQ, United
Kingdom
| |
Collapse
|
5
|
Baxter D, Cohen KE, Donatelli CM, Tytell ED. Internal vertebral morphology of bony fishes matches the mechanical demands of different environments. Ecol Evol 2022; 12:e9499. [PMID: 36415873 PMCID: PMC9674476 DOI: 10.1002/ece3.9499] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 09/23/2022] [Accepted: 10/20/2022] [Indexed: 11/21/2022] Open
Abstract
Fishes have repeatedly evolved characteristic body shapes depending on how close they live to the substrate. Pelagic fishes live in open water and typically have narrow, streamlined body shapes; benthic and demersal fishes live close to the substrate; and demersal fishes often have deeper bodies. These shape differences are often associated with behavioral differences: pelagic fishes swim nearly constantly, demersal fishes tend to maneuver near the substrate, and benthic fishes often lie in wait on the substrate. We hypothesized that these morphological and behavioral differences would be reflected in the mechanical properties of the body, and specifically in vertebral column stiffness, because it is an attachment point for the locomotor musculature and a central axis for body bending. The vertebrae of bony fishes are composed of two cones connected by a foramen, which is filled by the notochord. Since the notochord is more flexible than bony vertebral centra, we predicted that pelagic fishes would have narrower foramina or shallower cones, leading to less notochordal material and a stiffer vertebral column which might support continuous swimming. In contrast, we predicted that benthic and demersal fishes would have more notochordal material, making the vertebral column more flexible for diverse behaviors in these species. We therefore examined vertebral morphology in 79 species using micro-computed tomography scans. Six vertebral features were measured including notochordal foramen diameter, centrum body length, and the cone angles and diameters for the anterior and posterior vertebral cones, along with body fineness. Using phylogenetic generalized least squares analyses, we found that benthic and pelagic species differed significantly, with larger foramina, shorter centra, and larger cones in benthic species. Thus, morphological differences in the internal shape of the vertebrae of fishes are consistent with a stiffer vertebral column in pelagic fishes and with a more flexible vertebral column in benthic species.
Collapse
Affiliation(s)
- Dana Baxter
- Department of BiologyTufts UniversityMedfordMassachusettsUSA
| | - Karly E. Cohen
- Department of BiologyUniversity of FloridaGainesvilleFloridaUSA
- Friday Harbor Laboratories, University of WashingtonFriday HarborWashingtonUSA
| | | | - Eric D. Tytell
- Department of BiologyTufts UniversityMedfordMassachusettsUSA
| |
Collapse
|
6
|
Galvez JR, St John ME, McLean K, Touokong CD, Gonwouo LN, Martin CH. Trophic specialization on unique resources despite limited niche divergence in a celebrated example of sympatric speciation. ECOLOGY OF FRESHWATER FISH 2022; 31:675-692. [PMID: 36211622 PMCID: PMC9542214 DOI: 10.1111/eff.12661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 04/02/2022] [Indexed: 06/16/2023]
Abstract
Trophic niche partitioning is observed in many adaptive radiations and is hypothesized to be a central process underlying species divergence. However, patterns of dietary niche partitioning are inconsistent across radiations and there are few studies of niche partitioning in putative examples of sympatric speciation. Here, we conducted the first quantitative study of dietary niche partitioning using stomach contents and stable isotope analyses in one of the most celebrated examples of sympatric speciation: the cichlid radiation from crater lake Barombi Mbo, Cameroon. We found little evidence for trophic niche partitioning among cichlids, including the nine species coexisting in the narrow littoral zone. Stable isotope analyses supported these conclusions of substantial dietary overlap. Our data, however, did reveal that five of eleven species consume rare dietary items, including freshwater sponge, terrestrial ants, and nocturnal foraging on shrimp. Stomach contents of the spongivore (Pungu maclareni) were 20% freshwater sponge, notable considering that only 0.04% of all fishes consume sponges. Overall, we conclude that cichlid species in lake Barombi Mbo overlap considerably in broad dietary niches-in part due to the large proportion of detritus in the stomach contents of all species-but there is evidence for divergence among species in their diet specializations on unique resources. We speculate that these species may utilize these additional specialized resources during periods of low resource abundance in support of Liem's paradox.
Collapse
Affiliation(s)
- Jacquelyn R Galvez
- Department of Integrative Biology, University of California, Berkeley, CA, USA
- Museum of Vertebrate Zoology, University of California, Berkeley, CA, USA
| | - Michelle E St John
- Department of Integrative Biology, University of California, Berkeley, CA, USA
- Museum of Vertebrate Zoology, University of California, Berkeley, CA, USA
| | - Keara McLean
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Legrand Nono Gonwouo
- Laboratory of Zoology, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| | - Christopher H Martin
- Department of Integrative Biology, University of California, Berkeley, CA, USA
- Museum of Vertebrate Zoology, University of California, Berkeley, CA, USA
| |
Collapse
|
7
|
Kennedy SR, Ying Lim J, Ashley Adams S, Krehenwinkel H, Gillespie RG. What is adaptive radiation? Many manifestations of the phenomenon in an iconic lineage of Hawaiian spiders. Mol Phylogenet Evol 2022; 175:107564. [PMID: 35787456 DOI: 10.1016/j.ympev.2022.107564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/27/2022] [Accepted: 06/02/2022] [Indexed: 11/16/2022]
Abstract
Adaptive radiation provides the ideal context for identifying and testing the processes that drive evolutionary diversification. However, different adaptive radiations show a variety of different patterns, making it difficult to come up with universal rules that characterize all such systems. Diversification may occur via several mechanisms including non-adaptive divergence, adaptation to novel environments, or character displacement driven by competition. Here, we characterize the ways these different drivers contribute to present-day diversity patterns, using the exemplary adaptive radiation of Hawaiian long-jawed orbweaver (Tetragnatha) spiders. We present the most taxonomically comprehensive phylogenetic hypothesis to date for this group, using 10 molecular markers and representatives from every known species across the archipelago. Among the lineages that make up this remarkable radiation, we find evidence for multiple diversification modalities. Several clades appear to have diversified in allopatry under a narrow range of ecological conditions, highlighting the role of niche conservatism in speciation. Others have shifted into new environments and evolved traits that appear to be adaptive in those environments. Still others show evidence for character displacement by close relatives, often resulting in convergent evolution of stereotyped ecomorphs. All of the above mechanisms seem to have played a role in giving rise to the exceptional diversity of morphological, ecological and behavioral traits represented among the many species of Hawaiian Tetragnatha. Taking all these processes into account, and testing how they operate in different systems, may allow us to identify universal principles underlying adaptive radiation.
Collapse
Affiliation(s)
| | - Jun Ying Lim
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Seira Ashley Adams
- Department of Environmental Science, Policy and Management, University of California Berkeley, USA
| | | | - Rosemary G Gillespie
- Department of Environmental Science, Policy and Management, University of California Berkeley, USA
| |
Collapse
|
8
|
Bracamonte SE, Hofmann MJ, Lozano-Martín C, Eizaguirre C, Barluenga M. Divergent and non-parallel evolution of MHC IIB in the Neotropical Midas cichlid species complex. BMC Ecol Evol 2022; 22:41. [PMID: 35365100 PMCID: PMC8974093 DOI: 10.1186/s12862-022-01997-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/21/2022] [Indexed: 01/09/2023] Open
Abstract
Background Ecological diversification is the result of divergent natural selection by contrasting habitat characteristics that favours the evolution of distinct phenotypes. This process can happen in sympatry and in allopatry. Habitat-specific parasite communities have the potential to drive diversification among host populations by imposing selective pressures on their host's immune system. In particular, the hyperdiverse genes of the major histocompatibility complex (MHC) are implicated in parasite-mediated host divergence. Here, we studied the extent of divergence at MHC, and discuss how it may have contributed to the Nicaraguan Midas cichlid species complex diversification, one of the most convincing examples of rapid sympatric parallel speciation. Results We genotyped the MHC IIB for individuals from six sympatric Midas cichlid assemblages, each containing species that have adapted to exploit similar habitats. We recovered large allelic and functional diversity within the species complex. While most alleles were rare, functional groups of alleles (supertypes) were common, suggesting that they are key to survival and that they were maintained during colonization and subsequent radiations. We identified lake-specific and habitat-specific signatures for both allelic and functional diversity, but no clear pattern of parallel divergence among ecomorphologically similar phenotypes. Conclusions Colonization and demographic effects of the fish could have contributed to MHC evolution in the Midas cichlid in conjunction with habitat-specific selective pressures, such as parasites associated to alternative preys or environmental features. Additional ecological data will help evaluating the role of host–parasite interactions in the Midas cichlid radiations and aid in elucidating the potential role of non-parallel features differentiating crater lake species assemblages. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-022-01997-9.
Collapse
Affiliation(s)
- Seraina E Bracamonte
- Museo Nacional de Ciencias Naturales, CSIC, José Gutiérrez Abascal 2, 28006, Madrid, Spain
| | - Melinda J Hofmann
- Museo Nacional de Ciencias Naturales, CSIC, José Gutiérrez Abascal 2, 28006, Madrid, Spain
| | - Carlos Lozano-Martín
- Museo Nacional de Ciencias Naturales, CSIC, José Gutiérrez Abascal 2, 28006, Madrid, Spain
| | - Christophe Eizaguirre
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Marta Barluenga
- Museo Nacional de Ciencias Naturales, CSIC, José Gutiérrez Abascal 2, 28006, Madrid, Spain.
| |
Collapse
|
9
|
Friedman ST, Collyer ML, Price SA, Wainwright PC. Divergent processes drive parallel evolution in marine and freshwater fishes. Syst Biol 2021; 71:1319-1330. [PMID: 34605882 DOI: 10.1093/sysbio/syab080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/17/2021] [Accepted: 09/23/2021] [Indexed: 01/20/2023] Open
Abstract
Evolutionary comparisons between major environmental divides, such as between marine and freshwater systems, can reveal the fundamental processes governing diversification dynamics. Although processes may differ due to the different scales of their biogeographic barriers, freshwater and marine environments nevertheless offer similar opportunities for diversification in benthic, demersal, and pelagic habitats. Here, we compare the evolutionary patterns and processes shaping teleost diversity both in each of these three habitats and between marine and freshwater systems. Using specimens from the National Museum of Natural History, we developed a dataset of linear measurements capturing body shape in 2,266 freshwater and 3,344 marine teleost species. With a novel comparative approach, we contrast the primary axis of morphological diversification in each habitat with the major axis defined by phylogenetic signal. By comparing angles between these axes, we find that fish in corresponding habitats have more similar primary axes of morphological diversity than would be expected by chance, but that different historical processes underlie these parallel patterns in freshwater and marine environments. Marine diversification is more strongly aligned with phylogenetic signal and shows a trend toward lineages occupying separate regions of morphospace. In contrast, ecological signal appears to be a strong driver of diversification in freshwater lineages through repeated morphological evolution in densely packed regions of morphospace. In spite of these divergent histories, our findings reveal that habitat has driven convergent patterns of evolutionary diversification on a global scale.
Collapse
Affiliation(s)
- S T Friedman
- Department of Evolution and Ecology, University of California Davis, Davis, CA 95616, USA
| | - M L Collyer
- Department of Science, Chatham University, Pittsburgh, Pennsylvania 15232, USA
| | - S A Price
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - P C Wainwright
- Department of Evolution and Ecology, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
10
|
Hodge JR, Song Y, Wightman MA, Milkey A, Tran B, Štajner A, Roberts AS, Hemingson CR, Wainwright PC, Price SA. Constraints on the Ecomorphological Convergence of Zooplanktivorous Butterflyfishes. Integr Org Biol 2021; 3:obab014. [PMID: 34377941 PMCID: PMC8341894 DOI: 10.1093/iob/obab014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Whether distantly related organisms evolve similar strategies to meet the demands of a shared ecological niche depends on their evolutionary history and the nature of form-function relationships. In fishes, the visual identification and consumption of microscopic zooplankters, selective zooplanktivory, is a distinct type of foraging often associated with a suite of morphological specializations. Previous work has identified inconsistencies in the trajectory and magnitude of morphological change following transitions to selective zooplanktivory, alluding to the diversity and importance of ancestral effects. Here we investigate whether transitions to selective zooplanktivory have influenced the morphological evolution of marine butterflyfishes (family Chaetodontidae), a group of small-prey specialists well known for several types of high-precision benthivory. Using Bayesian ancestral state estimation, we inferred the recent evolution of zooplanktivory among benthivorous ancestors that hunted small invertebrates and browsed by picking or scraping coral polyps. Traits related to the capture of prey appear to be functionally versatile, with little morphological distinction between species with benthivorous and planktivorous foraging modes. In contrast, multiple traits related to prey detection or swimming performance are evolving toward novel, zooplanktivore-specific optima. Despite a relatively short evolutionary history, general morphological indistinctiveness, and evidence of constraint on the evolution of body size, convergent evolution has closed a near significant amount of the morphological distance between zooplanktivorous species. Overall, our findings describe the extent to which the functional demands associated with selective zooplanktivory have led to generalizable morphological features among butterflyfishes and highlight the importance of ancestral effects in shaping patterns of morphological convergence.
Collapse
Affiliation(s)
- J R Hodge
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
- Department of Evolution and Ecology, University of California, Davis, Davis, CA 95616, USA
| | - Y Song
- Department of Evolution and Ecology, University of California, Davis, Davis, CA 95616, USA
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong
| | - M A Wightman
- Department of Evolution and Ecology, University of California, Davis, Davis, CA 95616, USA
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, FL 34946, USA
| | - A Milkey
- Department of Evolution and Ecology, University of California, Davis, Davis, CA 95616, USA
| | - B Tran
- Department of Evolution and Ecology, University of California, Davis, Davis, CA 95616, USA
| | - A Štajner
- Department of Evolution and Ecology, University of California, Davis, Davis, CA 95616, USA
| | - A S Roberts
- Department of Evolution and Ecology, University of California, Davis, Davis, CA 95616, USA
| | - C R Hemingson
- College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
| | - P C Wainwright
- Department of Evolution and Ecology, University of California, Davis, Davis, CA 95616, USA
| | - S A Price
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
11
|
Elliott Smith EA, Harrod C, Docmac F, Newsome SD. Intraspecific variation and energy channel coupling within a Chilean kelp forest. Ecology 2021; 102:e03198. [PMID: 33009678 DOI: 10.1002/ecy.3198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/10/2020] [Accepted: 08/07/2020] [Indexed: 12/21/2022]
Abstract
The widespread importance of variable types of primary production, or energy channels, to consumer communities has become increasingly apparent. However, the mechanisms underlying this "multichannel" feeding remain poorly understood, especially for aquatic ecosystems that pose unique logistical constraints given the diversity of potential energy channels. Here, we use bulk tissue isotopic analysis along with carbon isotope (δ13 C) analysis of individual amino acids to characterize the relative contribution of pelagic and benthic energy sources to a kelp forest consumer community in northern Chile. We measured bulk tissue δ13 C and δ15 N for >120 samples; of these we analyzed δ13 C values of six essential amino acids (EAA) from nine primary producer groups (n = 41) and 11 representative nearshore consumer taxa (n = 56). Using EAA δ13 C data, we employed linear discriminant analysis (LDA) to assess how distinct EAA δ13 C values were between local pelagic (phytoplankton/particulate organic matter), and benthic (kelps, red algae, and green algae) endmembers. With this model, we were able to correctly classify nearly 90% of producer samples to their original groupings, a significant improvement on traditional bulk isotopic analysis. With this EAA isotopic library, we then generated probability distributions for the most important sources of production for each individual consumer and species using a bootstrap-resampling LDA approach. We found evidence for multichannel feeding within the community at the species level. Invertebrates tended to focus on either pelagic or benthic energy, deriving 13-67% of their EAA from pelagic sources. In contrast, mobile (fish) taxa at higher trophic levels used more equal proportions of each channel, ranging from 19% to 47% pelagically derived energy. Within a taxon, multichannel feeding was a result of specialization among individuals in energy channel usage, with 37 of 56 individual consumers estimated to derive >80% of their EAA from a single channel. Our study reveals how a cutting-edge isotopic technique can characterize the dynamics of energy flow in coastal food webs, a topic that has historically been difficult to address. More broadly, our work provides a mechanism as to how multichannel feeding may occur in nearshore communities, and we suggest this pattern be investigated in additional ecosystems.
Collapse
Affiliation(s)
- Emma A Elliott Smith
- Department of Anthropology, National Museum of Natural History, Smithsonian Institution, 10th St. & Constitution Ave. NW, Washington, D.C., 20560, USA
- Department of Biology, University of New Mexico, 219 Yale Blvd NE, Albuquerque, New Mexico, 87131-0001, USA
| | - Chris Harrod
- Instituto de Ciencias Naturales Alexander von Humboldt, Universidad de Antofagasta, Avenida Angamos 601, Antofagasta, Chile
- Universidad de Antofagasta Stable Isotope Facility (UASIF), Universidad de Antofagasta, Avenida Angamos 601, Antofagasta, Chile
- Núcleo Milenio Salmónidos Invasores (INVASAL), Concepción, Chile
| | - Felipe Docmac
- Instituto de Ciencias Naturales Alexander von Humboldt, Universidad de Antofagasta, Avenida Angamos 601, Antofagasta, Chile
- Universidad de Antofagasta Stable Isotope Facility (UASIF), Universidad de Antofagasta, Avenida Angamos 601, Antofagasta, Chile
| | - Seth D Newsome
- Department of Biology, University of New Mexico, 219 Yale Blvd NE, Albuquerque, New Mexico, 87131-0001, USA
| |
Collapse
|
12
|
Friedman ST, Price SA, Corn KA, Larouche O, Martinez CM, Wainwright PC. Body shape diversification along the benthic-pelagic axis in marine fishes. Proc Biol Sci 2020; 287:20201053. [PMID: 32693721 PMCID: PMC7423681 DOI: 10.1098/rspb.2020.1053] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/27/2020] [Indexed: 12/18/2022] Open
Abstract
Colonization of novel habitats can result in marked phenotypic responses to the new environment that include changes in body shape and opportunities for further morphological diversification. Fishes have repeatedly transitioned along the benthic-pelagic axis, with varying degrees of association with the substrate. Previous work focusing on individual lineages shows that these transitions are accompanied by highly predictable changes in body form. Here, we generalize expectations drawn from this literature to study the effects of habitat on body shape diversification across 3344 marine teleost fishes. We compare rates and patterns of evolution in eight linear measurements of body shape among fishes that live in pelagic, demersal and benthic habitats. While average body shape differs between habitats, these differences are subtle compared with the high diversity of shapes found within each habitat. Benthic living increases the rate of body shape evolution and has led to numerous lineages evolving extreme body shapes, including both exceptionally wide bodies and highly elongate, eel-like forms. By contrast, we find that benthic living is associated with the slowest diversification of structures associated with feeding. Though we find that habitat can serve as an impetus for predictable trait changes, we also highlight the diversity of responses in marine teleosts to opportunities presented by major habitats.
Collapse
Affiliation(s)
- S. T. Friedman
- Department of Evolution and Ecology, University of California Davis, Davis, CA 95616, USA
| | - S. A. Price
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - K. A. Corn
- Department of Evolution and Ecology, University of California Davis, Davis, CA 95616, USA
| | - O. Larouche
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - C. M. Martinez
- Department of Evolution and Ecology, University of California Davis, Davis, CA 95616, USA
| | - P. C. Wainwright
- Department of Evolution and Ecology, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
13
|
Bolnick DI, Ballare KM. Resource diversity promotes among-individual diet variation, but not genomic diversity, in lake stickleback. Ecol Lett 2020; 23:495-505. [PMID: 31919988 PMCID: PMC7325224 DOI: 10.1111/ele.13448] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/07/2019] [Accepted: 11/24/2019] [Indexed: 12/11/2022]
Abstract
Many generalist species consist of specialised individuals that use different resources. This within-population niche variation can stabilise population and community dynamics. Consequently, ecologists wish to identify environmental settings that promote such variation. Theory predicts that environments with greater resource diversity favour ecological diversity among consumers (via disruptive selection or plasticity). Alternatively, niche variation might be a side-effect of neutral genomic diversity in larger populations. We tested these alternatives in a metapopulation of threespine stickleback. Stickleback consume benthic and limnetic invertebrates, focusing on the former in small lakes, the latter in large lakes. Intermediate-sized lakes support generalist stickleback populations using an even mixture of the two prey types, and exhibit greater among-individual variation in diet and morphology. In contrast, genomic diversity increases with lake size. Thus, phenotypic diversity and neutral genetic polymorphism are decoupled: trophic diversity being greatest in intermediate-sized lakes with high resource diversity, whereas neutral genetic diversity is greatest in the largest lakes.
Collapse
|
14
|
Gillespie RG, Bennett GM, De Meester L, Feder JL, Fleischer RC, Harmon LJ, Hendry AP, Knope ML, Mallet J, Martin C, Parent CE, Patton AH, Pfennig KS, Rubinoff D, Schluter D, Seehausen O, Shaw KL, Stacy E, Stervander M, Stroud JT, Wagner C, Wogan GOU. Comparing Adaptive Radiations Across Space, Time, and Taxa. J Hered 2020; 111:1-20. [PMID: 31958131 PMCID: PMC7931853 DOI: 10.1093/jhered/esz064] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 10/28/2019] [Indexed: 01/02/2023] Open
Abstract
Adaptive radiation plays a fundamental role in our understanding of the evolutionary process. However, the concept has provoked strong and differing opinions concerning its definition and nature among researchers studying a wide diversity of systems. Here, we take a broad view of what constitutes an adaptive radiation, and seek to find commonalities among disparate examples, ranging from plants to invertebrate and vertebrate animals, and remote islands to lakes and continents, to better understand processes shared across adaptive radiations. We surveyed many groups to evaluate factors considered important in a large variety of species radiations. In each of these studies, ecological opportunity of some form is identified as a prerequisite for adaptive radiation. However, evolvability, which can be enhanced by hybridization between distantly related species, may play a role in seeding entire radiations. Within radiations, the processes that lead to speciation depend largely on (1) whether the primary drivers of ecological shifts are (a) external to the membership of the radiation itself (mostly divergent or disruptive ecological selection) or (b) due to competition within the radiation membership (interactions among members) subsequent to reproductive isolation in similar environments, and (2) the extent and timing of admixture. These differences translate into different patterns of species accumulation and subsequent patterns of diversity across an adaptive radiation. Adaptive radiations occur in an extraordinary diversity of different ways, and continue to provide rich data for a better understanding of the diversification of life.
Collapse
Affiliation(s)
- Rosemary G Gillespie
- University of California, Berkeley, Essig Museum of Entomology & Department of Environmental Science, Policy, and Management, Berkeley, CA
| | - Gordon M Bennett
- University of California Merced, Life and Environmental Sciences Unit, Merced, CA
| | - Luc De Meester
- University of Leuven, Laboratory of Aquatic Ecology, Evolution and Conservation, Leuven, Belguim
| | - Jeffrey L Feder
- University of Notre Dame, Dept. of Biological Sciences, Notre Dame, IN
| | - Robert C Fleischer
- Center for Conservation Genomics, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC
| | - Luke J Harmon
- University of Idaho, Dept. of Biological Sciences, Moscow, ID
| | | | | | | | - Christopher Martin
- University of California Berkeley, Integrative Biology and Museum of Vertebrate Zoology, Berkeley, CA
| | | | - Austin H Patton
- Washington State University, School of Biological Sciences, Pullman, WA
| | - Karin S Pfennig
- University of North Carolina at Chapel Hill, Department of Biology, Chapel Hill, NC
| | - Daniel Rubinoff
- University of Hawaiʻi at Manoa, Department of Plant and Environmental Protection Sciences, Honolulu, HI
| | | | - Ole Seehausen
- Institute of Ecology & Evolution, University of Bern, Bern, BE, Switzerland
- Center for Ecology, Evolution & Biogeochemistry, Eawag, Kastanienbaum, LU, Switzerland
| | - Kerry L Shaw
- Cornell University, Neurobiology and Behavior, Tower Road,, Ithaca, NY
| | - Elizabeth Stacy
- University of Nevada Las Vegas, School of Life Sciences, Las Vegas, NV
| | - Martin Stervander
- University of Oregon, Institute of Ecology and Evolution, Eugene, OR
| | - James T Stroud
- Washington University in Saint Louis, Biology, Saint Louis, MO
| | | | - Guinevere O U Wogan
- University of California Berkeley, Environmental Science Policy, and Management, Berkeley, CA
| |
Collapse
|
15
|
Burress ED, Piálek L, Casciotta JR, Almirón A, Tan M, Armbruster JW, Říčan O. Island- and lake-like parallel adaptive radiations replicated in rivers. Proc Biol Sci 2019; 285:rspb.2017.1762. [PMID: 29298932 DOI: 10.1098/rspb.2017.1762] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 11/29/2017] [Indexed: 11/12/2022] Open
Abstract
Parallel adaptive radiations have arisen following the colonization of islands by lizards and lakes by fishes. In these classic examples, parallel adaptive radiation is a response to the ecological opportunities afforded by the colonization of novel ecosystems and similar adaptive landscapes that favour the evolution of similar suites of ecomorphs, despite independent evolutionary histories. Here, we demonstrate that parallel adaptive radiations of cichlid fishes arose in South American rivers. Speciation-assembled communities of pike cichlids (Crenicichla) have independently diversified into similar suites of novel ecomorphs in the Uruguay and Paraná Rivers, including crevice feeders, periphyton grazers and molluscivores. There were bursts in phenotypic evolution associated with the colonization of each river and the subsequent expansion of morphospace following the evolution of the ecomorphs. These riverine clades demonstrate that characteristics emblematic of textbook parallel adaptive radiations of island- and lake-dwelling assemblages are feasible evolutionary outcomes even in labile ecosystems such as rivers.
Collapse
Affiliation(s)
- Edward D Burress
- Department of Biological Sciences and Auburn University Museum of Natural History, Auburn University, Auburn, AL, USA
| | - Lubomír Piálek
- Department of Zoology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Jorge R Casciotta
- División Zoologia Vertebrados, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Buenos Aires, Argentina.,Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, Buenos Aires, Argentina
| | - Adriana Almirón
- División Zoologia Vertebrados, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Buenos Aires, Argentina
| | - Milton Tan
- Department of Biological Sciences and Auburn University Museum of Natural History, Auburn University, Auburn, AL, USA
| | - Jonathan W Armbruster
- Department of Biological Sciences and Auburn University Museum of Natural History, Auburn University, Auburn, AL, USA
| | - Oldřich Říčan
- Department of Zoology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| |
Collapse
|
16
|
Gunter HM, Schneider RF, Karner I, Sturmbauer C, Meyer A. Molecular investigation of genetic assimilation during the rapid adaptive radiations of East African cichlid fishes. Mol Ecol 2017; 26:6634-6653. [PMID: 29098748 DOI: 10.1111/mec.14405] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 08/06/2017] [Accepted: 08/24/2017] [Indexed: 12/19/2022]
Abstract
Adaptive radiations are characterized by adaptive diversification intertwined with rapid speciation within a lineage resulting in many ecologically specialized, phenotypically diverse species. It has been proposed that adaptive radiations can originate from ancestral lineages with pronounced phenotypic plasticity in adaptive traits, facilitating ecologically driven phenotypic diversification that is ultimately fixed through genetic assimilation of gene regulatory regions. This study aimed to investigate how phenotypic plasticity is reflected in gene expression patterns in the trophic apparatus of several lineages of East African cichlid fishes, and whether the observed patterns support genetic assimilation. This investigation used a split brood experimental design to compare adaptive plasticity in species from within and outside of adaptive radiations. The plastic response was induced in the crushing pharyngeal jaws through feeding individuals either a hard or soft diet. We find that nonradiating, basal lineages show higher levels of adaptive morphological plasticity than the derived, radiated lineages, suggesting that these differences have become partially genetically fixed during the formation of the adaptive radiations. Two candidate genes that may have undergone genetic assimilation, gif and alas1, were identified, in addition to alterations in the wiring of LPJ patterning networks. Taken together, our results suggest that genetic assimilation may have dampened the inducibility of plasticity related genes during the adaptive radiations of East African cichlids, flattening the reaction norms and canalizing their feeding phenotypes, driving adaptation to progressively more narrow ecological niches.
Collapse
Affiliation(s)
- Helen M Gunter
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, Konstanz, Germany.,Zukunftskolleg, University of Konstanz, Konstanz, Germany
| | - Ralf F Schneider
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, Konstanz, Germany.,International Max Planck Research School for Organismal Biology, University of Konstanz, Konstanz, Germany
| | | | | | - Axel Meyer
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, Konstanz, Germany.,International Max Planck Research School for Organismal Biology, University of Konstanz, Konstanz, Germany.,Radcliffe Institute for Advanced Study, Harvard University, Cambridge, MA, USA
| |
Collapse
|
17
|
Kratochwil CF, Sefton MM, Liang Y, Meyer A. Tol2 transposon-mediated transgenesis in the Midas cichlid (Amphilophus citrinellus) - towards understanding gene function and regulatory evolution in an ecological model system for rapid phenotypic diversification. BMC DEVELOPMENTAL BIOLOGY 2017; 17:15. [PMID: 29169323 PMCID: PMC5701313 DOI: 10.1186/s12861-017-0157-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 11/14/2017] [Indexed: 11/12/2022]
Abstract
Background The Midas cichlid species complex (Amphilophus spp.) is widely known among evolutionary biologists as a model system for sympatric speciation and adaptive phenotypic divergence within extremely short periods of time (a few hundred generations). The repeated parallel evolution of adaptive phenotypes in this radiation, combined with their near genetic identity, makes them an excellent model for studying phenotypic diversification. While many ecological and evolutionary studies have been performed on Midas cichlids, the molecular basis of specific phenotypes, particularly adaptations, and their underlying coding and cis-regulatory changes have not yet been studied thoroughly. Results For the first time in any New World cichlid, we use Tol2 transposon-mediated transgenesis in the Midas cichlid (Amphilophus citrinellus). By adapting existing microinjection protocols, we established an effective protocol for transgenesis in Midas cichlids. Embryos were injected with a Tol2 plasmid construct that drives enhanced green fluorescent protein (eGFP) expression under the control of the ubiquitin promoter. The transgene was successfully integrated into the germline, driving strong ubiquitous expression of eGFP in the first transgenic Midas cichlid line. Additionally, we show transient expression of two further transgenic constructs, ubiquitin::tdTomato and mitfa::eGFP. Transgenesis in Midas cichlids will facilitate further investigation of the genetic basis of species-specific traits, many of which are adaptations. Conclusion Transgenesis is a versatile tool not only for studying regulatory elements such as promoters and enhancers, but also for testing gene function through overexpression of allelic gene variants. As such, it is an important first step in establishing the Midas cichlid as a powerful model for studying adaptive coding and non-coding changes in an ecological and evolutionary context.
Collapse
Affiliation(s)
- Claudius F Kratochwil
- Chair in Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Constance, Germany. .,Zukunftskolleg, University of Konstanz, Constance, Germany. .,International Max Planck Research School for Organismal Biology (IMPRS), Max Planck Institute for Ornithology, Radolfzell, Germany.
| | - Maggie M Sefton
- Chair in Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Constance, Germany.,International Max Planck Research School for Organismal Biology (IMPRS), Max Planck Institute for Ornithology, Radolfzell, Germany
| | - Yipeng Liang
- Chair in Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Constance, Germany
| | - Axel Meyer
- Chair in Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Constance, Germany. .,International Max Planck Research School for Organismal Biology (IMPRS), Max Planck Institute for Ornithology, Radolfzell, Germany.
| |
Collapse
|
18
|
Burress ED, Alda F, Duarte A, Loureiro M, Armbruster JW, Chakrabarty P. Phylogenomics of pike cichlids (Cichlidae: Crenicichla): the rapid ecological speciation of an incipient species flock. J Evol Biol 2017; 31:14-30. [PMID: 29044782 DOI: 10.1111/jeb.13196] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 08/13/2017] [Accepted: 10/12/2017] [Indexed: 12/18/2022]
Abstract
The rapid rise of phenotypic and ecological diversity in independent lake-dwelling groups of cichlids is emblematic of the East African Great Lakes. In this study, we show that similar ecologically based diversification has occurred in pike cichlids (Crenicichla) throughout the Uruguay River drainage of South America. We collected genomic data from nearly 500 ultraconserved element (UCEs) loci and >260 000 base pairs across 33 species, to obtain a phylogenetic hypothesis for the major species groups and to evaluate the relationships and genetic structure among five closely related, endemic, co-occurring species (the Uruguay River species flock; URSF). Additionally, we evaluated ecological divergence of the URSF based on body and lower pharyngeal jaw (LPJ) shape and gut contents. Across the genus, we recovered novel relationships among the species groups. We found strong support for the monophyly of the URSF; however, relationships among these species remain problematic, likely because of the rapid and recent evolution of this clade. Clustered co-ancestry analysis recovered most species as well delimited genetic groups. The URSF species exhibit species-specific body and LPJ shapes associated with specialized trophic roles. Collectively, our results suggest that the URSF consists of incipient species that arose via ecological speciation associated with the exploration of novel trophic roles.
Collapse
Affiliation(s)
- E D Burress
- Department of Biological Sciences and Auburn University Museum of Natural History, Auburn University, Auburn, AL, USA
| | - F Alda
- Museum of Natural Science, Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - A Duarte
- Sección Zoología Vertebrados, Departmento de Ecología y Evolución, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - M Loureiro
- Sección Zoología Vertebrados, Departmento de Ecología y Evolución, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.,Sección Ictología, Departmento de Zoología, Museo Nacional de Historia Natural, Montevideo, Uruguay
| | - J W Armbruster
- Department of Biological Sciences and Auburn University Museum of Natural History, Auburn University, Auburn, AL, USA
| | - P Chakrabarty
- Museum of Natural Science, Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| |
Collapse
|
19
|
Tougard C, García Dávila CR, Römer U, Duponchelle F, Cerqueira F, Paradis E, Guinand B, Angulo Chávez C, Salas V, Quérouil S, Sirvas S, Renno JF. Tempo and rates of diversification in the South American cichlid genus Apistogramma (Teleostei: Perciformes: Cichlidae). PLoS One 2017; 12:e0182618. [PMID: 28873089 PMCID: PMC5584756 DOI: 10.1371/journal.pone.0182618] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 07/21/2017] [Indexed: 12/26/2022] Open
Abstract
Evaluating biodiversity and understanding the processes involved in diversification are noticeable conservation issues in fishes subject to large, sometimes illegal, ornamental trade purposes. Here, the diversity and evolutionary history of the Neotropical dwarf cichlid genus Apistogramma from several South American countries are investigated. Mitochondrial and nuclear markers are used to infer phylogenetic relationships between 31 genetically identified species. The monophyly of Apistogramma is suggested, and Apistogramma species are distributed into four clades, corresponding to three morphological lineages. Divergence times estimated with the Yule process and an uncorrelated lognormal clock dated the Apistogramma origin to the beginning of the Eocene (≈ 50 Myr) suggesting that diversification might be related to marine incursions. Our molecular dating also suggests that the Quaternary glacial cycles coincide with the phases leading to Apistogramma speciation. These past events did not influence diversification rates in the speciose genus Apistogramma, since diversification appeared low and constant through time. Further characterization of processes involved in recent Apistogramma diversity will be necessary.
Collapse
Affiliation(s)
- Christelle Tougard
- Institut des Sciences de l’Evolution de Montpellier (ISEM), UMR CNRS/UM/EPHE 5554, IRD 226, CIRAD 117, Montpellier, France
| | - Carmen R. García Dávila
- Instituto de Investigaciones de la Amazonía Peruana, Laboratorio de Biología y Genética Molecular, Iquitos, Perú
| | - Uwe Römer
- University of Trier, Institute of Biogeography, Department of Geo-Sciences, Trier, Germany
| | - Fabrice Duponchelle
- UMR Biologie des Organismes et Ecosystèmes Aquatiques, MNHN, UPMC, CNRS-7208, IRD-207, UCBN, Paris, France
| | - Frédérique Cerqueira
- Institut des Sciences de l’Evolution de Montpellier (ISEM), UMR CNRS/UM/EPHE 5554, IRD 226, CIRAD 117, Montpellier, France
| | - Emmanuel Paradis
- Institut des Sciences de l’Evolution de Montpellier (ISEM), UMR CNRS/UM/EPHE 5554, IRD 226, CIRAD 117, Montpellier, France
| | - Bruno Guinand
- Institut des Sciences de l’Evolution de Montpellier (ISEM), UMR CNRS/UM/EPHE 5554, IRD 226, CIRAD 117, Montpellier, France
| | - Carlos Angulo Chávez
- Instituto de Investigaciones de la Amazonía Peruana, Laboratorio de Biología y Genética Molecular, Iquitos, Perú
| | - Vanessa Salas
- Universidad Nacional Federico Villareal, Facultad de Oceanografía, Pesquería, Ciencias Alimentarias y Acuicultura, Lima, Perú
| | - Sophie Quérouil
- Institut des Sciences de l’Evolution de Montpellier (ISEM), UMR CNRS/UM/EPHE 5554, IRD 226, CIRAD 117, Montpellier, France
| | - Susana Sirvas
- Universidad Nacional Federico Villareal, Facultad de Oceanografía, Pesquería, Ciencias Alimentarias y Acuicultura, Lima, Perú
| | - Jean-François Renno
- UMR Biologie des Organismes et Ecosystèmes Aquatiques, MNHN, UPMC, CNRS-7208, IRD-207, UCBN, Paris, France
| |
Collapse
|
20
|
Burress ED, Holcomb JM, Tan M, Armbruster JW. Ecological diversification associated with the benthic‐to‐pelagic transition by North American minnows. J Evol Biol 2016; 30:549-560. [DOI: 10.1111/jeb.13024] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 11/28/2016] [Indexed: 12/11/2022]
Affiliation(s)
- E. D. Burress
- Department of Biological Sciences and Auburn University Museum of Natural History Auburn University Auburn AL USA
| | - J. M. Holcomb
- Fish and Wildlife Research Institute Florida Fish and Wildlife Conservation Commission Gainesville FL USA
| | - M. Tan
- Department of Biological Sciences and Auburn University Museum of Natural History Auburn University Auburn AL USA
| | - J. W. Armbruster
- Department of Biological Sciences and Auburn University Museum of Natural History Auburn University Auburn AL USA
| |
Collapse
|
21
|
Bernatchez S, Laporte M, Perrier C, Sirois P, Bernatchez L. Investigating genomic and phenotypic parallelism between piscivorous and planktivorous lake trout (Salvelinus namaycush) ecotypes by means of RADseq and morphometrics analyses. Mol Ecol 2016; 25:4773-92. [DOI: 10.1111/mec.13795] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 07/18/2016] [Accepted: 08/04/2016] [Indexed: 12/19/2022]
Affiliation(s)
- S. Bernatchez
- Institut de Biologie Intégrative et des Systèmes (IBIS); Université Laval; Québec Québec Canada G1V 0A6
| | - M. Laporte
- Institut de Biologie Intégrative et des Systèmes (IBIS); Université Laval; Québec Québec Canada G1V 0A6
| | - C. Perrier
- Institut de Biologie Intégrative et des Systèmes (IBIS); Université Laval; Québec Québec Canada G1V 0A6
- Centre d'Ecologie Fonctionnelle and Evolutive; CNRS; 34293 Montpellier 5 France
| | - P. Sirois
- Chaire de recherche sur les espèces aquatiques exploitées; Université du Québec à Chicoutimi; Chicoutimi Québec Canada G7H 2B1
| | - L. Bernatchez
- Institut de Biologie Intégrative et des Systèmes (IBIS); Université Laval; Québec Québec Canada G1V 0A6
| |
Collapse
|
22
|
Feilich KL. Correlated evolution of body and fin morphology in the cichlid fishes. Evolution 2016; 70:2247-2267. [PMID: 27470271 DOI: 10.1111/evo.13021] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 07/19/2016] [Indexed: 12/15/2022]
Abstract
Body and fin shapes are chief determinants of swimming performance in fishes. Different configurations of body and fin shapes can suit different locomotor specializations. The success of any configuration is dependent upon the hydrodynamic interactions between body and fins. Despite the importance of body-fin interactions for swimming, there are few data indicating whether body and fin configurations evolve in concert, or whether these structures vary independently. The cichlid fishes are a diverse family whose well-studied phylogenetic relationships make them ideal for the study of macroevolution of ecomorphology. This study measured body, and caudal and median fin morphology from radiographs of 131 cichlid genera, using morphometrics and phylogenetic comparative methods to determine whether these traits exhibit correlated evolution. Partial least squares canonical analysis revealed that body, caudal fin, dorsal fin, and anal fin shapes all exhibited strong correlated evolution consistent with locomotor ecomorphology. Major patterns included the evolution of deep body profiles with long fins, suggestive of maneuvering specialization; and the evolution of narrow, elongate caudal peduncles with concave tails, a combination that characterizes economical cruisers. These results demonstrate that body shape evolution does not occur independently of other traits, but among a suite of other morphological changes that augment locomotor specialization.
Collapse
Affiliation(s)
- Kara L Feilich
- Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, 02138.
| |
Collapse
|
23
|
Kautt AF, Machado-Schiaffino G, Torres-Dowdall J, Meyer A. Incipient sympatric speciation in Midas cichlid fish from the youngest and one of the smallest crater lakes in Nicaragua due to differential use of the benthic and limnetic habitats? Ecol Evol 2016; 6:5342-57. [PMID: 27551387 PMCID: PMC4984508 DOI: 10.1002/ece3.2287] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/08/2016] [Accepted: 06/09/2016] [Indexed: 12/21/2022] Open
Abstract
Understanding how speciation can occur without geographic isolation remains a central objective in evolutionary biology. Generally, some form of disruptive selection and assortative mating are necessary for sympatric speciation to occur. Disruptive selection can arise from intraspecific competition for resources. If this competition leads to the differential use of habitats and variation in relevant traits is genetically determined, then assortative mating can be an automatic consequence (i.e., habitat isolation). In this study, we caught Midas cichlid fish from the limnetic (middle of the lake) and benthic (shore) habitats of Crater Lake Asososca Managua to test whether some of the necessary conditions for sympatric speciation due to intraspecific competition and habitat isolation are given. Lake As. Managua is very small (<900 m in diameter), extremely young (maximally 1245 years of age), and completely isolated. It is inhabited by, probably, only a single endemic species of Midas cichlids, Amphilophus tolteca. We found that fish from the limnetic habitat were more elongated than fish collected from the benthic habitat, as would be predicted from ecomorphological considerations. Stable isotope analyses confirmed that the former also exhibit a more limnetic lifestyle than the latter. Furthermore, split‐brood design experiments in the laboratory suggest that phenotypic plasticity is unlikely to explain much of the observed differences in body elongation that we observed in the field. Yet, neutral markers (microsatellites) did not reveal any genetic clustering in the population. Interestingly, demographic inferences based on RAD‐seq data suggest that the apparent lack of genetic differentiation at neutral markers could simply be due to a lack of time, as intraspecific competition may only have begun a few hundred generations ago.
Collapse
Affiliation(s)
- Andreas F Kautt
- Department of Biology University of Konstanz Universitätsstrasse 10 78457 Konstanz Germany
| | | | - Julian Torres-Dowdall
- Department of Biology University of Konstanz Universitätsstrasse 10 78457 Konstanz Germany
| | - Axel Meyer
- Department of Biology University of Konstanz Universitätsstrasse 10 78457 Konstanz Germany
| |
Collapse
|
24
|
Kusche H, Elmer KR, Meyer A. Sympatric ecological divergence associated with a color polymorphism. BMC Biol 2015; 13:82. [PMID: 26437665 PMCID: PMC4594650 DOI: 10.1186/s12915-015-0192-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 09/12/2015] [Indexed: 01/24/2023] Open
Abstract
Background Color polymorphisms are a conspicuous feature of many species and a way to address broad ecological and evolutionary questions. Three potential major evolutionary fates of color polymorphisms are conceivable over time: maintenance, loss, or speciation. However, the understanding of color polymorphisms and their evolutionary implications is frequently impaired by sex-linkage of coloration, unknown inheritance patterns, difficulties in phenotypic characterization, and a lack of evolutionary replicates. Hence, the role of color polymorphisms in promoting ecological and evolutionary diversification remains poorly understood. In this context, we assessed the ecological and evolutionary consequences of a color polymorphic study system that is not hampered by these restrictions: the repeated adaptive radiations of the gold/dark Midas cichlid fishes (the Amphilophus citrinellus species complex) from the great lakes and crater lakes of Nicaragua, Central America. Results We conducted multi-trait morphological and ecological analyses from ten populations of this young adaptive radiation (<6,000 years old), which revealed sympatric ecological differentiation associated with the conspicuous binary (gold/dark) color polymorphism. Varying degrees of intraspecific ecological divergence were observed across the ten color morph pairs, but most pairs exhibited a consistently parallel ecological and evolutionary trajectory across populations. Specifically, gold Midas cichlids are frequently deeper-bodied, have more robust pharyngeal jaws, and feed at a lower trophic level compared to conspecific, sympatric dark individuals. A common garden experiment suggests there is a genetic correlation of color and eco-morphological traits. Conclusions We demonstrate unprecedented ecological and evolutionary consequences of color polymorphism in this adaptive radiation. Across the species complex, sympatric conspecific individuals differed in eco-morphology depending on color morph (gold/dark) and the axis of differentiation tended to be consistent across replicates. The consistent divergence across wild populations and the common garden experiment suggests that color is genetically correlated to ecology. Because Midas cichlids are known to mate color assortatively, the putative genetic correlation of this color polymorphism with an eco-morphological divergence suggests an innate potential to promote ecological and evolutionary divergence across this species complex. However, there are to date no examples of speciation based on color in this radiation, suggesting long-term maintenance of this color polymorphism. Electronic supplementary material The online version of this article (doi:10.1186/s12915-015-0192-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Henrik Kusche
- Department of Biology, University of Konstanz, 78457, Konstanz, Germany. .,International Max Planck Research School for Organismal Biology, University of Konstanz, 78457, Konstanz, Germany. .,Present address: Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS) Université Laval, 1030 Avenue de la Médecine, Québec, G1V 0A6, QC, Canada.
| | - Kathryn R Elmer
- Department of Biology, University of Konstanz, 78457, Konstanz, Germany. .,Present address: Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Axel Meyer
- Department of Biology, University of Konstanz, 78457, Konstanz, Germany. .,International Max Planck Research School for Organismal Biology, University of Konstanz, 78457, Konstanz, Germany.
| |
Collapse
|
25
|
Ingram T. Diversification of body shape inSebastesrockfishes of the north-east Pacific. Biol J Linn Soc Lond 2015. [DOI: 10.1111/bij.12635] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Travis Ingram
- Department of Zoology; University of Otago; 340 Great King Street Dunedin 9016 New Zealand
| |
Collapse
|
26
|
Machado-Schiaffino G, Kautt AF, Kusche H, Meyer A. Parallel evolution in Ugandan crater lakes: repeated evolution of limnetic body shapes in haplochromine cichlid fish. BMC Evol Biol 2015; 15:9. [PMID: 25648727 PMCID: PMC4322459 DOI: 10.1186/s12862-015-0287-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 01/15/2015] [Indexed: 01/01/2023] Open
Abstract
Background The enormous diversity found in East African cichlid fishes in terms of morphology, coloration, and behavior have made them a model for the study of speciation and adaptive evolution. In particular, haplochromine cichlids, by far the most species-rich lineage of cichlids, are a well-known textbook example for parallel evolution. Southwestern Uganda is an area of high tectonic activity, and is home to numerous crater lakes. Many Ugandan crater lakes were colonized, apparently independently, by a single lineage of haplochromine cichlids. Thereby, this system could be considered a natural experiment in which one can study the interaction between geographical isolation and natural selection promoting phenotypic diversification. Results We sampled 13 crater lakes and six potentially-ancestral older lakes and, using both mitochondrial and microsatellite markers, discovered strong genetic and morphological differentiation whereby (a) geographically close lakes tend to be genetically more similar and (b) three different geographic areas seem to have been colonized by three independent waves of colonization from the same source population. Using a geometric morphometric approach, we found that body shape elongation (i.e. a limnetic morphology) evolved repeatedly from the ancestral deeper-bodied benthic morphology in the clear and deep crater lake habitats. Conclusions A pattern of strong genetic and morphological differentiation was observed in the Ugandan crater lakes. Our data suggest that body shape changes have repeatedly evolved into a more limnetic-like form in several Ugandan crater lakes after independent waves of colonization from the same source population. The observed morphological changes in crater lake cichlids are likely to result from a common selective regime. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0287-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gonzalo Machado-Schiaffino
- Department of Biology, Chair of Zoology and Evolutionary Biology, University of Konstanz, Universitätsstrasse 10, 78457, Konstanz, Germany.
| | - Andreas F Kautt
- Department of Biology, Chair of Zoology and Evolutionary Biology, University of Konstanz, Universitätsstrasse 10, 78457, Konstanz, Germany. .,International Max Planck Research School for Organismal Biology, University of Konstanz, Universitätsstrasse 10, 78457, Konstanz, Germany.
| | - Henrik Kusche
- Department of Biology, Chair of Zoology and Evolutionary Biology, University of Konstanz, Universitätsstrasse 10, 78457, Konstanz, Germany. .,International Max Planck Research School for Organismal Biology, University of Konstanz, Universitätsstrasse 10, 78457, Konstanz, Germany.
| | - Axel Meyer
- Department of Biology, Chair of Zoology and Evolutionary Biology, University of Konstanz, Universitätsstrasse 10, 78457, Konstanz, Germany. .,International Max Planck Research School for Organismal Biology, University of Konstanz, Universitätsstrasse 10, 78457, Konstanz, Germany.
| |
Collapse
|
27
|
Claverie T, Wainwright PC. A morphospace for reef fishes: elongation is the dominant axis of body shape evolution. PLoS One 2014; 9:e112732. [PMID: 25409027 PMCID: PMC4237352 DOI: 10.1371/journal.pone.0112732] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 10/14/2014] [Indexed: 11/18/2022] Open
Abstract
Tropical reef fishes are widely regarded as being perhaps the most morphologically diverse vertebrate assemblage on earth, yet much remains to be discovered about the scope and patterns of this diversity. We created a morphospace of 2,939 species spanning 56 families of tropical Indo-Pacific reef fishes and established the primary axes of body shape variation, the phylogenetic consistency of these patterns, and whether dominant patterns of shape change can be accomplished by diverse underlying changes. Principal component analysis showed a major axis of shape variation that contrasts deep-bodied species with slender, elongate forms. Furthermore, using custom methods to compare the elongation vector (axis that maximizes elongation deformation) and the main vector of shape variation (first principal component) for each family in the morphospace, we showed that two thirds of the families diversify along an axis of body elongation. Finally, a comparative analysis using a principal coordinate analysis based on the angles among first principal component vectors of each family shape showed that families accomplish changes in elongation with a wide range of underlying modifications. Some groups such as Pomacentridae and Lethrinidae undergo decreases in body depth with proportional increases in all body regions, while other families show disproportionate changes in the length of the head (e.g., Labridae), the trunk or caudal region in all combinations (e.g., Pempheridae and Pinguipedidae). In conclusion, we found that evolutionary changes in body shape along an axis of elongation dominates diversification in reef fishes. Changes in shape on this axis are thought to have immediate implications for swimming performance, defense from gape limited predators, suction feeding performance and access to some highly specialized habitats. The morphological modifications that underlie changes in elongation are highly diverse, suggesting a role for a range of developmental processes and functional consequences.
Collapse
Affiliation(s)
- Thomas Claverie
- CUFR de Mayotte, Route nationale 3, 97660 Dembeni, France
- * E-mail:
| | - Peter C. Wainwright
- Department of Evolution and Ecology, University of California Davis, Davis, California, United States of America
| |
Collapse
|
28
|
Parallel evolution of Nicaraguan crater lake cichlid fishes via non-parallel routes. Nat Commun 2014; 5:5168. [DOI: 10.1038/ncomms6168] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 09/08/2014] [Indexed: 12/11/2022] Open
|
29
|
Recknagel H, Elmer KR, Meyer A. CRATER LAKE HABITAT PREDICTS MORPHOLOGICAL DIVERSITY IN ADAPTIVE RADIATIONS OF CICHLID FISHES. Evolution 2014; 68:2145-55. [DOI: 10.1111/evo.12412] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 02/19/2014] [Indexed: 12/12/2022]
Affiliation(s)
- Hans Recknagel
- Lehrstuhl für Zoologie und Evolutionsbiologie; Department of Biology; University of Konstanz; 78457 Konstanz Germany
- Institute of Biodiversity, Animal Health and Comparative Medicine; College of Medical, Veterinary and Life Sciences; University of Glasgow; Glasgow G12 8QQ United Kingdom
| | - Kathryn R. Elmer
- Lehrstuhl für Zoologie und Evolutionsbiologie; Department of Biology; University of Konstanz; 78457 Konstanz Germany
- Institute of Biodiversity, Animal Health and Comparative Medicine; College of Medical, Veterinary and Life Sciences; University of Glasgow; Glasgow G12 8QQ United Kingdom
| | - Axel Meyer
- Lehrstuhl für Zoologie und Evolutionsbiologie; Department of Biology; University of Konstanz; 78457 Konstanz Germany
| |
Collapse
|