1
|
Recknagel H, Močivnik L, Zakšek V, Luo Y, Kostanjšek R, Trontelj P. Generation of genome-wide SNP markers from minimally invasive sampling in endangered animals and applications in species ecology and conservation. Mol Ecol Resour 2024; 24:e13995. [PMID: 39056440 DOI: 10.1111/1755-0998.13995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 07/04/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024]
Abstract
High-density genotyping methods have revolutionized the field of population and conservation genetics in the past decade. To exploit the technological and analytical advances in the field, access to high-quality genetic material is a key component. However, access to such samples in endangered and rare animals is often challenging or even impossible. Here, we used a minimally invasive sampling method (MIS) in the endangered cave salamander Proteus anguinus, the olm, to generate thousands of genetic markers using ddRADseq for population and conservation genomic analyses. Using tail clips and MIS skin swabs taken from the same individual, we investigated genotyping data properties of the two different sampling types. We found that sufficient DNA can be extracted from swab samples to generate up to 200,000 polymorphic SNPs in divergent Proteus lineages. Swab and tissue samples were highly reproducible exhibiting low SNP genotyping error rates. We found that SNPs were most frequently (~50%) located within genic regions, while the rest mapped to mostly flanking regions of repetitive DNA. The vast majority of DNA recovered from swabbing was host DNA. However, a fraction of DNA recovered from swabs contained additional ecological information on the species, including eDNA from the surrounding environment and bacterial skin fauna. Most exogenous DNA recovered from swabs were bacteria (~80%), followed by vertebrates (~20%). Our results demonstrate that MIS can be used to (i) generate tens of thousands of ddRADseq markers for conservation and population genomic analyses and (ii) inform on the species health status and ecology from exogenous DNA.
Collapse
Affiliation(s)
- Hans Recknagel
- Biotechnical Faculty, Department of Biology, University of Ljubljana, Ljubljana, Slovenia
| | - Luka Močivnik
- Biotechnical Faculty, Department of Biology, University of Ljubljana, Ljubljana, Slovenia
| | - Valerija Zakšek
- Biotechnical Faculty, Department of Biology, University of Ljubljana, Ljubljana, Slovenia
| | - Yonglun Luo
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI Research, Qingdao, China
| | - Rok Kostanjšek
- Biotechnical Faculty, Department of Biology, University of Ljubljana, Ljubljana, Slovenia
| | - Peter Trontelj
- Biotechnical Faculty, Department of Biology, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
2
|
Thavornkanlapachai R, Armstrong KN, Knuckey C, Huntley B, Hanrahan N, Ottewell K. Species-specific SNP arrays for non-invasive genetic monitoring of a vulnerable bat. Sci Rep 2024; 14:1847. [PMID: 38253562 PMCID: PMC10803360 DOI: 10.1038/s41598-024-51461-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Genetic tagging from scats is one of the minimally invasive sampling (MIS) monitoring approaches commonly used to guide management decisions and evaluate conservation efforts. Microsatellite markers have traditionally been used but are prone to genotyping errors. Here, we present a novel method for individual identification in the Threatened ghost bat Macroderma gigas using custom-designed Single Nucleotide Polymorphism (SNP) arrays on the MassARRAY system. We identified 611 informative SNPs from DArTseq data from which three SNP panels (44-50 SNPs per panel) were designed. We applied SNP genotyping and molecular sexing to 209 M. gigas scats collected from seven caves in the Pilbara, Western Australia, employing a two-step genotyping protocol and identifying unique genotypes using a custom-made R package, ScatMatch. Following data cleaning, the average amplification rate was 0.90 ± 0.01 and SNP genotyping errors were low (allelic dropout 0.003 ± 0.000) allowing clustering of scats based on one or fewer allelic mismatches. We identified 19 unique bats (9 confirmed/likely males and 10 confirmed/likely females) from a maternity and multiple transitory roosts, with two male bats detected using roosts, 9 km and 47 m apart. The accuracy of our SNP panels enabled a high level of confidence in the identification of individual bats. Targeted SNP genotyping is a valuable tool for monitoring and tracking of non-model species through a minimally invasive sampling approach.
Collapse
Affiliation(s)
- Rujiporn Thavornkanlapachai
- Department of Biodiversity, Conservation and Attractions, Bentley Delivery Centre, Locked Bag 104, Bentley, WA, 6983, Australia.
| | - Kyle N Armstrong
- School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
- South Australian Museum, Adelaide, SA, 5000, Australia
| | - Chris Knuckey
- Biologic Environmental, 24 Wickham Street, East Perth, WA, 6004, Australia
| | - Bart Huntley
- Department of Biodiversity, Conservation and Attractions, Bentley Delivery Centre, Locked Bag 104, Bentley, WA, 6983, Australia
| | - Nicola Hanrahan
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT, 0815, Australia
| | - Kym Ottewell
- Department of Biodiversity, Conservation and Attractions, Bentley Delivery Centre, Locked Bag 104, Bentley, WA, 6983, Australia
| |
Collapse
|
3
|
McFarlane S, Manseau M, Jones TB, Pouliot D, Mastromonaco G, Pittoello G, Wilson PJ. Identification of familial networks reveals sex-specific density dependence in the dispersal and reproductive success of an endangered ungulate. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.956834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Density is an important demographic parameter that is commonly overlooked in studies of wild populations. Here, we examined the effects of variable spatially explicit density on a range of demographic parameters in a wild population of a cryptic ungulate, boreal woodland caribou (Rangifer tarandus caribou). Using non-invasive genetic sampling, we applied spatial capture–recapture methods with landscape covariates to estimate the density of boreal woodland caribou across a 108,806 km2 study area. We then created a familial network from the reconstructed parent–offspring relationships to determine whether spatial density influenced sex-specific individual reproductive success, female pregnancy status, and dispersal distance. We found that animal density varied greatly in response to land cover types and disturbance; animal density was most influenced by landscape composition and distance to roads varying from 0 in areas with >20% deciduous cover to 270 caribou per 1,000 km2 in areas presenting contiguous older coniferous cover. We found that both male and female reproductive success varied with density, with males showing a higher probability of having offspring in higher-density areas, and the opposite for females. No differences were found in female pregnancy rates occurring in high- and low-density areas. Dispersal distances varied with density, with offspring moving shorter distances when parents were found in higher-density areas. Familial networks showed lower-closeness centrality and lower-degree centrality for females in higher-density areas, indicating that females found in higher-density areas tend to be less broadly associated with animals across the range. Although high-density areas do reflect good-quality caribou habitat, the observed decreased closeness and degree centrality measures, dispersal rates, and lower female recruitment rates suggest that remnant habitat patches across the landscape may create population sinks.
Collapse
|
4
|
Shimozuru M, Jimbo M, Adachi K, Kawamura K, Shirane Y, Umemura Y, Ishinazaka T, Nakanishi M, Kiyonari M, Yamanaka M, Amagai Y, Ijuin A, Sakiyama T, Kasai S, Nose T, Shirayanagi M, Tsuruga H, Mano T, Tsubota T, Fukasawa K, Uno H. Estimation of breeding population size using DNA-based pedigree reconstruction in brown bears. Ecol Evol 2022; 12:e9246. [PMID: 36091344 PMCID: PMC9448969 DOI: 10.1002/ece3.9246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/18/2022] [Accepted: 07/27/2022] [Indexed: 11/11/2022] Open
Abstract
Robust estimates of demographic parameters are critical for effective wildlife conservation and management but are difficult to obtain for elusive species. We estimated the breeding and adult population sizes, as well as the minimum population size, in a high-density brown bear population on the Shiretoko Peninsula, in Hokkaido, Japan, using DNA-based pedigree reconstruction. A total of 1288 individuals, collected in and around the Shiretoko Peninsula between 1998 and 2020, were genotyped at 21 microsatellite loci. Among them, 499 individuals were identified by intensive genetic sampling conducted in two consecutive years (2019 and 2020) mainly by noninvasive methods (e.g., hair and fecal DNA). Among them, both parents were assigned for 330 bears, and either maternity or paternity was assigned to 47 and 76 individuals, respectively. The subsequent pedigree reconstruction indicated a range of breeding and adult (≥4 years old) population sizes: 128-173 for female breeders and 66-91 male breeders, and 155-200 for female adults and 84-109 male adults. The minimum population size was estimated to be 449 (252 females and 197 males) in 2019. Long-term continuous genetic sampling prior to a short-term intensive survey would enable parentage to be identified in a population with a high probability, thus enabling reliable estimates of breeding population size for elusive species.
Collapse
Affiliation(s)
- Michito Shimozuru
- Laboratory of Wildlife Biology and Medicine, Faculty of Veterinary MedicineHokkaido UniversitySapporoJapan
| | - Mina Jimbo
- Laboratory of Wildlife Biology and Medicine, Faculty of Veterinary MedicineHokkaido UniversitySapporoJapan
- Hokkaido Research OrganizationSapporoJapan
| | - Keisuke Adachi
- Laboratory of Wildlife Biology and Medicine, Faculty of Veterinary MedicineHokkaido UniversitySapporoJapan
| | - Kei Kawamura
- Laboratory of Wildlife Biology and Medicine, Faculty of Veterinary MedicineHokkaido UniversitySapporoJapan
| | - Yuri Shirane
- Laboratory of Wildlife Biology and Medicine, Faculty of Veterinary MedicineHokkaido UniversitySapporoJapan
- Hokkaido Research OrganizationSapporoJapan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Toshio Tsubota
- Laboratory of Wildlife Biology and Medicine, Faculty of Veterinary MedicineHokkaido UniversitySapporoJapan
| | - Keita Fukasawa
- Center for Environmental Biology and Ecosystem StudiesNational Institute for Environmental StudiesTsukubaJapan
| | - Hiroyuki Uno
- Faculty of AgricultureTokyo University of Agriculture and TechnologyTokyoJapan
| |
Collapse
|
5
|
A reduced SNP panel to trace gene flow across southern European wolf populations and detect hybridization with other Canis taxa. Sci Rep 2022; 12:4195. [PMID: 35264717 PMCID: PMC8907317 DOI: 10.1038/s41598-022-08132-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 03/01/2022] [Indexed: 12/18/2022] Open
Abstract
Intra- and inter-specific gene flow are natural evolutionary processes. However, human-induced hybridization is a global conservation concern across taxa, and the development of discriminant genetic markers to differentiate among gene flow processes is essential. Wolves (Canis lupus) are affected by hybridization, particularly in southern Europe, where ongoing recolonization of historic ranges is augmenting gene flow among divergent populations. Our aim was to provide diagnostic canid markers focused on the long-divergent Iberian, Italian and Dinaric wolf populations, based on existing genomic resources. We used 158 canid samples to select a panel of highly informative single nucleotide polymorphisms (SNPs) to (i) distinguish wolves in the three regions from domestic dogs (C. l. familiaris) and golden jackals (C. aureus), and (ii) identify their first two hybrid generations. The resulting 192 SNPs correctly identified the five canid groups, all simulated first-generation (F1) hybrids (0.482 ≤ Qi ≤ 0.512 between their respective parental groups) and all first backcross (BC1) individuals (0.723 ≤ Qi ≤ 0.827 to parental groups). An assay design and test with invasive and non-invasive canid samples performed successfully for 178 SNPs. By separating natural population admixture from inter-specific hybridization, our reduced panel can help advance evolutionary research, monitoring, and timely conservation management.
Collapse
|
6
|
Sample identification and pedigree reconstruction in Wolverine (Gulo gulo) using SNP genotyping of non-invasive samples. CONSERV GENET RESOUR 2021. [DOI: 10.1007/s12686-021-01208-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AbstractFor conservation genetic studies using non-invasively collected samples, genome-wide data may be hard to acquire. Until now, such studies have instead mostly relied on analyses of traditional genetic markers such as microsatellites (SSRs). Recently, high throughput genotyping of single nucleotide polymorphisms (SNPs) has become available, expanding the use of genomic methods to include non-model species of conservation concern. We have developed a 96-marker SNP array for use in applied conservation monitoring of the Scandinavian wolverine (Gulo gulo) population. By genotyping more than a thousand non-invasively collected samples, we were able to obtain precise estimates of different types of genotyping errors and sample dropout rates. The SNP panel significantly outperforms the SSR markers (and DBY intron markers for sexing) both in terms of precision in genotyping, sex assignment and individual identification, as well as in the proportion of samples successfully genotyped. Furthermore, SNP genotyping offers a simplified laboratory and analysis pipeline with fewer samples needed to be repeatedly genotyped in order to obtain reliable consensus data. In addition, we utilised a unique opportunity to successfully demonstrate the application of SNP genotype data for reconstructing pedigrees in wild populations, by validating the method with samples from wild individuals with known relatedness. By offering a simplified workflow with improved performance, we anticipate this methodology will facilitate the use of non-invasive samples to improve genetic management of many different types of populations that have previously been challenging to survey.
Collapse
|
7
|
Karamanlidis AA, Kopatz A, de Gabriel Hernando M. Dispersal patterns of a recovering brown bear (Ursus arctos) population in a human-dominated landscape. J Mammal 2021. [DOI: 10.1093/jmammal/gyaa173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract
Despite increasing habitat fragmentation, large carnivore populations in parts of Europe have been recovering and expanding into human-dominated areas. Knowledge of animal dispersal patterns in such areas is important for their conservation, management, and coexistence with humans. We used genetic data based on 15 microsatellite markers from 312 individuals (98 females, 214 males) to assess kinship and dispersal patterns during the recovery and spatial expansion of a wild brown bear (Ursus arctos) population (2003–2010) in the human-dominated landscape of Greece. We hypothesized that bear dispersal in Greece was sex-biased, with females being more philopatric and males dispersing more frequently and over greater distances. Dispersal indeed was sex-biased, with males dispersing more frequently and farther than females. Overall, females were found to be philopatric; males also appeared to be philopatric, but to a lesser degree. However, a high proportion of females displayed dispersal behavior, which may be indicative of a pre-saturation stage of the population in that part of the country. Our results indicate that dispersal may be due to evading competition and avoiding inbreeding. We also documented long-distance dispersal of bears, which is considered to be indicative of a spatially expanding population. Our results highlight the value of using noninvasive genetic monitoring data to assess kinship among individuals and study dispersal patterns in human-dominated landscapes. Brown bears remain threatened in Greece; we therefore recommend systematic genetic monitoring of the species in combination with careful habitat management to protect suitable habitat (i.e., dispersal corridors) and ultimately ensure co-existence with humans and survival of brown bears in the country.
Collapse
Affiliation(s)
- Alexandros A Karamanlidis
- ARCTUROS, Civil Society for the Protection and Management of Wildlife and the Natural Environment, Aetos, Florina, Greece
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
| | - Alexander Kopatz
- Norwegian Institute for Nature Research (NINA), Trondheim, Norway
| | - Miguel de Gabriel Hernando
- ARCTUROS, Civil Society for the Protection and Management of Wildlife and the Natural Environment, Aetos, Florina, Greece
- Department of Biodiversity and Environmental Management, Faculty of Biological and Environmental Sciences, Universidad de León, León, Spain
| |
Collapse
|
8
|
Eriksson CE, Ruprecht J, Levi T. More affordable and effective noninvasive single nucleotide polymorphism genotyping using high‐throughput amplicon sequencing. Mol Ecol Resour 2020; 20:1505-1516. [DOI: 10.1111/1755-0998.13208] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 12/26/2022]
Affiliation(s)
| | - Joel Ruprecht
- Department of Fisheries and Wildlife Oregon State University Corvallis OR USA
| | - Taal Levi
- Department of Fisheries and Wildlife Oregon State University Corvallis OR USA
| |
Collapse
|
9
|
Caniglia R, Galaverni M, Velli E, Mattucci F, Canu A, Apollonio M, Mucci N, Scandura M, Fabbri E. A standardized approach to empirically define reliable assignment thresholds and appropriate management categories in deeply introgressed populations. Sci Rep 2020; 10:2862. [PMID: 32071323 PMCID: PMC7028925 DOI: 10.1038/s41598-020-59521-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 01/28/2020] [Indexed: 11/09/2022] Open
Abstract
Anthropogenic hybridization is recognized as a major threat to the long-term survival of natural populations. While identifying F1 hybrids might be simple, the detection of older admixed individuals is far from trivial and it is still debated whether they should be targets of management. Examples of anthropogenic hybridization have been described between wolves and domestic dogs, with numerous cases detected in the Italian wolf population. After selecting appropriate wild and domestic reference populations, we used empirical and simulated 39-autosomal microsatellite genotypes, Bayesian assignment and performance analyses to develop a workflow to detect different levels of wolf x dog admixture. Membership proportions to the wild cluster (qiw) and performance indexes identified two q-thresholds which allowed to efficiently classify the analysed genotypes into three assignment classes: pure (with no or negligible domestic ancestry), older admixed (with a marginal domestic ancestry) and recent admixed (with a clearly detectable domestic ancestry) animals. Based on their potential to spread domestic variants, such classes were used to define three corresponding management categories: operational pure, introgressed and operational hybrid individuals. Our multiple-criteria approach can help wildlife managers and decision makers in more efficiently targeting the available resources for the long-term conservation of species threatened by anthropogenic hybridization.
Collapse
Affiliation(s)
- Romolo Caniglia
- Unit for Conservation Genetics (BIO-CGE), Italian Institute for Environmental Protection and Research (ISPRA), Ozzano dell' Emilia, Bologna, Italy.
| | | | - Edoardo Velli
- Unit for Conservation Genetics (BIO-CGE), Italian Institute for Environmental Protection and Research (ISPRA), Ozzano dell' Emilia, Bologna, Italy
| | - Federica Mattucci
- Unit for Conservation Genetics (BIO-CGE), Italian Institute for Environmental Protection and Research (ISPRA), Ozzano dell' Emilia, Bologna, Italy
| | - Antonio Canu
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Marco Apollonio
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Nadia Mucci
- Unit for Conservation Genetics (BIO-CGE), Italian Institute for Environmental Protection and Research (ISPRA), Ozzano dell' Emilia, Bologna, Italy
| | - Massimo Scandura
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Elena Fabbri
- Unit for Conservation Genetics (BIO-CGE), Italian Institute for Environmental Protection and Research (ISPRA), Ozzano dell' Emilia, Bologna, Italy
| |
Collapse
|
10
|
Proctor MF, Kasworm WF, Teisberg JE, Servheen C, Radandt TG, Lamb CT, Kendall KC, Mace RD, Paetkau D, Boyce MS. American black bear population fragmentation detected with pedigrees in the transborder Canada–United States region. URSUS 2020. [DOI: 10.2192/ursus-d-18-00003r2] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
| | - Wayne F. Kasworm
- U.S. Fish and Wildlife Service, 385 Fish Hatchery Road, Libby, MT 59923, USA
| | - Justin E. Teisberg
- U.S. Fish and Wildlife Service, 385 Fish Hatchery Road, Libby, MT 59923, USA
| | - Chris Servheen
- U.S. Fish and Wildlife Service, College of Forestry and Conservation, 309 University Hall, University of Montana, Missoula, MT 59812, USA
| | - Thomas G. Radandt
- U.S. Fish and Wildlife Service, 385 Fish Hatchery Road, Libby, MT 59923, USA
| | - Clayton T. Lamb
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Katherine C. Kendall
- U.S. Geological Survey, Northern Rocky Mountain Science Center, Glacier National Park, West Glacier, MT 59936, USA
| | - Richard D. Mace
- Montana Fish, Wildlife and Parks, 490 N Meridian Road, Kalispel, MT 59417, USA
| | - David Paetkau
- Wildlife Genetics International, P.O. Box 274, Nelson, BC V1L 5P9, Canada
| | - Mark S. Boyce
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| |
Collapse
|
11
|
Cullingham CI, Moehrenschlager A. Genetics of a reintroduced swift fox population highlights the need for integrated conservation between neighbouring countries. Anim Conserv 2019. [DOI: 10.1111/acv.12508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- C. I. Cullingham
- Department of Biological Sciences University of Alberta Edmonton Alberta Canada
| | - A. Moehrenschlager
- Centre for Conservation Research Calgary Zoological Society Calgary Alberta Canada
| |
Collapse
|
12
|
Noninvasive population assessment of moose (Alces alces) by SNP genotyping of fecal pellets. EUR J WILDLIFE RES 2019. [DOI: 10.1007/s10344-019-1337-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
AbstractNoninvasive genetic studies of wild animals enable the recovery of information infeasible to obtain using other means. However, the low quantity and quality of noninvasively collected DNA often challenge the retrieval of reliable genotypes, which may cause biases in downstream analyses. In this study, we optimized SNP (single nucleotide polymorphism) genotyping of fecal samples from moose (Alces alces) with the main purpose of exploring the potential of using noninvasively retrieved genotypes for individual- and sex identification. Fecal pellets were collected during the late winter of 2016 on the Swedish island of Öland in the Baltic Sea and DNA was extracted and genotyped using 86 autosomal, six sex-specific and five species diagnostic SNPs. The SNP error rate of the quality filtered dataset was 0.06 and the probability of identity for siblings below 0.001. Following a thorough quality filtering process, 182 reliable genotypes were obtained, corresponding to 100 unique individuals (37 males, 63 females), with an estimated male proportion of 37% (± 9%). The population size, estimated using two different capture-mark-recapture approaches, was found to be in the range of 115–156 individuals (95% CI). Furthermore, moose on Öland showed significantly lower heterozygosity levels (zHexp = −5.51, N = 69, pHexp = 3.56·10−8, zHobs = −3.58, N = 69, pHobs = 3.38·10−4) and appeared genetically differentiated from moose on the Swedish mainland. Thus, we show that quality controlled noninvasively derived SNP genotypes can be highly informative for individual and population monitoring in a large ungulate.
Collapse
|
13
|
Mattucci F, Galaverni M, Lyons LA, Alves PC, Randi E, Velli E, Pagani L, Caniglia R. Genomic approaches to identify hybrids and estimate admixture times in European wildcat populations. Sci Rep 2019; 9:11612. [PMID: 31406125 PMCID: PMC6691104 DOI: 10.1038/s41598-019-48002-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 07/25/2019] [Indexed: 12/22/2022] Open
Abstract
The survival of indigenous European wildcat (Felis silvestris silvestris) populations can be locally threatened by introgressive hybridization with free-ranging domestic cats. Identifying pure wildcats and investigating the ancestry of admixed individuals becomes thus a conservation priority. We analyzed 63k cat Single Nucleotide Polymorphisms (SNPs) with multivariate, Bayesian and gene-search tools to better evaluate admixture levels between domestic and wild cats collected in Europe, timing and ancestry proportions of their hybrids and backcrosses, and track the origin (wild or domestic) of the genomic blocks carried by admixed cats, also looking for possible deviations from neutrality in their inheritance patterns. Small domestic ancestry blocks were detected in the genomes of most admixed cats, which likely originated from hybridization events occurring from 6 to 22 generations in the past. We identified about 1,900 outlier coding genes with excess of wild or domestic ancestry compared to random expectations in the admixed individuals. More than 600 outlier genes were significantly enriched for Gene Ontology (GO) categories mainly related to social behavior, functional and metabolic adaptive processes (wild-like genes), involved in cognition and neural crest development (domestic-like genes), or associated with immune system functions and lipid metabolism (parental-like genes). These kinds of genomic ancestry analyses could be reliably applied to unravel the admixture dynamics in European wildcats, as well as in other hybridizing populations, in order to design more efficient conservation plans.
Collapse
Affiliation(s)
- Federica Mattucci
- Area per la Genetica della Conservazione (BIO-CGE), Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), Ozzano dell'Emilia, Italy.
| | | | - Leslie A Lyons
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, USA
| | - Paulo C Alves
- Centro de Investigação em Biodiversidade e Recursos Genéticos (CIBIO), InBio - Laboratório Associado, Campus Agrário de Vairão, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- Wildlife Biology Program, Department of Ecosystem and Conservation Sciences, University of Montana, Missoula, USA
| | - Ettore Randi
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
- Department of Chemistry and Bioscience, Faculty of Engineering and Science, University of Aalborg, Aalborg, Denmark
| | - Edoardo Velli
- Area per la Genetica della Conservazione (BIO-CGE), Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), Ozzano dell'Emilia, Italy
| | - Luca Pagani
- Dipartimento di Biologia, Università degli Studi di Padova, Padua, Italy
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Romolo Caniglia
- Area per la Genetica della Conservazione (BIO-CGE), Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), Ozzano dell'Emilia, Italy
| |
Collapse
|
14
|
Millon A, Lambin X, Devillard S, Schaub M. Quantifying the contribution of immigration to population dynamics: a review of methods, evidence and perspectives in birds and mammals. Biol Rev Camb Philos Soc 2019; 94:2049-2067. [DOI: 10.1111/brv.12549] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 07/10/2019] [Accepted: 07/17/2019] [Indexed: 02/04/2023]
Affiliation(s)
- Alexandre Millon
- Aix Marseille Université, CNRS, IRD, Avignon Université, IMBE, Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale, Technopôle Arbois‐Méditerranée, Bât. Villemin – BP 80 F‐13545 Aix‐en‐Provence cedex 04 France
| | - Xavier Lambin
- School of Biological SciencesUniversity of Aberdeen Tillydrone Avenue, Zoology Building, University of Aberdeen, AB24 2TZ Aberdeen U.K
| | - Sébastien Devillard
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive F‐69100 Villeurbanne France
| | - Michael Schaub
- Swiss Ornithological Institute Seerose 1, 6204 Sempach Switzerland
| |
Collapse
|
15
|
Escoda L, Fernández‐González Á, Castresana J. Quantitative analysis of connectivity in populations of a semi‐aquatic mammal using kinship categories and network assortativity. Mol Ecol Resour 2019; 19:310-326. [DOI: 10.1111/1755-0998.12967] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 05/10/2018] [Accepted: 05/15/2018] [Indexed: 11/30/2022]
Affiliation(s)
- Lídia Escoda
- Institute of Evolutionary Biology CSIC‐Universitat Pompeu Fabra Barcelona Spain
| | | | - Jose Castresana
- Institute of Evolutionary Biology CSIC‐Universitat Pompeu Fabra Barcelona Spain
| |
Collapse
|
16
|
Bourgeois S, Kaden J, Senn H, Bunnefeld N, Jeffery KJ, Akomo-Okoue EF, Ogden R, McEwing R. Improving cost-efficiency of faecal genotyping: New tools for elephant species. PLoS One 2019; 14:e0210811. [PMID: 30699177 PMCID: PMC6353156 DOI: 10.1371/journal.pone.0210811] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 01/02/2019] [Indexed: 11/18/2022] Open
Abstract
Despite the critical need for non-invasive tools to improve monitoring of wildlife populations, especially for endangered and elusive species, faecal genetic sampling has not been adopted as regular practice, largely because of the associated technical challenges and cost. Substantial work needs to be undertaken to refine sample collection and preparation methods in order to improve sample set quality and provide cost-efficient tools that can effectively support wildlife management. In this study, we collected an extensive set of forest elephant (Loxodonta cyclotis) faecal samples throughout Gabon, Central Africa, and prepared them for genotyping using 107 single-nucleotide polymorphism assays. We developed a new quantitative polymerase chain reaction (PCR) assay targeting a 130-bp nuclear DNA fragment and demonstrated its suitability for degraded samples in all three elephant species. Using this assay to compare the efficacy of two sampling methods for faecal DNA recovery, we found that sampling the whole surface of a dung pile with a swab stored in a small tube of lysis buffer was a convenient method producing high extraction success and DNA yield. We modelled the influence of faecal quality and storage time on DNA concentration in order to provide recommendations for optimized collection and storage. The maximum storage time to ensure 75% success was two months for samples collected within 24 hours after defecation and extended to four months for samples collected within one hour. Lastly, the real-time quantitative PCR assay allowed us to predict genotyping success and pre-screen DNA samples, thus further increasing the cost-efficiency of our approach. We recommend combining the validation of an efficient sampling method, the build of in-country DNA extraction capacity for reduced storage time and the development of species-specific quantitative PCR assays in order to increase the cost-efficiency of routine non-invasive DNA analyses and expand the use of next-generation markers to non-invasive samples.
Collapse
Affiliation(s)
- Stéphanie Bourgeois
- Agence Nationale des Parcs Nationaux, Libreville, Gabon
- WildGenes Laboratory, The Royal Zoological Society of Scotland, RZSS Edinburgh Zoo, Edinburgh, United Kingdom
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, United Kingdom
- * E-mail:
| | - Jenny Kaden
- WildGenes Laboratory, The Royal Zoological Society of Scotland, RZSS Edinburgh Zoo, Edinburgh, United Kingdom
| | - Helen Senn
- WildGenes Laboratory, The Royal Zoological Society of Scotland, RZSS Edinburgh Zoo, Edinburgh, United Kingdom
| | - Nils Bunnefeld
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, United Kingdom
| | - Kathryn J. Jeffery
- Agence Nationale des Parcs Nationaux, Libreville, Gabon
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, United Kingdom
- Institut de Recherche en Écologie Tropicale, Libreville, Gabon
| | | | - Rob Ogden
- TRACE Wildlife Forensics Network, Edinburgh, United Kingdom
| | - Ross McEwing
- TRACE Wildlife Forensics Network, Edinburgh, United Kingdom
| |
Collapse
|
17
|
Ekblom R, Brechlin B, Persson J, Smeds L, Johansson M, Magnusson J, Flagstad Ø, Ellegren H. Genome sequencing and conservation genomics in the Scandinavian wolverine population. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2018; 32:1301-1312. [PMID: 29935028 DOI: 10.1111/cobi.13157] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 06/01/2018] [Accepted: 06/06/2018] [Indexed: 06/08/2023]
Abstract
Genetic approaches have proved valuable to the study and conservation of endangered populations, especially for monitoring programs, and there is potential for further developments in this direction by extending analyses to the genomic level. We assembled the genome of the wolverine (Gulo gulo), a mustelid that in Scandinavia has recently recovered from a significant population decline, and obtained a 2.42 Gb draft sequence representing >85% of the genome and including >21,000 protein-coding genes. We then performed whole-genome resequencing of 10 Scandinavian wolverines for population genomic and demographic analyses. Genetic diversity was among the lowest detected in a red-listed population (mean genome-wide nucleotide diversity of 0.05%). Results of the demographic analyses indicated a long-term decline of the effective population size (Ne ) from 10,000 well before the last glaciation to <500 after this period. Current Ne appeared even lower. The genome-wide FIS level was 0.089 (possibly signaling inbreeding), but this effect was not observed when analyzing a set of highly variable SNP markers, illustrating that such markers can give a biased picture of the overall character of genetic diversity. We found significant population structure, which has implications for population connectivity and conservation. We used an integrated microfluidic circuit chip technology to develop an SNP-array consisting of 96 highly informative markers that, together with a multiplex pre-amplification step, was successfully applied to low-quality DNA from scat samples. Our findings will inform management, conservation, and genetic monitoring of wolverines and serve as a genomic roadmap that can be applied to other endangered species. The approach used here can be generally utilized in other systems, but we acknowledge the trade-off between investing in genomic resources and direct conservation actions.
Collapse
Affiliation(s)
- Robert Ekblom
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Birte Brechlin
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Jens Persson
- Grimsö Wildlife Research Station, Department of Ecology, Swedish University of Agricultural Sciences, Riddarhyttan, Sweden
| | - Linnéa Smeds
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Malin Johansson
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Jessica Magnusson
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | | | - Hans Ellegren
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| |
Collapse
|
18
|
How to spot a black-footed cat? Successful application of cross-species markers to identify captive-bred individuals from non-invasive genetic sampling. MAMMAL RES 2018. [DOI: 10.1007/s13364-018-0407-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
19
|
Carroll EL, Bruford MW, DeWoody JA, Leroy G, Strand A, Waits L, Wang J. Genetic and genomic monitoring with minimally invasive sampling methods. Evol Appl 2018; 11:1094-1119. [PMID: 30026800 PMCID: PMC6050181 DOI: 10.1111/eva.12600] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 01/02/2018] [Indexed: 12/12/2022] Open
Abstract
The decreasing cost and increasing scope and power of emerging genomic technologies are reshaping the field of molecular ecology. However, many modern genomic approaches (e.g., RAD-seq) require large amounts of high-quality template DNA. This poses a problem for an active branch of conservation biology: genetic monitoring using minimally invasive sampling (MIS) methods. Without handling or even observing an animal, MIS methods (e.g., collection of hair, skin, faeces) can provide genetic information on individuals or populations. Such samples typically yield low-quality and/or quantities of DNA, restricting the type of molecular methods that can be used. Despite this limitation, genetic monitoring using MIS is an effective tool for estimating population demographic parameters and monitoring genetic diversity in natural populations. Genetic monitoring is likely to become more important in the future as many natural populations are undergoing anthropogenically driven declines, which are unlikely to abate without intensive adaptive management efforts that often include MIS approaches. Here, we profile the expanding suite of genomic methods and platforms compatible with producing genotypes from MIS, considering factors such as development costs and error rates. We evaluate how powerful new approaches will enhance our ability to investigate questions typically answered using genetic monitoring, such as estimating abundance, genetic structure and relatedness. As the field is in a period of unusually rapid transition, we also highlight the importance of legacy data sets and recommend how to address the challenges of moving between traditional and next-generation genetic monitoring platforms. Finally, we consider how genetic monitoring could move beyond genotypes in the future. For example, assessing microbiomes or epigenetic markers could provide a greater understanding of the relationship between individuals and their environment.
Collapse
Affiliation(s)
- Emma L. Carroll
- Scottish Oceans Institute and Sea Mammal Research UnitUniversity of St AndrewsSt AndrewsUK
| | - Mike W. Bruford
- Cardiff School of Biosciences and Sustainable Places Research InstituteCardiff UniversityCardiff, WalesUK
| | - J. Andrew DeWoody
- Department of Forestry and Natural Resources and Department of Biological SciencesPurdue UniversityWest LafayetteINUSA
| | - Gregoire Leroy
- Animal Production and Health DivisionFood and Agriculture Organization of the United NationsRomeItaly
| | - Alan Strand
- Grice Marine LaboratoryDepartment of BiologyCollege of CharlestonCharlestonSCUSA
| | - Lisette Waits
- Department of Fish and Wildlife SciencesUniversity of IdahoMoscowIDUSA
| | - Jinliang Wang
- Institute of ZoologyZoological Society of LondonLondonUK
| |
Collapse
|
20
|
Förster DW, Bull JK, Lenz D, Autenrieth M, Paijmans JLA, Kraus RHS, Nowak C, Bayerl H, Kuehn R, Saveljev AP, Sindičić M, Hofreiter M, Schmidt K, Fickel J. Targeted resequencing of coding DNA sequences for SNP discovery in nonmodel species. Mol Ecol Resour 2018; 18:1356-1373. [PMID: 29978939 DOI: 10.1111/1755-0998.12924] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/28/2018] [Accepted: 06/05/2018] [Indexed: 11/29/2022]
Abstract
Targeted capture coupled with high-throughput sequencing can be used to gain information about nuclear sequence variation at hundreds to thousands of loci. Divergent reference capture makes use of molecular data of one species to enrich target loci in other (related) species. This is particularly valuable for nonmodel organisms, for which often no a priori knowledge exists regarding these loci. Here, we have used targeted capture to obtain data for 809 nuclear coding DNA sequences (CDS) in a nonmodel organism, the Eurasian lynx Lynx lynx, using baits designed with the help of the published genome of a related model organism (the domestic cat Felis catus). Using this approach, we were able to survey intraspecific variation at hundreds of nuclear loci in L. lynx across the species' European range. A large set of biallelic candidate SNPs was then evaluated using a high-throughput SNP genotyping platform (Fluidigm), which we then reduced to a final 96 SNP-panel based on assay performance and reliability; validation was carried out with 100 additional Eurasian lynx samples not included in the SNP discovery phase. The 96 SNP-panel developed from CDS performed very successfully in the identification of individuals and in population genetic structure inference (including the assignment of individuals to their source population). In keeping with recent studies, our results show that genic SNPs can be valuable for genetic monitoring of wildlife species.
Collapse
Affiliation(s)
- Daniel W Förster
- Department of Evolutionary Genetics, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - James K Bull
- Department of Evolutionary Genetics, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Dorina Lenz
- Department of Evolutionary Genetics, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Marijke Autenrieth
- Department of Evolutionary Genetics, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany.,Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | | | - Robert H S Kraus
- Department of Biology, University of Konstanz, Konstanz, Germany.,Department of Migration and Immuno-Ecology, Max Planck Institute for Ornithology, Radolfzell, Germany
| | - Carsten Nowak
- Conservation Genetics Group, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany
| | - Helmut Bayerl
- Unit of Molecular Zoology, Chair of Zoology, Department of Animal Science, Technical University of Munich, Freising, Germany
| | - Ralph Kuehn
- Unit of Molecular Zoology, Chair of Zoology, Department of Animal Science, Technical University of Munich, Freising, Germany.,Department of Fish, Wildlife and Conservation Ecology, New Mexico State University, Las Cruces, New Mexico
| | - Alexander P Saveljev
- Department of Animal Ecology, Russian Research Institute of Game Management and Fur Farming, Kirov, Russia
| | - Magda Sindičić
- Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Michael Hofreiter
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Krzysztof Schmidt
- Mammal Research Institute, Polish Academy of Sciences, Białowieza, Poland
| | - Jörns Fickel
- Department of Evolutionary Genetics, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany.,Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| |
Collapse
|
21
|
Discovery of SNPs for individual identification by reduced representation sequencing of moose (Alces alces). PLoS One 2018; 13:e0197364. [PMID: 29847564 PMCID: PMC5976195 DOI: 10.1371/journal.pone.0197364] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 05/01/2018] [Indexed: 01/14/2023] Open
Abstract
Monitoring of wild animal populations is challenging, yet reliable information about population processes is important for both management and conservation efforts. Access to molecular markers, such as SNPs, enables population monitoring through genotyping of various DNA sources. We have developed 96 high quality SNP markers for individual identification of moose (Alces alces), an economically and ecologically important top-herbivore in boreal regions. Reduced representation libraries constructed from 34 moose were high-throughput de novo sequenced, generating nearly 50 million read pairs. About 50 000 stacks of aligned reads containing one or more SNPs were discovered with the Stacks pipeline. Several quality criteria were applied on the candidate SNPs to find markers informative on the individual level and well representative for the population. An empirical validation by genotyping of sequenced individuals and additional moose, resulted in the selection of a final panel of 86 high quality autosomal SNPs. Additionally, five sex-specific SNPs and five SNPs for sympatric species diagnostics are included in the panel. The genotyping error rate was 0.002 for the total panel and probability of identities were low enough to separate individuals with high confidence. Moreover, the autosomal SNPs were highly informative also for population level analyses. The potential applications of this SNP panel are thus many including investigations of population size, sex ratios, relatedness, reproductive success and population structure. Ideally, SNP-based studies could improve today’s population monitoring and increase our knowledge about moose population dynamics.
Collapse
|
22
|
Giangregorio P, Norman AJ, Davoli F, Spong G. Testing a new SNP-chip on the Alpine and Apennine brown bear (Ursus arctos) populations using non-invasive samples. CONSERV GENET RESOUR 2018. [DOI: 10.1007/s12686-018-1017-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
Advances in Using Non-invasive, Archival, and Environmental Samples for Population Genomic Studies. POPULATION GENOMICS 2018. [DOI: 10.1007/13836_2018_45] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
24
|
Granroth-Wilding H, Primmer C, Lindqvist M, Poutanen J, Thalmann O, Aspi J, Harmoinen J, Kojola I, Laaksonen T. Non-invasive genetic monitoring involving citizen science enables reconstruction of current pack dynamics in a re-establishing wolf population. BMC Ecol 2017; 17:44. [PMID: 29258497 PMCID: PMC5738207 DOI: 10.1186/s12898-017-0154-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 12/07/2017] [Indexed: 11/10/2022] Open
Abstract
Background Carnivores are re-establishing in many human-populated areas, where their presence is often contentious. Reaching consensus on management decisions is often hampered by a dispute over the size of the local carnivore population. Understanding the reproductive dynamics and individual movements of the carnivores can provide support for management decisions, but individual-level information can be difficult to obtain from elusive, wide-ranging species. Non-invasive genetic sampling can yield such information, but makes subsequent reconstruction of population history challenging due to incomplete population coverage and error-prone data. Here, we combine a collaborative, volunteer-based sampling scheme with Bayesian pedigree reconstruction to describe the pack dynamics of an establishing grey wolf (Canis lupus) population in south-west Finland, where wolf breeding was recorded in 2006 for the first time in over a century. Results Using DNA extracted mainly from faeces collected since 2008, we identified 81 individual wolves and assigned credible full parentages to 70 of these and partial parentages to a further 9, revealing 7 breeding pairs. Individuals used a range of strategies to obtain breeding opportunities, including dispersal to established or new packs, long-distance migration and inheriting breeding roles. Gene flow occurred between all packs but inbreeding events were rare. Conclusions These findings demonstrate that characterizing ongoing pack dynamics can provide detailed, locally-relevant insight into the ecology of contentious species such as the wolf. Involving various stakeholders in data collection makes these results more likely to be accepted as unbiased and hence reliable grounds for management decisions. Electronic supplementary material The online version of this article (10.1186/s12898-017-0154-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hanna Granroth-Wilding
- Department of Biology, University of Turku, Turku, Finland. .,Ecology & Evolution Division, Department of Biosciences, University of Helsinki, Helsinki, Finland.
| | - Craig Primmer
- Department of Biology, University of Turku, Turku, Finland.,Department of Biosciences & Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Meri Lindqvist
- Department of Biology, University of Turku, Turku, Finland.,Department of Biosciences & Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Jenni Poutanen
- Department of Biology, University of Turku, Turku, Finland
| | - Olaf Thalmann
- Department of Biology, University of Turku, Turku, Finland.,Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Jouni Aspi
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | - Jenni Harmoinen
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | - Ilpo Kojola
- Natural Resources Institute (Luke), Rovaniemi, Finland
| | - Toni Laaksonen
- Department of Biology, University of Turku, Turku, Finland
| |
Collapse
|
25
|
Assessing SNP genotyping of noninvasively collected wildlife samples using microfluidic arrays. Sci Rep 2017; 7:10768. [PMID: 28883428 PMCID: PMC5589735 DOI: 10.1038/s41598-017-10647-w] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 08/11/2017] [Indexed: 11/09/2022] Open
Abstract
Noninvasively collected samples are a common source of DNA in wildlife genetic studies. Currently, single nucleotide polymorphism (SNP) genotyping using microfluidic arrays is emerging as an easy-to-use and cost-effective methodology. Here we assessed the performance of microfluidic SNP arrays in genotyping noninvasive samples from grey wolves, European wildcats and brown bears, and we compared results with traditional microsatellite genotyping. We successfully SNP-genotyped 87%, 80% and 97% of the wolf, cat and bear samples, respectively. Genotype recovery was higher based on SNPs, while both marker types identified the same individuals and provided almost identical estimates of pairwise differentiation. We found that samples for which all SNP loci were scored had no disagreements across the three replicates (except one locus in a wolf sample). Thus, we argue that call rate (amplification success) can be used as a proxy for genotype quality, allowing the reduction of replication effort when call rate is high. Furthermore, we used cycle threshold values of real-time PCR to guide the choice of protocols for SNP amplification. Finally, we provide general guidelines for successful SNP genotyping of degraded DNA using microfluidic technology.
Collapse
|
26
|
Galaverni M, Caniglia R, Pagani L, Fabbri E, Boattini A, Randi E. Disentangling Timing of Admixture, Patterns of Introgression, and Phenotypic Indicators in a Hybridizing Wolf Population. Mol Biol Evol 2017; 34:2324-2339. [PMID: 28549194 PMCID: PMC5850710 DOI: 10.1093/molbev/msx169] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Hybridization is a natural or anthropogenic process that can deeply affect the genetic make-up of populations, possibly decreasing individual fitness but sometimes favoring local adaptations. The population of Italian wolves (Canis lupus), after protracted demographic declines and isolation, is currently expanding in anthropic areas, with documented cases of hybridization with stray domestic dogs. However, identifying admixture patterns in deeply introgressed populations is far from trivial. In this study, we used a panel of 170,000 SNPs analyzed with multivariate, Bayesian and local ancestry reconstruction methods to identify hybrids, estimate their ancestry proportions and timing since admixture. Moreover, we carried out preliminary genotype-phenotype association analyses to identify the genetic bases of three phenotypic traits (black coat, white claws, and spur on the hind legs) putative indicators of hybridization. Results showed no sharp subdivisions between nonadmixed wolves and hybrids, indicating that recurrent hybridization and deep introgression might have started mostly at the beginning of the population reexpansion. In hybrids, we identified a number of genomic regions with excess of ancestry in one of the parental populations, and regions with excess or resistance to introgression compared with neutral expectations. The three morphological traits showed significant genotype-phenotype associations, with a single genomic region for black coats and white claws, and with multiple genomic regions for the spur. In all cases the associated haplotypes were likely derived from dogs. In conclusion, we show that the use of multiple genome-wide ancestry reconstructions allows clarifying the admixture dynamics even in highly introgressed populations, and supports their conservation management.
Collapse
Affiliation(s)
- Marco Galaverni
- Area per la Genetica della Conservazione, ISPRA, Ozzano dell'Emilia Bologna, Italy
- Area Conservazione, WWF Italia, Rome, Italy
| | - Romolo Caniglia
- Area per la Genetica della Conservazione, ISPRA, Ozzano dell'Emilia Bologna, Italy
| | - Luca Pagani
- Dipartimento di Biologia, Universita degli Studi di Padova, Padua, Italy
- Estonian Biocentre, Tartu, Estonia
| | - Elena Fabbri
- Area per la Genetica della Conservazione, ISPRA, Ozzano dell'Emilia Bologna, Italy
| | - Alessio Boattini
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Ettore Randi
- Area per la Genetica della Conservazione, ISPRA, Ozzano dell'Emilia Bologna, Italy
- Department 18/Section of Environmental Engineering, Aalborg Universitet, Aalborg, Denmark
| |
Collapse
|
27
|
Kleinman-Ruiz D, Martínez-Cruz B, Soriano L, Lucena-Perez M, Cruz F, Villanueva B, Fernández J, Godoy JA. Novel efficient genome-wide SNP panels for the conservation of the highly endangered Iberian lynx. BMC Genomics 2017; 18:556. [PMID: 28732460 PMCID: PMC5522595 DOI: 10.1186/s12864-017-3946-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 07/13/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The Iberian lynx (Lynx pardinus) has been acknowledged as the most endangered felid species in the world. An intense contraction and fragmentation during the twentieth century left less than 100 individuals split in two isolated and genetically eroded populations by 2002. Genetic monitoring and management so far have been based on 36 STRs, but their limited variability and the more complex situation of current populations demand more efficient molecular markers. The recent characterization of the Iberian lynx genome identified more than 1.6 million SNPs, of which 1536 were selected and genotyped in an extended Iberian lynx sample. METHODS We validated 1492 SNPs and analysed their heterozygosity, Hardy-Weinberg equilibrium, and linkage disequilibrium. We then selected a panel of 343 minimally linked autosomal SNPs from which we extracted subsets optimized for four different typical tasks in conservation applications: individual identification, parentage assignment, relatedness estimation, and admixture classification, and compared their power to currently used STR panels. RESULTS We ascribed 21 SNPs to chromosome X based on their segregation patterns, and identified one additional marker that showed significant differentiation between sexes. For all applications considered, panels of autosomal SNPs showed higher power than the currently used STR set with only a very modest increase in the number of markers. CONCLUSIONS These novel panels of highly informative genome-wide SNPs provide more powerful, efficient, and flexible tools for the genetic management and non-invasive monitoring of Iberian lynx populations. This example highlights an important outcome of whole-genome studies in genetically threatened species.
Collapse
Affiliation(s)
- Daniel Kleinman-Ruiz
- Departamento de Ecología Integrativa, Estación Biológica de Doñana (EBD-CSIC), Calle Americo Vespucio 26, 41092, Sevilla, Spain
| | - Begoña Martínez-Cruz
- Departamento de Ecología Integrativa, Estación Biológica de Doñana (EBD-CSIC), Calle Americo Vespucio 26, 41092, Sevilla, Spain
| | - Laura Soriano
- Departamento de Ecología Integrativa, Estación Biológica de Doñana (EBD-CSIC), Calle Americo Vespucio 26, 41092, Sevilla, Spain
| | - Maria Lucena-Perez
- Departamento de Ecología Integrativa, Estación Biológica de Doñana (EBD-CSIC), Calle Americo Vespucio 26, 41092, Sevilla, Spain
| | - Fernando Cruz
- Departamento de Ecología Integrativa, Estación Biológica de Doñana (EBD-CSIC), Calle Americo Vespucio 26, 41092, Sevilla, Spain.,CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028, Barcelona, Spain
| | - Beatriz Villanueva
- Departamento de Mejora Genética Animal, INIA, Carretera de la Coruña Km. 7, 28040, Madrid, Spain
| | - Jesús Fernández
- Departamento de Mejora Genética Animal, INIA, Carretera de la Coruña Km. 7, 28040, Madrid, Spain
| | - José A Godoy
- Departamento de Ecología Integrativa, Estación Biológica de Doñana (EBD-CSIC), Calle Americo Vespucio 26, 41092, Sevilla, Spain.
| |
Collapse
|
28
|
Melero Y, Oliver MK, Lambin X. Relationship type affects the reliability of dispersal distance estimated using pedigree inferences in partially sampled populations: A case study involving invasive American mink in Scotland. Mol Ecol 2017; 26:4059-4071. [DOI: 10.1111/mec.14154] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 03/24/2017] [Accepted: 04/18/2017] [Indexed: 11/27/2022]
Affiliation(s)
- Y. Melero
- School of Biological Sciences; University of Aberdeen; Aberdeen UK
- CREAF; Cerdanyola del Vallés; Bellaterra, Barcelona Spain
| | - M. K. Oliver
- School of Biological Sciences; University of Aberdeen; Aberdeen UK
| | - X. Lambin
- School of Biological Sciences; University of Aberdeen; Aberdeen UK
| |
Collapse
|
29
|
Allen AM, Dorey A, Malmsten J, Edenius L, Ericsson G, Singh NJ. Habitat-performance relationships of a large mammal on a predator-free island dominated by humans. Ecol Evol 2016; 7:305-319. [PMID: 28070294 PMCID: PMC5216668 DOI: 10.1002/ece3.2594] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 10/10/2016] [Accepted: 10/25/2016] [Indexed: 11/08/2022] Open
Abstract
The demographic consequences of changes in habitat use driven by human modification of landscape, and/or changes in climate, are important for any species. We investigated habitat-performance relationships in a declining island population of a large mammal, the moose (Alces alces), in an environment that is predator-free but dominated by humans. We used a combination of demographic data, knowledge of habitat selection, and multiannual movement data of female moose (n = 17) to understand how space use patterns affect fecundity and calf survival. The calving rate was 0.64 and was similar to calving rates reported in other populations. Calf survival was 0.22 (annually) and 0.32 (postsummer), which are particularly low compared to other populations where postsummer survival is typically above 0.7. Home ranges were mainly composed of arable land (>40%), and selection for arable land was higher in winter than in summer, which contrasts with previous studies. Females that spent more time in broadleaf forest in the summer prior to the rut had higher fecundity rates, while more time spent in arable land resulted in lower fecundity rates. Females that spent more time in thicket/scrubland habitats during winter had lower calf survival, while females that had higher use of mixed forests tended to have higher calf survival. The dominance, and subsequent use, of suboptimal foraging habitats may lead to poor body condition of females at parturition, which may lower calf body weights and affect the mother's ability to lactate. In addition, our results indicated that the growing season has advanced significantly in recent decades, which may be causing a mismatch between parturition and optimal resource availability. These effects may exacerbate the female's ability to meet the energetic demands of lactation. Therefore, the observed low calf survival appears to be caused by a combination of factors related to current land use and may also be due to changing vegetation phenology. These results have important implications for the management of species in human-dominated landscapes in the face of climate change, and for an increased understanding of how species may adapt to future land use and climate change.
Collapse
Affiliation(s)
- Andrew M Allen
- Department of Wildlife, Fish and Environmental Studies Faculty of Forest Sciences Swedish University of Agricultural Sciences Umeå Sweden
| | - Augusta Dorey
- Department of Wildlife, Fish and Environmental Studies Faculty of Forest Sciences Swedish University of Agricultural Sciences Umeå Sweden; Division of Biology Imperial College London Ascot Berkshire UK
| | - Jonas Malmsten
- Department of Pathology and Wildlife Diseases National Veterinary Institute (SVA) Uppsala Sweden
| | - Lars Edenius
- Department of Wildlife, Fish and Environmental Studies Faculty of Forest Sciences Swedish University of Agricultural Sciences Umeå Sweden
| | - Göran Ericsson
- Department of Wildlife, Fish and Environmental Studies Faculty of Forest Sciences Swedish University of Agricultural Sciences Umeå Sweden
| | - Navinder J Singh
- Department of Wildlife, Fish and Environmental Studies Faculty of Forest Sciences Swedish University of Agricultural Sciences Umeå Sweden
| |
Collapse
|
30
|
Städele V, Vigilant L. Strategies for determining kinship in wild populations using genetic data. Ecol Evol 2016; 6:6107-20. [PMID: 27648229 PMCID: PMC5016635 DOI: 10.1002/ece3.2346] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 07/01/2016] [Accepted: 07/04/2016] [Indexed: 01/17/2023] Open
Abstract
Knowledge of kin relationships between members of wild animal populations has broad application in ecology and evolution research by allowing the investigation of dispersal dynamics, mating systems, inbreeding avoidance, kin recognition, and kin selection as well as aiding the management of endangered populations. However, the assessment of kinship among members of wild animal populations is difficult in the absence of detailed multigenerational pedigrees. Here, we first review the distinction between genetic relatedness and kinship derived from pedigrees and how this makes the identification of kin using genetic data inherently challenging. We then describe useful approaches to kinship classification, such as parentage analysis and sibship reconstruction, and explain how the combined use of marker systems with biparental and uniparental inheritance, demographic information, likelihood analyses, relatedness coefficients, and estimation of misclassification rates can yield reliable classifications of kinship in groups with complex kin structures. We outline alternative approaches for cases in which explicit knowledge of dyadic kinship is not necessary, but indirect inferences about kinship on a group- or population-wide scale suffice, such as whether more highly related dyads are in closer spatial proximity. Although analysis of highly variable microsatellite loci is still the dominant approach for studies on wild populations, we describe how the long-awaited use of large-scale single-nucleotide polymorphism and sequencing data derived from noninvasive low-quality samples may eventually lead to highly accurate assessments of varying degrees of kinship in wild populations.
Collapse
Affiliation(s)
- Veronika Städele
- Department of PrimatologyMax Planck Institute for Evolutionary AnthropologyDeutscher Platz 6D‐04103LeipzigGermany
| | - Linda Vigilant
- Department of PrimatologyMax Planck Institute for Evolutionary AnthropologyDeutscher Platz 6D‐04103LeipzigGermany
| |
Collapse
|
31
|
Spitzer R, Norman AJ, Schneider M, Spong G. Estimating population size using single-nucleotide polymorphism-based pedigree data. Ecol Evol 2016; 6:3174-84. [PMID: 27096081 PMCID: PMC4829048 DOI: 10.1002/ece3.2076] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 02/21/2016] [Accepted: 02/22/2016] [Indexed: 01/01/2023] Open
Abstract
Reliable population estimates are an important aspect of sustainable wildlife management and conservation but can be difficult to obtain for rare and elusive species. Here, we test a new census method based on pedigree reconstruction recently developed by Creel and Rosenblatt (2013). Using a panel of 96 single-nucleotide polymorphisms (SNPs), we genotyped fecal samples from two Swedish brown bear populations for pedigree reconstruction. Based on 433 genotypes from central Sweden (CS) and 265 from northern Sweden (NS), the population estimates (N = 630 for CS, N = 408 for NS) fell within the 95% CI of the official estimates. The precision and accuracy improved with increasing sampling intensity. Like genetic capture-mark-recapture methods, this method can be applied to data from a single sampling session. Pedigree reconstruction combined with noninvasive genetic sampling may thus augment population estimates, particularly for rare and elusive species for which sampling may be challenging.
Collapse
Affiliation(s)
- Robert Spitzer
- Wildlife Ecology GroupDepartment of Wildlife, Fish and Environmental StudiesSwedish University of Agricultural SciencesSE‐901 83UmeåSweden
| | - Anita J. Norman
- Molecular Ecology GroupDepartment of Wildlife, Fish and Environmental StudiesSwedish University of Agricultural SciencesSE‐901 83UmeåSweden
| | | | - Göran Spong
- Molecular Ecology GroupDepartment of Wildlife, Fish and Environmental StudiesSwedish University of Agricultural SciencesSE‐901 83UmeåSweden
- Forestry and Environmental ResourcesCollege of Natural ResourcesNorth Carolina State UniversityRaleigh27695North Carolina
| |
Collapse
|
32
|
Taylor HR, Gemmell NJ. Emerging Technologies to Conserve Biodiversity: Further Opportunities via Genomics. Response to Pimm et al. Trends Ecol Evol 2016; 31:171-172. [DOI: 10.1016/j.tree.2016.01.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 01/07/2016] [Indexed: 10/22/2022]
|
33
|
Evidence of adoption, monozygotic twinning, and low inbreeding rates in a large genetic pedigree of polar bears. Polar Biol 2015. [DOI: 10.1007/s00300-015-1871-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|