1
|
Freimane Z, Dobler G, Chitimia-Dobler L, Karelis G, Girl P, Kuzmane S, Savicka O, Erber W, Zavadska D. Development and validation of a novel enzyme-linked immunosorbent assay for the differentiation of tick-borne encephalitis infections caused by different virus subtypes. Infection 2024:10.1007/s15010-024-02370-2. [PMID: 39177883 DOI: 10.1007/s15010-024-02370-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/02/2024] [Indexed: 08/24/2024]
Abstract
OBJECTIVES Tick-borne encephalitis (TBE) is an infection caused by the tick-borne encephalitis virus (TBEV) that can lead to symptoms of central nervous system inflammation. There are five subtypes of TBEV, three of which - European, Siberian and Far Eastern - occur in Europe. As it is thought that different subtype infections exhibit varying clinical courses and outcomes, serological differentiation of the virus subtypes is clearly important. However, to date, this has proved difficult to achieve. METHODS An ELISA format was developed based on TBE virus NS1 antigen against the European, Siberian and Far Eastern subtype. The three NS1 antigens were biotechnologically produced in a human cell line and used for ELISA coating. Sera from German (European subtype) and Russian (Siberian and/or Far Eastern subtypes) TBE patients with positive TBEV IgG were used to test the reactivity against these three NS1 antigens. RESULTS Testing of 23 German and 32 Russian TBEV IgG-positive sera showed that the ELISA was able to differentiate between TBEV European subtype and TBEV Siberian and Far Eastern subtype infections. CONCLUSIONS In geographical areas where two or more TBEV subtype infections can occur, the NS1-IgG ELISA developed here constitutes an important diagnostic tool to differentiate between European subtype infections and Siberian/Far Eastern subtype infections and to use the new assay for epidemiological studies to clarify the importance of particular subtype infections in an area. Consequently, it may help to better describe and anticipate the clinical courses and outcomes of particular TBEV subtype infections.
Collapse
Affiliation(s)
- Zane Freimane
- Department of Paediatrics, Children's Clinical University Hospital, Rīga Stradinš University, Riga, Latvia.
| | - Gerhard Dobler
- Bundeswehr Institute of Microbiology, Munich, Germany
- Department of Tropical Medicine and Infectious Diseases, Ludwig-Maximilians-Universität, Munich, Germany
- Department of Parasitology, University of Hohenheim, Stuttgart, Germany
| | - Lidia Chitimia-Dobler
- Bundeswehr Institute of Microbiology, Munich, Germany
- Fraunhofer-Institute for Immunology, Infectious Diseases and Pandemic Research, Penzberg, Germany
| | - Guntis Karelis
- Department of Neurology and Neurosurgery, Department of Infectology, Riga East University Hospital, Rīga Stradinš University, Riga, Latvia
| | - Philipp Girl
- Bundeswehr Institute of Microbiology, Munich, Germany
- Central Institute of the Bundeswehr Medical Service Munich, Garching, Germany
- Institute for Infectious Diseases and Zoonoses, Department of Veterinary Sciences, Faculty of Veterinary Medicine, LMU Munich, 80539, Munich, Germany
| | - Sanita Kuzmane
- National Microbiology Reference Laboratory, Riga East University Hospital, Rīga Stradinš University, Riga, Latvia
| | - Oksana Savicka
- National Microbiology Reference Laboratory, Riga East University Hospital, Rīga Stradinš University, Riga, Latvia
| | | | - Dace Zavadska
- Department of Paediatrics, Children's Clinical University Hospital, Rīga Stradinš University, Riga, Latvia
| |
Collapse
|
2
|
Alale TY, Sormunen JJ, Vesterinen EJ, Klemola T, Knott KE, Baltazar‐Soares M. Genomic signatures of hybridization between Ixodes ricinus and Ixodes persulcatus in natural populations. Ecol Evol 2024; 14:e11415. [PMID: 38770117 PMCID: PMC11103643 DOI: 10.1002/ece3.11415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/03/2024] [Accepted: 04/29/2024] [Indexed: 05/22/2024] Open
Abstract
Identifying hybridization between common pathogen vectors is essential due to the major public health implications through risks associated with hybrid's enhanced pathogen transmission potential. The hard-ticks Ixodes ricinus and Ixodes persulcatus are the two most common vectors of tick-borne pathogens that affect human and animal health in Europe. Ixodes ricinus is a known native species in Finland with a well-known distribution, whereas I. persulcatus has expanded in range and abundance over the past 60 years, and currently it appears the most common tick species in certain areas in Finland. Here we used double-digest restriction site-associated DNA (ddRAD) sequencing on 186 ticks (morphologically identified as 92 I. ricinus, and 94 I. persulcatus) collected across Finland to investigate whether RAD generated single nucleotide polymorphisms (SNPs) can discriminate tick species and identify potential hybridization events. Two different clustering methods were used to assign specific species based on how they clustered and identified hybrids among them. We were able to discriminate between the two tick species and identified 11 putative hybrids with admixed genomic proportions ranging from approximately 24 to 76 percent. Four of these hybrids were morphologically identified as I. ricinus while the remaining seven were identified as I. persulcatus. Our results thus indicate that RAD SNPs are robust in identifying both species of the ticks as well as putative hybrids. These results further suggest ongoing hybridization between I. ricinus and I. persulcatus in their natural populations in Finland. The unique ability of RAD markers to discriminate between tick species and hybrids adds a useful aspect to tick evolutionary studies. Our findings align with previous studies and suggest a shared evolutionary history between the species, with instances of individuals possessing a considerable proportion of the other species' genome. This study is a significant step in understanding the formation of hybridization zones due to range expansion potentially associated with climate change.
Collapse
Affiliation(s)
- Theophilus Yaw Alale
- Department of BiologyUniversity of TurkuTurkuFinland
- Biodiversity UnitUniversity of TurkuTurkuFinland
| | - Jani J. Sormunen
- Department of BiologyUniversity of TurkuTurkuFinland
- Biodiversity UnitUniversity of TurkuTurkuFinland
| | | | - Tero Klemola
- Department of BiologyUniversity of TurkuTurkuFinland
| | - K. Emily Knott
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| | | |
Collapse
|
3
|
Nepveu-Traversy ME, Fausther-Bovendo H, Babuadze G(G. Human Tick-Borne Diseases and Advances in Anti-Tick Vaccine Approaches: A Comprehensive Review. Vaccines (Basel) 2024; 12:141. [PMID: 38400125 PMCID: PMC10891567 DOI: 10.3390/vaccines12020141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
This comprehensive review explores the field of anti-tick vaccines, addressing their significance in combating tick-borne diseases of public health concern. The main objectives are to provide a brief epidemiology of diseases affecting humans and a thorough understanding of tick biology, traditional tick control methods, the development and mechanisms of anti-tick vaccines, their efficacy in field applications, associated challenges, and future prospects. Tick-borne diseases (TBDs) pose a significant and escalating threat to global health and the livestock industries due to the widespread distribution of ticks and the multitude of pathogens they transmit. Traditional tick control methods, such as acaricides and repellents, have limitations, including environmental concerns and the emergence of tick resistance. Anti-tick vaccines offer a promising alternative by targeting specific tick proteins crucial for feeding and pathogen transmission. Developing vaccines with antigens based on these essential proteins is likely to disrupt these processes. Indeed, anti-tick vaccines have shown efficacy in laboratory and field trials successfully implemented in livestock, reducing the prevalence of TBDs. However, some challenges still remain, including vaccine efficacy on different hosts, polymorphisms in ticks of the same species, and the economic considerations of adopting large-scale vaccine strategies. Emerging technologies and approaches hold promise for improving anti-tick vaccine development and expanding their impact on public health and agriculture.
Collapse
Affiliation(s)
| | - Hugues Fausther-Bovendo
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 75550, USA;
| | - George (Giorgi) Babuadze
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 75550, USA;
| |
Collapse
|
4
|
Xu G, Gao T, Wang Z, Zhang J, Cui B, Shen X, Zhou A, Zhang Y, Zhao J, Liu H, Liang G. Re-Emerged Genotype IV of Japanese Encephalitis Virus Is the Youngest Virus in Evolution. Viruses 2023; 15:626. [PMID: 36992335 PMCID: PMC10054483 DOI: 10.3390/v15030626] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
An outbreak of viral encephalitis caused by a Japanese encephalitis virus (JEV) genotype IV infection occurred in Australia between 2021 and 2022. A total of 47 cases and seven deaths were reported as of November 2022. This is the first outbreak of human viral encephalitis caused by JEV GIV since it was first isolated in Indonesia in the late 1970s. Here, a comprehensive phylogenetic analysis based on the whole genome sequences of JEVs revealed it emerged 1037 years ago (95% HPD: 463 to 2100 years). The evolutionary order of JEV genotypes is as follows: GV, GIII, GII, GI, and GIV. The JEV GIV emerged 122 years ago (95% HPD: 57-233) and is the youngest viral lineage. The mean substitution rate of the JEV GIV lineage was 1.145 × 10-3 (95% HPD values, 9.55 × 10-4, 1.35 × 10-3), belonging to rapidly evolving viruses. A series of amino acid mutations with the changes of physico-chemical properties located in the functional important domains within the core and E proteins distinguished emerging GIV isolates from old ones. These results demonstrate the JEV GIV is the youngest JEV genotype at a rapid evolution stage and has good host/vector adaptability for introduction to non-endemic areas. Thus, surveillance of JEVs is highly recommended.
Collapse
Affiliation(s)
- Guanlun Xu
- Shandong Provincial Research Center for Bioinformatic Engineering and Technique, School of Life Sciences, Shandong University of Technology, Zibo 255049, China
| | - Tingting Gao
- Shandong Provincial Research Center for Bioinformatic Engineering and Technique, School of Life Sciences, Shandong University of Technology, Zibo 255049, China
| | - Zhijie Wang
- Shandong Provincial Research Center for Bioinformatic Engineering and Technique, School of Life Sciences, Shandong University of Technology, Zibo 255049, China
| | - Jun Zhang
- Shandong Provincial Research Center for Bioinformatic Engineering and Technique, School of Life Sciences, Shandong University of Technology, Zibo 255049, China
| | - Baoqiu Cui
- Shandong Provincial Research Center for Bioinformatic Engineering and Technique, School of Life Sciences, Shandong University of Technology, Zibo 255049, China
| | - Xinxin Shen
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Anyang Zhou
- Shandong Provincial Research Center for Bioinformatic Engineering and Technique, School of Life Sciences, Shandong University of Technology, Zibo 255049, China
| | - Yuan Zhang
- Shandong Provincial Research Center for Bioinformatic Engineering and Technique, School of Life Sciences, Shandong University of Technology, Zibo 255049, China
| | - Jie Zhao
- Shandong Provincial Research Center for Bioinformatic Engineering and Technique, School of Life Sciences, Shandong University of Technology, Zibo 255049, China
| | - Hong Liu
- Shandong Provincial Research Center for Bioinformatic Engineering and Technique, School of Life Sciences, Shandong University of Technology, Zibo 255049, China
| | - Guangdong Liang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| |
Collapse
|
5
|
Egyed L, Nagy A, Lakos A, Zöldi V, Lang Z. Tick-borne encephalitis epidemic in Hungary 1951-2021: The story and lessons learned. Zoonoses Public Health 2023; 70:81-92. [PMID: 36205381 DOI: 10.1111/zph.13003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/29/2022] [Accepted: 09/20/2022] [Indexed: 01/07/2023]
Abstract
The authors analysed epidemiological data of the Hungarian tick-borne encephalitis epidemic from the past seven decades. A total of 911 meningitis serosa cases were described from 1930-1950 s by local hospital physicians, indicating that the virus had been present in the country decades before its official identification in 1952. The virus spread freely in the 1950s-1960s, occupying almost all habitats where ticks occurred in large numbers. The increasing number of cases drove authorities to classify this illness as a notifiable disease in 1977 and to organize the first measures to stop the epidemic. Statistical analysis revealed that the large-scale vaccination launched from the 1990s was responsible for the sharp decrease in the number of human cases from 1997. A significant negative correlation was found between the number of vaccine doses sold and human cases 6 years later. The TBEV endemic area covers 16.57% of the territory and 16.65% of the population of the country. In the last 10 years, 186,000 vaccine doses/year in average were enough to keep the incidence of human TBEV infections between 0.45 and 0.06/100,000 persons. A 20-year-long study found evidence for easing clinical signs in TBEV-infected hospitalized patients. Statistics found a sharp decrease in the number of samples sent for TBEV diagnosis after 1989. Male dominance of patients was characteristic of the epidemics since the 1940s, but now analysis of detailed data from the 1981-2021 period (60.5%-87.5%) proved the statistical significance of this dominance. Obviously, the voluntary vaccination programme was the tool which broke the spread of the epidemic. Widespread public awareness of the disease and the tick vector, probable evolutionary spread of less pathogenic virus strains supplemented with the vaccination campaign led to a negligible level of human TBE cases in Hungary in the last years.
Collapse
Affiliation(s)
- László Egyed
- Veterinary Medical Research Institute, Budapest, Hungary
| | - Anna Nagy
- National Reference Laboratory for Viral Zoonoses, National Public Health Centre, Budapest, Hungary
| | - András Lakos
- Centre for Tick-borne Diseases, Budapest, Hungary
| | - Viktor Zöldi
- Department of Pest Control, National Centre for Epidemiology, Budapest, Hungary
| | - Zsolt Lang
- Department of Biomathematics and Informatics, University of Veterinary Medicine, Budapest, Hungary
| |
Collapse
|
6
|
Identifying New Clusterons: Application of TBEV Analyzer 3.0. Microorganisms 2023; 11:microorganisms11020324. [PMID: 36838289 PMCID: PMC9966418 DOI: 10.3390/microorganisms11020324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 01/09/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Early knowledge about novel emerging viruses and rapid determination of their characteristics are crucial for public health. In this context, development of theoretical approaches to model viral evolution are important. The clusteron approach is a recent bioinformatics tool which analyzes genetic patterns of a specific E protein fragment and provides a hierarchical network structure of the viral population at three levels: subtype, lineage, and clusteron. A clusteron is a group of strains with identical amino acid (E protein fragment) signatures; members are phylogenetically closely related and feature a particular territorial distribution. This paper announces TBEV Analyzer 3.0, an analytical platform for rapidly characterizing tick-borne encephalitis virus (TBEV) strains based on the clusteron approach, workflow optimizations, and simplified parameter settings. Compared with earlier versions of TBEV Analyzer, we provide theoretical and practical enhancements to the platform. Regarding the theoretical aspect, the model of the clusteron structure, which is the core of platform analysis, has been updated by analyzing all suitable TBEV strains available in GenBank, while the practical enhancements aim at improving the platform's functionality. Here, in addition to expanding the strain sets of prior clusterons, we introduce eleven novel clusterons through our experimental results, predominantly of the European subtype. The obtained results suggest effective application of the proposed platform as an analytical and exploratory tool in TBEV surveillance.
Collapse
|
7
|
Food-Borne Transmission of Tick-Borne Encephalitis Virus—Spread, Consequences, and Prophylaxis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19031812. [PMID: 35162837 PMCID: PMC8835261 DOI: 10.3390/ijerph19031812] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 11/16/2022]
Abstract
Tick-borne encephalitis (TBE) is the most common viral neurological disease in Eurasia. It is usually transmitted via tick bites but can also occur through ingestion of TBEV-infected milk and dairy products. The present paper summarises the knowledge of the food-borne TBEV transmission and presents methods for the prevention of its spread. The incidence of milk-borne TBE outbreaks is recorded in central, eastern, and north-eastern Europe, where Ixodes ricinus, Ixodes persulcatus, and/or Dermacentor reticulatus ticks, i.e., the main vectors of TBEV, occur abundantly. The growing occurrence range and population size of these ticks increases the risk of infection of dairy animals, i.e., goats, sheep, and cows, with viruses transmitted by these ticks. Consumers of unpasteurised milk and dairy products purchased from local farms located in TBE endemic areas are the most vulnerable to alimentary TBEV infections. Familial infections with these viruses are frequently recorded, mainly in children. Food-transmitted TBE can be monophasic or biphasic, and some of its neurological and psychiatric symptoms may persist in patients for a long time. Alimentary TBEV infections can be effectively prevented by consumption of pasteurised milk and the use of TBEV vaccines. It is recommended that milk and dairy products should be checked for the presence of TBE viruses prior to distribution. Protection of dairy animals against tick attacks and education of humans regarding the epidemiology and prophylaxis of TBE are equally important.
Collapse
|
8
|
Kovalev SY, Mazurina EA. OMSK HEMORRHAGIC FEVER VIRUS IS A TICK-BORNE ENCEPHALITIS VIRUS ADAPTED TO MUSKRAT THROUGH HOST-JUMPING. J Med Virol 2022; 94:2510-2518. [PMID: 35001393 DOI: 10.1002/jmv.27581] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/03/2022] [Accepted: 01/06/2022] [Indexed: 11/06/2022]
Abstract
Omsk hemorrhagic fever was first described in the early 1940s and is a natural focal infection, spread exclusively in four regions of Western Siberia and associated with muskrat (Ondatra zibethicus). The etiological agent of this disease is the Omsk hemorrhagic fever virus (OHFV) which is closely related to the tick-borne encephalitis virus (TBEV), and its range entirely lies within the TBEV area. OHFV belongs to the mammalian tick-borne flaviviruses and the ecological group of arboviruses. The problem concerning the origin of OHFV remains unresolved to date. This work analyzed all nucleotide sequences of the OHFV genome obtained in the present study and available in GenBank, including the E gene fragment and the amino acid sequences of the surface glycoprotein encoded by it. The conclusions, based on the clusteron approach, suggest that OHFV originated directly from the TBEV of the Far Eastern subtype due to the host-jump phenomenon, that is, through a rapid change from an arthropod host, Ixodes persulcatus, to a rodent, O. zibethicus. The muskrat was introduced to Western Siberia in the second half of the 1930s. The peculiarities of the biology and ecology of the muskrat in the new habitat became the reason for the TBEV cross-species transmission. Calculations show that host-jumping occurred between 1931 and 1947 and accompanied a cascade of adaptive amino acid substitutions in protein E. As a result, the virus changed its transmission to contact, alimentary, and airborne routes. Based on the data obtained, OHFV would be more correctly attributed to zoonotic viruses transmitted by rodents and, accordingly, to the ecological group of roboviruses. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- S Y Kovalev
- Ural Federal University, Yekaterinburg, Russia
| | | |
Collapse
|
9
|
Anthropomorphizing Technology: A Conceptual Review of Anthropomorphism Research and How it Relates to Children's Engagements with Digital Voice Assistants. Integr Psychol Behav Sci 2021; 56:709-738. [PMID: 34811705 PMCID: PMC9334403 DOI: 10.1007/s12124-021-09668-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2021] [Indexed: 11/29/2022]
Abstract
‘Anthropomorphism’ is a popular term in the literature on human-technology engagements, in general, and child-technology engagements, in particular. But what does it really mean to ‘anthropomorphize’ something in today’s world? This conceptual review article, addressed to researchers interested in anthropomorphism and adjacent areas, reviews contemporary anthropomorphism research, and it offers a critical perspective on how anthropomorphism research relates to today’s children who grow up amid increasingly intelligent and omnipresent technologies, particularly digital voice assistants (e.g., Alexa, Google Assistant, Siri). First, the article reviews a comprehensive body of quantitative as well as qualitative anthropomorphism research and considers it within three different research perspectives: descriptive, normative and explanatory. Following a brief excursus on philosophical pragmatism, the article then discusses each research perspective from a pragmatistic viewpoint, with a special emphasis on child-technology and child-voice-assistant engagements, and it also challenges some popular notions in the literature. These notions include descriptive ‘as if’ parallels (e.g., child behaves ‘as if’ Alexa was a friend), or normative assumptions that human-human engagements are generally superior to human-technology engagements. Instead, the article reviews different examples from the literature suggesting the nature of anthropomorphism may change as humans’ experiential understandings of humanness change, and this may particularly apply to today’s children as their social cognition develops in interaction with technological entities which are increasingly characterized by unprecedented combinations of human and non-human qualities.
Collapse
|
10
|
Sharma R, Cozens DW, Armstrong PM, Brackney DE. Vector competence of human-biting ticks Ixodes scapularis, Amblyomma americanum and Dermacentor variabilis for Powassan virus. Parasit Vectors 2021; 14:466. [PMID: 34503550 PMCID: PMC8427896 DOI: 10.1186/s13071-021-04974-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/22/2021] [Indexed: 02/07/2023] Open
Abstract
Background Powassan virus (POWV; genus Flavivirus) is the sole North American member of the tick-borne encephalitis sero-complex and an increasing public health threat in the USA. Maintained in nature by Ixodes spp. ticks, POWV has also been isolated from species of other hard tick genera, yet it is unclear if these species can serve as vectors. Dermacentor variabilis and Amblyomma americanum share geographic and ecologic overlap with Ixodes spp. ticks and POWV transmission foci, raising the possibility that POWV could become established in these tick species and leading to range expansion and increased human risk. Therefore, we assessed the competency of Ixodes scapularis, D. variabilis and A. americanum for POWV lineage II (POWV II). Methods Larvae from all three species were co-infested on POWV-infected Balb/c mice. The engorged larvae were allowed to molt to nymphs and screened for the presence of POWV II RNA by reverse transcription-qPCR. Eight infected nymphs from each species were allowed to individually feed on a naïve mouse. Mice were screened for the presence of POWV II RNA to determine infection status. Results The results demonstrated that larvae from all three tick species were able to efficiently acquire POWV II via feeding on viremic mice, maintain infection through molting and successively transmit POWV to naïve mice at the nymphal stage at comparable rates across all three species. Conclusions Our findings reveal that non-Ixodes tick species can serve as competent vectors for POWV and highlight the potential role of these species in the ecology and epidemiology of POWV. Future studies examining the possible implications of these findings on POWV epidemiology and the adaptability of POWV in these new vectors are warranted. Graphical abstract ![]()
Collapse
Affiliation(s)
- Rohit Sharma
- Center for Vector Biology & Zoonotic Diseases, The Connecticut Agricultural Experiment Station, 123 Huntington St, New Haven, CT, 06511, USA.,Deptartment of Environmental Sciences, The Connecticut Agricultural Experiment Station, 123 Huntington St, New Haven, CT, 06511, USA
| | - Duncan W Cozens
- Center for Vector Biology & Zoonotic Diseases, The Connecticut Agricultural Experiment Station, 123 Huntington St, New Haven, CT, 06511, USA.,Deptartment of Environmental Sciences, The Connecticut Agricultural Experiment Station, 123 Huntington St, New Haven, CT, 06511, USA
| | - Philip M Armstrong
- Center for Vector Biology & Zoonotic Diseases, The Connecticut Agricultural Experiment Station, 123 Huntington St, New Haven, CT, 06511, USA.,Deptartment of Environmental Sciences, The Connecticut Agricultural Experiment Station, 123 Huntington St, New Haven, CT, 06511, USA
| | - Douglas E Brackney
- Center for Vector Biology & Zoonotic Diseases, The Connecticut Agricultural Experiment Station, 123 Huntington St, New Haven, CT, 06511, USA. .,Deptartment of Environmental Sciences, The Connecticut Agricultural Experiment Station, 123 Huntington St, New Haven, CT, 06511, USA.
| |
Collapse
|
11
|
Abdiyeva K, Turebekov N, Yegemberdiyeva R, Dmitrovskiy A, Yeraliyeva L, Shapiyeva Z, Nurmakhanov T, Sansyzbayev Y, Froeschl G, Hoelscher M, Zinner J, Essbauer S, Frey S. Vectors, molecular epidemiology and phylogeny of TBEV in Kazakhstan and central Asia. Parasit Vectors 2020; 13:504. [PMID: 33023633 PMCID: PMC7539389 DOI: 10.1186/s13071-020-04362-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 09/15/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND In the South of Kazakhstan, Almaty Oblast' (region) is endemic for tick-borne encephalitis, with 0.16-0.32 cases/100,000 population between 2016-2018. The purpose of this study was to determine the prevalence and circulating subtypes of tick-borne encephalitis virus (TBEV) in Almaty Oblast' and Kyzylorda Oblast'. METHODS In 2015 we investigated 2341 ticks from 7 sampling sites for the presence of TBEV. Ticks were pooled in 501 pools and isolated RNA was tested for the presence of TBEV by RT-qPCR. For the positive samples, the E gene was amplified, sequenced and a phylogenetic analysis was carried out. RESULTS A total of 48 pools were TBEV-positive by the RT-qPCR. TBEV-positive ticks were only detected in three districts of Almaty Oblast' and not in Kyzylorda Oblast'. The positive TBEV pools were found within Ixodes persulcatus, Haemaphysalis punctata and Dermacentor marginatus. These tick species prevailed only in Almaty Oblast' whereas in Kyzylorda Oblast' Hyalomma asiaticum and D. marginatus are endemic. The minimum infection rates (MIR) in the sampling sites were 4.4% in Talgar, 2.8% in Tekeli and 1.1% in Yenbekshikazakh, respectively. The phylogenetic analysis of the generated sequences indicates that TBEV strains found in Almaty Oblast' clusters in the Siberian subtype within two different clades. CONCLUSIONS We provided new data about the TBEV MIR in ticks in Almaty Oblast' and showed that TBEV clusters in the Siberian Subtype in two different clusters at the nucleotide level. These results indicate that there are different influences on the circulating TBEV strains in south-eastern Kazakhstan. These influences might be caused by different routes of the virus spread in ticks which might bring different genetic TBEV lineages to Kazakhstan. The new data about the virus distribution and vectors provided here will contribute to an improvement of monitoring of tick-borne infections and timely anti-epidemic measures in Kazakhstan.
Collapse
Affiliation(s)
- Karlygash Abdiyeva
- Center for International Health, Ludwig-Maximilians-Universität, Munich, Germany
- National Scientific Center for Highly Dangerous Infections, Almaty, Kazakhstan
| | - Nurkeldi Turebekov
- Center for International Health, Ludwig-Maximilians-Universität, Munich, Germany
- National Scientific Center for Highly Dangerous Infections, Almaty, Kazakhstan
| | | | | | | | - Zhanna Shapiyeva
- Scientific Practical Center of Sanitary Epidemiological Expertise and Monitoring, Almaty, Kazakhstan
| | - Talgat Nurmakhanov
- National Scientific Center for Highly Dangerous Infections, Almaty, Kazakhstan
| | - Yerlan Sansyzbayev
- National Scientific Center for Highly Dangerous Infections, Almaty, Kazakhstan
| | - Guenter Froeschl
- Center for International Health, Ludwig-Maximilians-Universität, Munich, Germany
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Michael Hoelscher
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Germany
| | | | | | - Stefan Frey
- Institute of Microbiology, Munich, Germany
- present Address: Bundeswehr Research Institute for Protective Technologies and CBRN Protection, Munster, Germany
| |
Collapse
|
12
|
Lindqvist R, Rosendal E, Weber E, Asghar N, Schreier S, Lenman A, Johansson M, Dobler G, Bestehorn M, Kröger A, Överby AK. The envelope protein of tick-borne encephalitis virus influences neuron entry, pathogenicity, and vaccine protection. J Neuroinflammation 2020; 17:284. [PMID: 32988388 PMCID: PMC7523050 DOI: 10.1186/s12974-020-01943-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 08/26/2020] [Indexed: 12/29/2022] Open
Abstract
Background Tick-borne encephalitis virus (TBEV) is considered to be the medically most important arthropod-borne virus in Europe. The symptoms of an infection range from subclinical to mild flu-like disease to lethal encephalitis. The exact determinants of disease severity are not known; however, the virulence of the strain as well as the immune status of the host are thought to be important factors for the outcome of the infection. Here we investigated virulence determinants in TBEV infection. Method Mice were infected with different TBEV strains, and high virulent and low virulent TBEV strains were chosen. Sequence alignment identified differences that were cloned to generate chimera virus. The infection rate of the parental and chimeric virus were evaluated in primary mouse neurons, astrocytes, mouse embryonic fibroblasts, and in vivo. Neutralizing capacity of serum from individuals vaccinated with the FSME-IMMUN® and Encepur® or combined were evaluated. Results We identified a highly pathogenic and neurovirulent TBEV strain, 93/783. Using sequence analysis, we identified the envelope (E) protein of 93/783 as a potential virulence determinant and cloned it into the less pathogenic TBEV strain Torö. We found that the chimeric virus specifically infected primary neurons more efficiently compared to wild-type (WT) Torö and this correlated with enhanced pathogenicity and higher levels of viral RNA in vivo. The E protein is also the major target of neutralizing antibodies; thus, genetic variation in the E protein could influence the efficiency of the two available vaccines, FSME-IMMUN® and Encepur®. As TBEV vaccine breakthroughs have occurred in Europe, we chose to compare neutralizing capacity from individuals vaccinated with the two different vaccines or a combination of them. Our data suggest that the different vaccines do not perform equally well against the two Swedish strains. Conclusions Our findings show that two amino acid substitutions of the E protein found in 93/783, A83T, and A463S enhanced Torö infection of neurons as well as pathogenesis and viral replication in vivo; furthermore, we found that genetic divergence from the vaccine strain resulted in lower neutralizing antibody titers in vaccinated individuals.
Collapse
Affiliation(s)
- Richard Lindqvist
- Department of Clinical Microbiology, Section of Virology, Umeå University, Umeå, Sweden.,The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå, Sweden
| | - Ebba Rosendal
- Department of Clinical Microbiology, Section of Virology, Umeå University, Umeå, Sweden.,The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå, Sweden
| | - Elvira Weber
- Department of Clinical Microbiology, Section of Virology, Umeå University, Umeå, Sweden.,The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå, Sweden.,Current affiliation: Life & Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Naveed Asghar
- School of Medical Sciences, Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Sarah Schreier
- Institute of Medical Microbiology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.,Innate Immunity and Infection, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Annasara Lenman
- Department of Clinical Microbiology, Section of Virology, Umeå University, Umeå, Sweden.,Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Magnus Johansson
- School of Medical Sciences, Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | | | - Malena Bestehorn
- Bundeswehr Institute of Microbiology, Munich, Germany.,Parasitology Unit, University of Hohenheim, D-, Stuttgart, Germany
| | - Andrea Kröger
- Institute of Medical Microbiology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany. .,Innate Immunity and Infection, Helmholtz Centre for Infection Research, Braunschweig, Germany.
| | - Anna K Överby
- Department of Clinical Microbiology, Section of Virology, Umeå University, Umeå, Sweden. .,The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå, Sweden.
| |
Collapse
|
13
|
Eastwood G, Sang RC, Lutomiah J, Tunge P, Weaver SC. Sylvatic Mosquito Diversity in Kenya-Considering Enzootic Ecology of Arboviruses in an Era of Deforestation. INSECTS 2020; 11:insects11060342. [PMID: 32503123 PMCID: PMC7349089 DOI: 10.3390/insects11060342] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 12/16/2022]
Abstract
As new and re-emerging vector-borne diseases are occurring across the world, East Africa represents an interesting location, being the origin of several arboviruses with a history of urbanization and global spread. Rapid expansion of urban populations and alteration of natural habitats creates the opportunity for arboviruses to host-switch from wild, sylvatic hosts or vectors into urban transmission affecting human populations. Although mosquito surveillance regularly takes place in urban areas of Kenya, for example identifying vectors of dengue virus or malaria viruses, little work has been carried out to determine the distribution and abundance of sylvatic vectors. Here, we describe the mosquito vector species and diversity collected at twelve forest habitats of rural Kenya. We conducted arbovirus screening of over 14,082 mosquitoes (47 species, 11 genera) as 1520 pools, and detected seven viruses (six bunyaviruses, and one flavivirus-bunyavirus co-infection) isolated from pools of Aedes dentatus,Anopheles funestus, Culex annulioris, and Cx. vansomereni. Awareness of sylvatic vector species and their location is a critical part of understanding the ecological foci and enzootic cycling of pathogens that may be of concern to public, animal or wildlife health. As natural ecosystems come under anthropogenic pressures, such knowledge can inform us of the One Health potential for spillover or spillback leading to outbreaks, and assist in vector control strategies.
Collapse
Affiliation(s)
- Gillian Eastwood
- Institute for Human Infections and Immunity, Center for Tropical Diseases, Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
- College of Agriculture & Life Sciences, Virginia Tech, Blacksburg, VA 24060, USA
- Correspondence: ; Tel.: +1-516-655-7462
| | - Rosemary C. Sang
- Centre for Viral Research, Kenya Medical Research Institute, Mbagathi Way, Nairobi, Kenya; (R.C.S.); (J.L.); (P.T.)
| | - Joel Lutomiah
- Centre for Viral Research, Kenya Medical Research Institute, Mbagathi Way, Nairobi, Kenya; (R.C.S.); (J.L.); (P.T.)
| | - Philip Tunge
- Centre for Viral Research, Kenya Medical Research Institute, Mbagathi Way, Nairobi, Kenya; (R.C.S.); (J.L.); (P.T.)
| | - Scott C. Weaver
- World Reference Center for Emerging Viruses and Arboviruses, Institute for Human Infections and Immunity, Center for Tropical Diseases, Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA;
| |
Collapse
|
14
|
Michelitsch A, Wernike K, Klaus C, Dobler G, Beer M. Exploring the Reservoir Hosts of Tick-Borne Encephalitis Virus. Viruses 2019; 11:E669. [PMID: 31336624 PMCID: PMC6669706 DOI: 10.3390/v11070669] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/17/2019] [Accepted: 07/19/2019] [Indexed: 12/20/2022] Open
Abstract
Tick-borne encephalitis virus (TBEV) is an important arbovirus, which is found across large parts of Eurasia and is considered to be a major health risk for humans. Like any other arbovirus, TBEV relies on complex interactions between vectors, reservoir hosts, and the environment for successful virus circulation. Hard ticks are the vectors for TBEV, transmitting the virus to a variety of animals. The importance of these animals in the lifecycle of TBEV is still up for debate. Large woodland animals seem to have a positive influence on virus circulation by providing a food source for adult ticks; birds are suspected to play a role in virus distribution. Bank voles and yellow-necked mice are often referred to as classical virus reservoirs, but this statement lacks strong evidence supporting their highlighted role. Other small mammals (e.g., insectivores) may also play a crucial role in virus transmission, not to mention the absence of any suspected reservoir host for non-European endemic regions. Theories highlighting the importance of the co-feeding transmission route go as far as naming ticks themselves as the true reservoir for TBEV, and mammalian hosts as a mere bridge for transmission. A deeper insight into the virus reservoir could lead to a better understanding of the development of endemic regions. The spatial distribution of TBEV is constricted to certain areas, forming natural foci that can be restricted to sizes of merely 500 square meters. The limiting factors for their occurrence are largely unknown, but a possible influence of reservoir hosts on the distribution pattern of TBE is discussed. This review aims to give an overview of the multiple factors influencing the TBEV transmission cycle, focusing on the role of virus reservoirs, and highlights the questions that are waiting to be further explored.
Collapse
Affiliation(s)
- Anna Michelitsch
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Kerstin Wernike
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Christine Klaus
- Institute for Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Naumburger Str. 96a, 07743 Jena, Germany
| | - Gerhard Dobler
- Bundeswehr Institute of Microbiology, German Center of Infection Research (DZIF) partner site Munich, Neuherbergstraße 11, 80937 München, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald-Insel Riems, Germany.
| |
Collapse
|
15
|
Boelke M, Bestehorn M, Marchwald B, Kubinski M, Liebig K, Glanz J, Schulz C, Dobler G, Monazahian M, Becker SC. First Isolation and Phylogenetic Analyses of Tick-Borne Encephalitis Virus in Lower Saxony, Germany. Viruses 2019; 11:E462. [PMID: 31117224 PMCID: PMC6563265 DOI: 10.3390/v11050462] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/16/2019] [Accepted: 05/18/2019] [Indexed: 12/30/2022] Open
Abstract
Tick-borne encephalitis (TBE) is the most important tick-borne arboviral disease in Europe. Presently, the main endemic regions in Germany are located in the southern half of the country. Although recently, sporadic human TBE cases were reported outside of these known endemic regions. The detection and characterization of invading TBE virus (TBEV) strains will considerably facilitate the surveillance and assessment of this important disease. In 2018, ticks were collected by flagging in several locations of the German federal state of Lower Saxony where TBEV-infections in humans (diagnosed clinical TBE disease or detection of TBEV antibodies) were reported previously. Ticks were pooled according to their developmental stage and tested for TBEV-RNA by RT-qPCR. Five of 730 (0.68%) pools from Ixodes spp. ticks collected in the areas of "Rauher Busch" and "Barsinghausen/Mooshuette" were found positive for TBEV-RNA. Phylogenetic analysis of the whole genomes and E gene sequences revealed a close relationship between the two TBEV isolates, which cluster with a TBEV strain from Poland isolated in 1971. This study provides first data on the phylogeny of TBEV in the German federal state of Lower Saxony, outside of the known TBE endemic areas of Germany. Our results support the hypothesis of an east-west invasion of TBEV strains in Western Europe.
Collapse
Affiliation(s)
- Mathias Boelke
- Institute for Parasitology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hanover, Germany.
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hanover, Germany.
| | - Malena Bestehorn
- Parasitology Unit, University of Hohenheim, Emil-Wolff-Straße 34, 70599 Stuttgart, Germany.
- Institute of Microbiology of the Bundeswehr, Neuherbergstraße 11, 80937 Munich, Germany.
| | - Birgit Marchwald
- The Governmental Institute of Public Health of Lower Saxony (NLGA), Roesebeckstraße 4-6, 30449 Hannover, Germany.
| | - Mareike Kubinski
- Institute for Parasitology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hanover, Germany.
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hanover, Germany.
| | - Katrin Liebig
- Institute for Parasitology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hanover, Germany.
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hanover, Germany.
| | - Julien Glanz
- Institute for Parasitology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hanover, Germany.
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hanover, Germany.
| | - Claudia Schulz
- Institute for Parasitology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hanover, Germany.
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hanover, Germany.
| | - Gerhard Dobler
- Parasitology Unit, University of Hohenheim, Emil-Wolff-Straße 34, 70599 Stuttgart, Germany.
- Institute of Microbiology of the Bundeswehr, Neuherbergstraße 11, 80937 Munich, Germany.
| | - Masyar Monazahian
- The Governmental Institute of Public Health of Lower Saxony (NLGA), Roesebeckstraße 4-6, 30449 Hannover, Germany.
| | - Stefanie C Becker
- Institute for Parasitology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hanover, Germany.
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hanover, Germany.
| |
Collapse
|
16
|
Thangamani S, Hermance ME, Santos RI, Slovak M, Heinze D, Widen SG, Kazimirova M. Transcriptional Immunoprofiling at the Tick-Virus-Host Interface during Early Stages of Tick-Borne Encephalitis Virus Transmission. Front Cell Infect Microbiol 2017; 7:494. [PMID: 29250492 PMCID: PMC5716978 DOI: 10.3389/fcimb.2017.00494] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 11/15/2017] [Indexed: 12/26/2022] Open
Abstract
Emerging and re-emerging diseases transmitted by blood feeding arthropods are significant global public health problems. Ticks transmit the greatest variety of pathogenic microorganisms of any blood feeding arthropod. Infectious agents transmitted by ticks are delivered to the vertebrate host together with saliva at the bite site. Tick salivary glands produce complex cocktails of bioactive molecules that facilitate blood feeding and pathogen transmission by modulating host hemostasis, pain/itch responses, wound healing, and both innate and adaptive immunity. In this study, we utilized Illumina Next Generation Sequencing to characterize the transcriptional immunoprofile of cutaneous immune responses to Ixodes ricinus transmitted tick-borne encephalitis virus (TBEV). A comparative immune gene expression analysis of TBEV-infected and uninfected tick feeding sites was performed. Our analysis reveals that ticks create an inflammatory environment at the bite site during the first 3 h of feeding, and significant differences in host responses were observed between TBEV-infected and uninfected tick feeding. Gene-expression analysis reveals modulation of inflammatory genes after 1 and 3 h of TBEV-infected tick feeding. Transcriptional levels of genes specific to chemokines and cytokines indicated a neutrophil-dominated immune response. Immunohistochemistry of the tick feeding site revealed that mononuclear phagocytes and fibroblasts are the primary target cells for TBEV infection and did not detect TBEV antigens in neutrophils. Together, the transcriptional and immunohistochemistry results suggest that early cutaneous host responses to TBEV-infected tick feeding are more inflammatory than expected and highlight the importance of inflammatory chemokine and cytokine pathways in tick-borne flavivirus transmission.
Collapse
Affiliation(s)
- Saravanan Thangamani
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX, United States.,Institute for Human Infections and Immunity, The University of Texas Medical Branch, Galveston, TX, United States.,Center for Tropical Diseases, The University of Texas Medical Branch, Galveston, TX, United States
| | - Meghan E Hermance
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX, United States
| | - Rodrigo I Santos
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX, United States
| | - Mirko Slovak
- Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Dar Heinze
- Department of Surgery, Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA, United States
| | - Steven G Widen
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX, United States
| | - Maria Kazimirova
- Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
17
|
Kovalev SY, Mukhacheva TA. Reconsidering the classification of tick-borne encephalitis virus within the Siberian subtype gives new insights into its evolutionary history. INFECTION GENETICS AND EVOLUTION 2017; 55:159-165. [PMID: 28919548 DOI: 10.1016/j.meegid.2017.09.014] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 08/22/2017] [Accepted: 09/13/2017] [Indexed: 11/16/2022]
Abstract
Tick-borne encephalitis is widespread in Eurasia and transmitted by Ixodes ticks. Classification of its causative agent, tick-borne encephalitis virus (TBEV), includes three subtypes, namely Far-Eastern, European, and Siberian (TBEV-Sib), as well as a group of 886-84-like strains with uncertain taxonomic status. TBEV-Sib is subdivided into three phylogenetic lineages: Baltic, Asian, and South-Siberian. A reason to reconsider TBEV-Sib classification was the analysis of 186 nucleotide sequences of an E gene fragment submitted to GenBank during the last two years. Within the South-Siberian lineage, we have identified a distinct group with prototype strains Aina and Vasilchenko as an individual lineage named East-Siberian. The analysis of reclassified lineages has promoted a new model of the evolutionary history of TBEV-Sib lineages and TBEV-Sib as a whole. Moreover, we present arguments supporting separation of 886-84-like strains into an individual TBEV subtype, which we propose to name Baikalian (TBEV-Bkl).
Collapse
Affiliation(s)
- S Y Kovalev
- Laboratory of Molecular Genetics, Department of Biology, Ural Federal University, Lenin Avenue 51, Yekaterinburg 620000, Russia.
| | - T A Mukhacheva
- Laboratory of Molecular Genetics, Department of Biology, Ural Federal University, Lenin Avenue 51, Yekaterinburg 620000, Russia
| |
Collapse
|
18
|
Patterson JW, Duncan AM, McIntyre KC, Lloyd VK. Evidence for genetic hybridization between Ixodes scapularis and Ixodes cookei. CAN J ZOOL 2017. [DOI: 10.1139/cjz-2016-0134] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ixodes scapularis Say, 1821 (the black-legged tick) is becoming established in Canada. The northwards expansion of I. scapularis leads to contact between I. scapularis and Ixodes cookei Packard, 1869, a well-established tick species in Eastern Canada. Examination of I. cookei and I. scapularis collected from New Brunswick revealed ticks with ambiguous morphologies, with either a mixture or intermediate traits typical of I. scapularis and I. cookei, including in characteristics typically used as species identifiers. Genetic analysis to determine if these ticks represent hybrids revealed that four had I. cookei derived mitochondrial DNA but I. scapularis nuclear DNA. In one case, the nuclear sequence showed evidence of heterozygosity for I. scapularis and I. cookei sequences, whereas in the others, the nuclear DNA appeared to be entirely derived from I. scapularis. These data strongly suggest genetic hybridization between these two species. Ixodes cookei and hybrid ticks were readily collected from humans and companion animals and specimens infected with Borrelia burgdorferi Johnson et al., 1984, the causative agent of Lyme disease, were identified. These findings raise the issue of genetic introgression of I. scapularis genes into I. cookei and warrant reassessment of the capacity of I. cookei and I. cookei × I. scapularis hybrids to vector Borrelia infection.
Collapse
Affiliation(s)
- James W. Patterson
- Department of Biology, Mount Allison University, 35B York Street, Sackville, NB E4L 1G7, Canada
- Department of Biology, Mount Allison University, 35B York Street, Sackville, NB E4L 1G7, Canada
| | - Anna M. Duncan
- Department of Biology, Mount Allison University, 35B York Street, Sackville, NB E4L 1G7, Canada
- Department of Biology, Mount Allison University, 35B York Street, Sackville, NB E4L 1G7, Canada
| | - Kelsey C. McIntyre
- Department of Biology, Mount Allison University, 35B York Street, Sackville, NB E4L 1G7, Canada
- Department of Biology, Mount Allison University, 35B York Street, Sackville, NB E4L 1G7, Canada
| | - Vett K. Lloyd
- Department of Biology, Mount Allison University, 35B York Street, Sackville, NB E4L 1G7, Canada
- Department of Biology, Mount Allison University, 35B York Street, Sackville, NB E4L 1G7, Canada
| |
Collapse
|
19
|
Grubaugh ND, Rückert C, Armstrong PM, Bransfield A, Anderson JF, Ebel GD, Brackney DE. Transmission bottlenecks and RNAi collectively influence tick-borne flavivirus evolution. Virus Evol 2016; 2:vew033. [PMID: 28058113 PMCID: PMC5210029 DOI: 10.1093/ve/vew033] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Arthropod-borne RNA viruses exist within hosts as heterogeneous populations of viral variants and, as a result, possess great genetic plasticity. Understanding the micro-evolutionary forces shaping these viruses can provide insights into how they emerge, adapt, and persist in new and changing ecological niches. While considerable attention has been directed toward studying the population dynamics of mosquito-borne viruses, little is known about tick-borne virus populations. Therefore, using a mouse and Ixodes scapularis tick transmission model, we examined Powassan virus (POWV; Flaviviridae, Flavivirus) populations in and between both the vertebrate host and arthropod vector. We found that genetic bottlenecks, RNAi-mediated diversification, and selective constraints collectively influence POWV evolution. Together, our data provide a mechanistic explanation for the slow, long-term evolutionary trends of POWV, and suggest that all arthropod-borne viruses encounter similar selective pressures at the molecular level (i.e. RNAi), yet evolve much differently due to their unique rates and modes of transmission.
Collapse
Affiliation(s)
- Nathan D Grubaugh
- Department of Microbiology Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Fort Collins, CO, USA
| | - Claudia Rückert
- Department of Microbiology Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Fort Collins, CO, USA
| | - Philip M Armstrong
- The Connecticut Agricultural Experiment Station, Center for Vector Biology and Zoonotic Diseases, New Haven, CT, USA
| | - Angela Bransfield
- The Connecticut Agricultural Experiment Station, Center for Vector Biology and Zoonotic Diseases, New Haven, CT, USA
| | - John F Anderson
- The Connecticut Agricultural Experiment Station, Center for Vector Biology and Zoonotic Diseases, New Haven, CT, USA
| | - Gregory D Ebel
- Department of Microbiology Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Fort Collins, CO, USA
| | - Doug E Brackney
- The Connecticut Agricultural Experiment Station, Center for Vector Biology and Zoonotic Diseases, New Haven, CT, USA
| |
Collapse
|
20
|
Transmission and evolution of tick-borne viruses. Curr Opin Virol 2016; 21:67-74. [PMID: 27569396 DOI: 10.1016/j.coviro.2016.08.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/08/2016] [Accepted: 08/09/2016] [Indexed: 02/05/2023]
Abstract
Ticks transmit a diverse array of viruses such as tick-borne encephalitis virus, Powassan virus, and Crimean-Congo hemorrhagic fever virus that are reemerging in many parts of the world. Most tick-borne viruses (TBVs) are RNA viruses that replicate using error-prone polymerases and produce genetically diverse viral populations that facilitate their rapid evolution and adaptation to novel environments. This article reviews the mechanisms of virus transmission by tick vectors, the molecular evolution of TBVs circulating in nature, and the processes shaping viral diversity within hosts to better understand how these viruses may become public health threats. In addition, remaining questions and future directions for research are discussed.
Collapse
|
21
|
Kovalev SY, Mukhacheva TA. Baltic lineage of tick-borne encephalitis virus: A putative evolutionary pathway. Ticks Tick Borne Dis 2016; 7:1209-1215. [PMID: 27478072 DOI: 10.1016/j.ttbdis.2016.07.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 06/20/2016] [Accepted: 07/22/2016] [Indexed: 10/21/2022]
Abstract
Tick-borne encephalitis virus (TBEV) is transmitted by ixodid ticks and has three subtypes. The most genetically heterogeneous and widely distributed is the Siberian subtype which is subdivided into two main phylogenetic lineages, Asian (TBEV-SibAsia) and Baltic (TBEV-SibBaltic). According to the hypothesis of quantum evolution of TBEV (Kovalev et al., 2014b), TBEV-SibAsia originated about 370 years ago in Siberia, but the question concerning the time and place of origin of TBEV-SibBaltic is still to be solved. In the present paper, the sequences of a gene E fragment of 20 newly obtained TBEV-SibBaltic strains and 164 sequences of TBEV-SibBaltic from GenBank were analysed. The clusteron approach applied to TBEV-SibBaltic allowed the identification of three new clusterons. We revealed three clades of TBEV-SibBaltic, each characterized by a certain geographical distribution, and estimated their evolutionary ages. The oldest clade was Balt I, which presumably originated in North-West Russia and the Baltic countries about 300 years ago as a result of human activity, and then gave rise to the other clades in the Urals and West Siberia. The European subtype of TBEV and TBEV-SibBaltic may have originated simultaneously from the clusteron-founder 3A of TBEV-SibAsia, the former through the adaptation of the virus to Ixodes ricinus, the latter - to a European subpopulation of Ixodes persulcatus. The use of the clusteron approach complemented with the results of phylogenetic analysis, data on the geographical distribution of the virus, the population structure of ticks, and the historical evidence allow us to estimate evolutionary pathways of the subtypes and phylogenetic lineages of TBEV.
Collapse
Affiliation(s)
- S Y Kovalev
- Laboratory of Molecular Genetics, Institute of Natural Sciences, Ural Federal University, Yekaterinburg, Russia.
| | - T A Mukhacheva
- Laboratory of Molecular Genetics, Institute of Natural Sciences, Ural Federal University, Yekaterinburg, Russia
| |
Collapse
|
22
|
Kovalev SY, Golovljova IV, Mukhacheva TA. Natural hybridization between Ixodes ricinus and Ixodes persulcatus ticks evidenced by molecular genetics methods. Ticks Tick Borne Dis 2015; 7:113-118. [PMID: 26460161 DOI: 10.1016/j.ttbdis.2015.09.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 09/01/2015] [Accepted: 09/16/2015] [Indexed: 11/16/2022]
Abstract
The recently shown phenomenon of natural hybridization between Ixodes persulcatus and Ixodes pavlovskyi ticks (Kovalev et al., 2015) stimulated similar studies in the sympatric zones of other tick species. In the present paper, 265 Ixodes ricinus and I. persulcatus ticks from Estonia were subjected to a search for interspecific hybrids based on nuclear (ITS2) and mitochondrial (cox1) markers as well as morphological features. Surprisingly, only 72.1% of ticks morphologically identified as I. ricinus actually were I. ricinus both at nuclear and mitochondrial markers, while the accuracy of morphological species identification for I. persulcatus was 99.3%. Among ticks morphologically identified as I. ricinus, 24.6% turned out to be interspecific hybrids and 3.3% were I. persulcatus. Generally, about 11% of the individuals studied were shown to be interspecific hybrids with different levels of nuclear DNA introgression. The analysis of hybrid populations proved the mating pair female I. ricinus×male I. persulcatus to form hybrids more efficiently, then female I. persulcatus×male I. ricinus. The same trend can be observed for backcrosses preferentially mating with I. ricinus. Hybridization between I. ricinus and I. persulcatus proved the existing view about their reproductive isolation to be untenable. Interspecific hybridization occurring between both closely (I. persulcatus and I. pavlovskyi) and more distantly (I. ricinus and I. persulcatus) related Ixodes species could introduce novel alleles that modify vector competence, host use or the ability to exploit diverse microhabitats.
Collapse
Affiliation(s)
- S Y Kovalev
- Laboratory of Molecular Genetics, Ural Federal University, Yekaterinburg, Russia.
| | - I V Golovljova
- Department of Virology, National Institute for Health Development, Tallinn, Estonia
| | - T A Mukhacheva
- Laboratory of Molecular Genetics, Ural Federal University, Yekaterinburg, Russia
| |
Collapse
|
23
|
Kovalev SY, Mikhaylishcheva MS, Mukhacheva TA. Natural hybridization of the ticks Ixodes persulcatus and Ixodes pavlovskyi in their sympatric populations in Western Siberia. INFECTION GENETICS AND EVOLUTION 2015; 32:388-95. [PMID: 25858121 DOI: 10.1016/j.meegid.2015.04.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 03/23/2015] [Accepted: 04/01/2015] [Indexed: 10/23/2022]
Abstract
Hybridization of ticks of the genus Ixodes has been described for several species under laboratory conditions although no molecular genetics evidence confirming interspecific hybridization in nature is available. We have designed a real time PCR targeted on nuclear (ITS2) and mitochondrial (cox1) markers to accurately identify tick species and to detect interspecific hybrids of Ixodes persulcatus and Ixodes pavlovskyi in their sympatric populations in Western Siberia. A survey of 783 individual ticks from a suburb of Tomsk showed that 44.2% of ticks belong to I. pavlovskyi species and 55.8% to I. persulcatus, based on the mtDNA data. Results obtained with the nuclear marker were not consistent, indicating that approximately 10% of the ticks were hybrids and about 5% revealed mtDNA introgression. Both hybridization and introgression have been shown to occur bidirectionally but more efficiently in the mating pair female I. pavlovskyi×male I. persulcatus than vice versa. The existence of the first generation hybrids and backcrosses challenges the existing view about effective reproductive barriers between I. pavlovskyi and I. persulcatus. While using only mitochondrial markers can lead to errors in determining tick species, we propose to use nuclear or both markers instead. The results obtained in the present paper and published earlier suggest that hybridization between closely related tick species in their sympatric zones is common rather than exceptional. The role of hybrid populations of vectors in the evolution of transmitted pathogens is also discussed.
Collapse
Affiliation(s)
- Sergey Y Kovalev
- Laboratory of Molecular Genetics, Department of Biology, Ural Federal University, Lenin Avenue 51, Yekaterinburg 620000, Russia.
| | - Maria S Mikhaylishcheva
- Laboratory of Molecular Genetics, Department of Biology, Ural Federal University, Lenin Avenue 51, Yekaterinburg 620000, Russia
| | - Tatyana A Mukhacheva
- Laboratory of Molecular Genetics, Department of Biology, Ural Federal University, Lenin Avenue 51, Yekaterinburg 620000, Russia
| |
Collapse
|