1
|
Nelson TD, MacDonald ZG, Sperling FAH. Moths passing in the night: Phenological and genomic divergences within a forest pest complex. Evol Appl 2022; 15:166-180. [PMID: 35126654 PMCID: PMC8792478 DOI: 10.1111/eva.13338] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/20/2021] [Indexed: 01/04/2023] Open
Abstract
Temporal separation of reproductive timing can contribute to species diversification both through allochronic speciation and later reinforcement of species boundaries. Such phenological differences are an enigmatic component of evolutionary divergence between two major forest defoliator species of the spruce budworm complex: Choristoneura fumiferana and C. occidentalis. While these species interbreed freely in laboratory settings, natural hybridization rates have not been reliably quantified due to their indistinguishable morphology. To assess whether temporal isolation is contributing to reproductive isolation, we collected adult individuals throughout their expected zone of sympatry in western Canada at 10-day intervals over two successive years, assigning taxonomic identities using thousands of single nucleotide polymorphisms. We found unexpectedly broad sympatry between C. fumiferana and C. occidentalis biennis and substantial overlap of regional flight periods. However, flight period divergence was much more apparent on a location-by-location basis, highlighting the importance of considering spatial scale in these analyses. Phenological comparisons were further complicated by the biennial life cycle of C. o. biennis, the main subspecies of C. occidentalis in the region, and the occasional occurrence of the annually breeding subspecies C. o. occidentalis. Nonetheless, we demonstrate that biennialism is not a likely contributor to reproductive isolation within the species complex. Overall, interspecific F1 hybrids comprised 2.9% of sequenced individuals, confirming the genomic distinctiveness of C. fumiferana and C. occidentalis, while also showing incomplete reproductive isolation of lineages. Finally, we used F ST-based outlier and genotype-environment association analyses to identify several genomic regions under putative divergent selection. These regions were disproportionately located on the Z linkage region of C. fumiferana, and contained genes, particularly antifreeze proteins, that are likely to be associated with overwintering success and diapause. In addition to temporal isolation, we conclude that other mechanisms, including ecologically mediated selection, are contributing to evolutionary divergence within the spruce budworm species complex.
Collapse
Affiliation(s)
- Tyler D. Nelson
- Department of Biological SciencesUniversity of AlbertaEdmontonAlbertaCanada
- Summerland Research and Development CentreAgriculture and Agri‐Food CanadaSummerlandBritish ColumbiaCanada
| | - Zachary G. MacDonald
- Department of Biological SciencesUniversity of AlbertaEdmontonAlbertaCanada
- Department of Renewable ResourcesUniversity of AlbertaEdmontonAlbertaCanada
| | | |
Collapse
|
2
|
Carpenter AM, Graham BA, Spellman GM, Klicka J, Burg TM. Genetic, bioacoustic and morphological analyses reveal cryptic speciation in the warbling vireo complex (Vireo gilvus: Vireonidae: Passeriformes). Zool J Linn Soc 2021. [DOI: 10.1093/zoolinnean/zlab036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Abstract
Cryptic species are closely related taxa that are difficult to separate morphologically, but are reproductively isolated. Here we examine the warbling vireo complex (Vireo gilvus), a widespread songbird speculated to be comprised of more than one cryptic species. We included three taxa within the complex: two of the western (Vireo gilvus swainsonii and Vireo gilvus brewsteri) subspecies and the single eastern (Vireo gilvus gilvus) subspecies. We used mtDNA and microsatellite loci to assess the congruence of genetic data to the current subspecies boundaries. We then incorporated bioacoustic, morphometric and ecological niche modelling analyses to further examine differences. We found two genetic groups with mtDNA analysis, splitting eastern and western warbling vireos. Microsatellite analyses revealed four genetic groups: an eastern group, a Black Hills group and two western groups that do not agree with current western subspecies boundaries based on phenotypic data. Our results suggest that eastern and western warbling vireos have been reproductively isolated for a long period of time and therefore may be best treated as separate species. However, more research into areas of contact to examine the presence of hybridization is advised before making a taxonomic revision. Differences between the two western genetic groups appear less clear, requiring additional research.
Collapse
Affiliation(s)
| | | | | | - John Klicka
- Burke Museum of Natural History and Culture, University of Washington, Seattle, WA, USA
| | - Theresa M Burg
- University of Lethbridge, University Drive, Lethbridge, Canada
| |
Collapse
|
3
|
Lumley LM, Pouliot E, Laroche J, Boyle B, Brunet BMT, Levesque RC, Sperling FAH, Cusson M. Continent-wide population genomic structure and phylogeography of North America's most destructive conifer defoliator, the spruce budworm ( Choristoneura fumiferana). Ecol Evol 2020; 10:914-927. [PMID: 32015854 PMCID: PMC6988549 DOI: 10.1002/ece3.5950] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/28/2019] [Accepted: 12/02/2019] [Indexed: 02/01/2023] Open
Abstract
The spruce budworm, Choristoneura fumiferana, is presumed to be panmictic across vast regions of North America. We examined the extent of panmixia by genotyping 3,650 single nucleotide polymorphism (SNP) loci in 1975 individuals from 128 collections across the continent. We found three spatially structured subpopulations: Western (Alaska, Yukon), Central (southeastern Yukon to the Manitoba-Ontario border), and Eastern (Manitoba-Ontario border to the Atlantic). Additionally, the most diagnostic genetic differentiation between the Central and Eastern subpopulations was chromosomally restricted to a single block of SNPs that may constitute an island of differentiation within the species. Geographic differentiation in the spruce budworm parallels that of its principal larval host, white spruce (Picea glauca), providing evidence that spruce budworm and spruce trees survived in the Beringian refugium through the Last Glacial Maximum and that at least two isolated spruce budworm populations diverged with spruce/fir south of the ice sheets. Gene flow in the spruce budworm may also be affected by mountains in western North America, habitat isolation in West Virginia, regional adaptations, factors related to dispersal, and proximity of other species in the spruce budworm species complex. The central and eastern geographic regions contain individuals that assign to Eastern and Central subpopulations, respectively, indicating that these barriers are not complete. Our discovery of previously undetected geographic and genomic structure in the spruce budworm suggests that further population modelling of this ecologically important insect should consider regional differentiation, potentially co-adapted blocks of genes, and gene flow between subpopulations.
Collapse
Affiliation(s)
- Lisa M. Lumley
- Royal Alberta MuseumEdmontonABCanada
- Laurentian Forestry CentreNatural Resources CanadaQuebec CityQCCanada
- Université LavalQuebec CityQCCanada
| | - Esther Pouliot
- Laurentian Forestry CentreNatural Resources CanadaQuebec CityQCCanada
| | | | | | | | | | | | - Michel Cusson
- Laurentian Forestry CentreNatural Resources CanadaQuebec CityQCCanada
- Université LavalQuebec CityQCCanada
| |
Collapse
|
4
|
Fagua G, Condamine FL, Brunet BMT, Clamens AL, Laroche J, Levesque RC, Cusson M, Sperling FAH. Convergent herbivory on conifers by Choristoneura moths after boreal forest formation. Mol Phylogenet Evol 2018; 123:35-43. [PMID: 29378247 DOI: 10.1016/j.ympev.2018.01.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 01/15/2018] [Accepted: 01/16/2018] [Indexed: 12/24/2022]
Abstract
Mitogenomes are useful markers for phylogenetic studies across a range of taxonomic levels. Here, we focus on mitogenome variation across the tortricid moth genus Choristoneura and particularly the spruce budworm (Choristoneura fumiferana) species complex, a notorious pest group of North American conifer forests. Phylogenetic relationships of Tortricidae, representing two subfamilies, four tribes and nine genera, were analyzed using 21 mitogenomes. These included six newly-sequenced mitogenomes for species in the spruce budworm complex plus three additional Choristoneura species and 12 previously published mitogenomes from other tortricids and one from the Cossidae. We evaluated the phylogenetic informativeness of the mitogenomes and reconstructed a time-calibrated tree with fossil and secondary calibrations. We found that tortricid mitogenomes had conserved protein and ribosomal regions, and analysis of all protein-coding plus ribosomal genes together provided an efficient marker at any taxonomic rank. The time-calibrated phylogeny showed evolutionary convergence of conifer feeding within Choristoneura, with two independent lineages, the Nearctic spruce budworm complex and the Palearctic species Choristoneura murinana, both shifting onto conifers about 11 million years ago from angiosperms. These two host-plant shifts both occurred after the formation of boreal forest in the late Miocene. Haplotype diversification within the spruce budworm complex occurred in the last 4 million years, and is probably linked to the initial cooling cycles of the Northern Hemisphere in the Pliocene.
Collapse
Affiliation(s)
- Giovanny Fagua
- Department of Biological Sciences, CW 405 Biosciences Centre, University of Alberta, Edmonton, Alberta T6G 2E9, Canada; Pontificia Universidad Javeriana, Department of Biology, Carrera 7 No. 43-82, Bogotá D.C., Colombia.
| | - Fabien L Condamine
- Department of Biological Sciences, CW 405 Biosciences Centre, University of Alberta, Edmonton, Alberta T6G 2E9, Canada; CNRS, UMR 5554 Institut des Sciences de l'Evolution (Université de Montpellier), Place Eugène Bataillon, 34095 Montpellier, France
| | - Bryan M T Brunet
- Department of Biological Sciences, CW 405 Biosciences Centre, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Anne-Laure Clamens
- Department of Biological Sciences, CW 405 Biosciences Centre, University of Alberta, Edmonton, Alberta T6G 2E9, Canada; INRA, UMR 1062 Centre de Biologie pour la Gestion des Populations (INRA, IRD, CIRAD, Montpellier SupAgro), 755 avenue du campus Agropolis, 34988 Montferrier-sur-Lez, France
| | - Jérôme Laroche
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Canada
| | - Roger C Levesque
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Canada
| | - Michel Cusson
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du PEPS, PO Box 10380, Ste-Foy Stn., Quebec City, Canada
| | - Felix A H Sperling
- Department of Biological Sciences, CW 405 Biosciences Centre, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| |
Collapse
|
5
|
Blackburn GS, Brunet BMT, Muirhead K, Cusson M, Béliveau C, Levesque RC, Lumley LM, Sperling FAH. Distinct sources of gene flow produce contrasting population genetic dynamics at different range boundaries of aChoristoneurabudworm. Mol Ecol 2017; 26:6666-6684. [DOI: 10.1111/mec.14386] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 09/26/2017] [Accepted: 10/07/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Gwylim S. Blackburn
- Department of Biological Sciences; CW405 Biosciences Centre; University of Alberta; Edmonton AB Canada
- Laurentian Forestry Centre; Natural Resources Canada; Canadian Forest Service; Quebec City QC Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS); Université Laval; Québec QC Canada
| | - Bryan M. T. Brunet
- Department of Biological Sciences; CW405 Biosciences Centre; University of Alberta; Edmonton AB Canada
| | - Kevin Muirhead
- Department of Biological Sciences; CW405 Biosciences Centre; University of Alberta; Edmonton AB Canada
| | - Michel Cusson
- Laurentian Forestry Centre; Natural Resources Canada; Canadian Forest Service; Quebec City QC Canada
| | - Catherine Béliveau
- Laurentian Forestry Centre; Natural Resources Canada; Canadian Forest Service; Quebec City QC Canada
| | - Roger C. Levesque
- Institut de Biologie Intégrative et des Systèmes (IBIS); Université Laval; Québec QC Canada
| | - Lisa M. Lumley
- Department of Biological Sciences; CW405 Biosciences Centre; University of Alberta; Edmonton AB Canada
- Laurentian Forestry Centre; Natural Resources Canada; Canadian Forest Service; Quebec City QC Canada
| | - Felix A. H. Sperling
- Department of Biological Sciences; CW405 Biosciences Centre; University of Alberta; Edmonton AB Canada
| |
Collapse
|
6
|
Unsaturated Cuticular Hydrocarbons Enhance Responses to Sex Pheromone in Spruce Budworm, Choristoneura fumiferana. J Chem Ecol 2017; 43:753-762. [PMID: 28770501 DOI: 10.1007/s10886-017-0871-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 04/25/2017] [Accepted: 07/17/2017] [Indexed: 10/19/2022]
Abstract
The primary sex pheromone components of the female spruce budworm, Choristoneura fumiferana (Clem.) (Lepidoptera: Tortricidae), are (E)- and (Z)-11-tetradecenal, produced in 95:5 ratio. However, male flight responses to calling females in a wind tunnel were faster and maintained longer than responses to any synthetic aldehyde blend. Analyses of cuticular extracts from spruce budworm adults revealed series of n-alkanes and n-monoalkenes with predominantly odd numbers of carbon atoms from C23- C29 in both sexes. (Z,Z,Z)-3,6,9-tricosatriene and (Z,Z,Z)-3,6,9-pentacosatriene were identified only in cuticular extracts from females. Pheromonally naïve males showed wing fanning and circling responses to forewing scales from females but not to scales from males. Males also exhibited the same strong responses to scales excised from pharate females, indicating that the pheromone components are produced by females prior to emergence. (Z)-11-hexadecenal and (Z)-5-tricosene enhanced male responses to the primary sex pheromone aldehydes in wind tunnel bioassays, including higher proportions of in-flight and copulatory responses by males and increased time on the source. Addition of (Z,Z,Z)-3,6,9-tricosatriene to the 95/5 blend of (E)- and (Z)-11-tetradecenal released close-range copulatory responses including abdomen curling on treated septa. We propose that the sex pheromone blend of C. fumiferana is composed of the 95/5 blend of (E)- and (Z)-11-tetradecenal as primary components, with (Z)-11-hexadecenal, (Z)-5-tricosene and (Z,Z,Z)-3,6,9-tricosatriene fulfilling secondary roles in orientation and close-range courtship.
Collapse
|
7
|
Dupuis J, Brunet B, Bird H, Lumley L, Fagua G, Boyle B, Levesque R, Cusson M, Powell J, Sperling F. Genome-wide SNPs resolve phylogenetic relationships in the North American spruce budworm (Choristoneura fumiferana) species complex. Mol Phylogenet Evol 2017; 111:158-168. [DOI: 10.1016/j.ympev.2017.04.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 02/27/2017] [Accepted: 04/03/2017] [Indexed: 01/02/2023]
|