1
|
Cocciardi JM, Ohmer MEB. Drivers of Intraspecific Variation in Thermal Traits and Their Importance for Resilience to Global Change in Amphibians. Integr Comp Biol 2024; 64:882-899. [PMID: 39138058 DOI: 10.1093/icb/icae132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/09/2024] [Accepted: 07/18/2024] [Indexed: 08/15/2024] Open
Abstract
Intraspecific variation can be as great as variation across species, but the role of intraspecific variation in driving local and large-scale patterns is often overlooked, particularly in the field of thermal biology. In amphibians, which depend on environmental conditions and behavior to regulate body temperature, recognizing intraspecific thermal trait variation is essential to comprehensively understanding how global change impacts populations. Here, we examine the drivers of micro- and macrogeographical intraspecific thermal trait variation in amphibians. At the local scale, intraspecific variation can arise via changes in ontogeny, body size, and between the sexes, and developmental plasticity, acclimation, and maternal effects may modulate predictions of amphibian performance under future climate scenarios. At the macrogeographic scale, local adaptation in thermal traits may occur along latitudinal and elevational gradients, with seasonality and range-edge dynamics likely playing important roles in patterns that may impact future persistence. We also discuss the importance of considering disease as a factor affecting intraspecific variation in thermal traits and population resilience to climate change, given the impact of pathogens on thermal preferences and critical thermal limits of hosts. Finally, we make recommendations for future work in this area. Ultimately, our goal is to demonstrate why it is important for researchers to consider intraspecific variation to determine the resilience of amphibians to global change.
Collapse
Affiliation(s)
| | - Michel E B Ohmer
- Department of Biology, University of Mississippi, Oxford, MS 38655, USA
| |
Collapse
|
2
|
Middleby KB, Cheesman AW, Hopkinson R, Baker L, Ramirez Garavito S, Breed MF, Cernusak LA. Ecotypic Variation in Leaf Thermoregulation and Heat Tolerance but Not Thermal Safety Margins in Tropical Trees. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39318061 DOI: 10.1111/pce.15141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/31/2024] [Accepted: 08/22/2024] [Indexed: 09/26/2024]
Abstract
To avoid reaching lethal temperatures during periods of heat stress, plants may acclimate either their biochemical thermal tolerance or leaf morphological and physiological characteristics to reduce leaf temperature (Tleaf). While plants from warmer environments may have a greater capacity to regulate Tleaf, the extent of intraspecific variation and contribution of provenance is relatively unexplored. We tested whether upland and lowland provenances of four tropical tree species grown in a common garden differed in their thermal safety margins by measuring leaf thermal traits, midday leaf-to-air temperature differences (∆Tleaf) and critical leaf temperatures defined by chlorophyll fluorescence (Tcrit). Provenance variation was species- and trait-specific. Higher ∆Tleaf and Tcrit were observed in the lowland provenance for Terminalia microcarpa, and in the upland provenance for Castanospermum australe, with no provenance effects in the other two species. Within-species covariation of Tcrit and ∆Tleaf led to a convergence of thermal safety margins across provenances. While future studies should expand the number of provenances and species investigated, our findings suggest that lowland and upland provenances may not differ substantially in their vulnerability to heat stress, as determined by thermal safety margins, despite differences in operating temperatures and Tcrit.
Collapse
Affiliation(s)
- Kali B Middleby
- College of Science and Engineering, James Cook University, Cairns, Queensland, Australia
| | - Alexander W Cheesman
- College of Science and Engineering, James Cook University, Cairns, Queensland, Australia
| | | | - Leesa Baker
- College of Science and Engineering, James Cook University, Cairns, Queensland, Australia
| | | | - Martin F Breed
- College of Science and Engineering, Flinders University, Bedford Park, South Australia, Australia
| | - Lucas A Cernusak
- College of Science and Engineering, James Cook University, Cairns, Queensland, Australia
| |
Collapse
|
3
|
Daly E, Defourneaux M, Legrand C, Renault D. The consequences of heatwaves for the reproductive success and physiology of the wingless sub-Antarctic fly Anatalanta aptera. J Therm Biol 2024; 123:103910. [PMID: 38981304 DOI: 10.1016/j.jtherbio.2024.103910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 06/17/2024] [Accepted: 06/25/2024] [Indexed: 07/11/2024]
Abstract
Sub-lethal effects of warming temperatures are an important, yet sometimes overlooked impact of climate change that may threaten the long-term survival of numerous species. This, like many other effects of climate change, is especially concerning for cold-adapted ectotherms living in rapidly warming polar regions. This study examines the effects of warmer temperatures on cold-adapted Diptera, using the long-lived sub-Antarctic sphaerocerid fly, Anatalanta aptera, as a focal species. We conducted two experiments to assess heat stress in adult flies, one varying the intensity of the heat stress (daily heating from 4 °C to 8 °C, 20 °C, or 24 °C) and one varying the frequency of heat stress exposure (heating from 4 °C to 12 °C every one, two, or three days) and examined consequences for reproductive success and metabolic responses. We found that more heat stress reduced reproductive output, but not timing of reproduction. Surprisingly, individuals sampled at different times during heat stress exposure were undifferentiable when all metabolite concentrations were analysed with redundancy analysis, however some individual metabolites did exhibit significant differences. Overall, our findings suggest that warmer temperatures in the sub-Antarctic may put this species at greater risk, especially when combined with other concurrent threats from biological invasions.
Collapse
Affiliation(s)
- Ella Daly
- UMR CNRS 6553 ECOBIO [(Ecosystèmes, Biodiversité, évolution)], Université Rennes, Avenue du Général Leclerc, 35042, Rennes Cedex, France
| | - Mathilde Defourneaux
- UMR CNRS 6553 ECOBIO [(Ecosystèmes, Biodiversité, évolution)], Université Rennes, Avenue du Général Leclerc, 35042, Rennes Cedex, France
| | - Camille Legrand
- UMR CNRS 6553 ECOBIO [(Ecosystèmes, Biodiversité, évolution)], Université Rennes, Avenue du Général Leclerc, 35042, Rennes Cedex, France
| | - David Renault
- UMR CNRS 6553 ECOBIO [(Ecosystèmes, Biodiversité, évolution)], Université Rennes, Avenue du Général Leclerc, 35042, Rennes Cedex, France.
| |
Collapse
|
4
|
Rivera-Rincón N, Altindag UH, Amin R, Graze RM, Appel AG, Stevison LS. "A comparison of thermal stress response between Drosophila melanogaster and Drosophila pseudoobscura reveals differences between species and sexes". JOURNAL OF INSECT PHYSIOLOGY 2024; 153:104616. [PMID: 38278288 PMCID: PMC11048572 DOI: 10.1016/j.jinsphys.2024.104616] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/28/2024]
Abstract
The environment is changing faster than anticipated due to climate change, making species more vulnerable to its impacts. The level of vulnerability of species is influenced by factors such as the degree and duration of exposure, as well as the physiological sensitivity of organisms to changes in their environments, which has been shown to vary among species, populations, and individuals. Here, we compared physiological changes in fecundity, critical thermalmaximum (CTmax), respiratory quotient (RQ), and DNA damage in ovaries in response to temperature stress in two species of fruit fly, Drosophila melanogaster (25 vs. 29.5 °C) and Drosophila pseudoobscura (20.5 vs. 25 °C). The fecundity of D. melanogaster was more affected by high temperatures when exposed during egg through adult development, while D. pseudoobscura was most significantly affected when exposed to high temperatures exclusively during egg through pupal development. Additionally, D. melanogaster males exhibited a decrease of CTmax under high temperatures, while females showed an increase of CTmax when exposed to high temperatures during egg through adult development. while D. pseudoobscura females and males showed an increased CTmax only when reared at high temperatures during egg through pupae development. Moreover, both species showed an acceleration in oogenesis and an increase in apoptosis due to heat stress. These changes can likely be attributed to key differences in the geographic range, thermal range, development time, and other different factors between these two systems. Through this comparison of variation in physiology and developmental response to thermal stress, we found important differences between species and sexes that suggest future work needs to account for these factors separately in understanding the effects of constant increased temperatures.
Collapse
Affiliation(s)
- N Rivera-Rincón
- Department of Biological Sciences, Auburn University, Auburn, AL USA
| | - U H Altindag
- Department of Biological Sciences, Auburn University, Auburn, AL USA
| | - R Amin
- Department of Biological Sciences, Auburn University, Auburn, AL USA
| | - R M Graze
- Department of Biological Sciences, Auburn University, Auburn, AL USA
| | - A G Appel
- Department of Biological Sciences, Auburn University, Auburn, AL USA
| | - L S Stevison
- Department of Biological Sciences, Auburn University, Auburn, AL USA.
| |
Collapse
|
5
|
Jones FAM, Bogdanoff C, Wolkovich EM. The role of genotypic and climatic variation at the range edge: A case study in winegrapes. AMERICAN JOURNAL OF BOTANY 2024; 111:e16270. [PMID: 38156528 DOI: 10.1002/ajb2.16270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 12/30/2023]
Abstract
PREMISE Changes in habitat suitability due to climate change are causing range shifts, with new habitat potentially available at cold range edges. We must predict these range shifts, but forecasters have limited knowledge of how genetic differences in plant physiological tolerances influence range shifts. Here, we focus on a major determinant of species ranges-physiological tolerance to extreme cold-to ask how warming over recent decades and genetic variation shape expansion across complex landscapes. METHODS We examined how genotypes vary in maximum cold tolerance from 9 years of cold hardiness data across 18 genotypes from 13 sites, using winegrapes (Vitis vinifera subsp. vinifera) as a case study. Combining a Bayesian hierarchical dose-response model with gridded climate data, we then project changes in climatic suitability near winegrapes' current cold range-edge between 1949 and 2016. RESULTS Plants increased maximum cold hardiness non-linearly with decreasing air temperature (maximum cold hardiness: -23.6°C), but with substantial (by 2°C) variation across genotypes. Our results suggest, since the 1980s, decreasing freeze injury risk has made conditions more favorable for all genotypes at the cold range-edge, but conditions remained more favorable for more cold hardy genotypes and in warmer areas. There was substantial spatial variation in habitat suitability, with the majority of suitably warm habitat located in a narrow north-south oriented strip. CONCLUSIONS We highlight the importance of genotypic differences in physiological tolerances when assessing range shift potential with climate change. Habitat improvements were unevenly distributed over the spatially complex landscape, though, emphasizing the importance of dispersal in range expansion.
Collapse
Affiliation(s)
- Faith A M Jones
- Department of Forest and Conservation, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, British Colombia, V6T 1Z4, Canada
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden
| | - Carl Bogdanoff
- Agriculture and Agri-Food, Summerland, British Columbia, V0H 1Z0, Canada
| | - E M Wolkovich
- Department of Forest and Conservation, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, British Colombia, V6T 1Z4, Canada
| |
Collapse
|
6
|
Leão CF, Lima Ribeiro MS, Moraes K, Gonçalves GSR, Lima MGM. Climate change and carnivores: shifts in the distribution and effectiveness of protected areas in the Amazon. PeerJ 2023; 11:e15887. [PMID: 37744233 PMCID: PMC10516102 DOI: 10.7717/peerj.15887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 07/20/2023] [Indexed: 09/26/2023] Open
Abstract
Background Carnivore mammals are animals vulnerable to human interference, such as climate change and deforestation. Their distribution and persistence are affected by such impacts, mainly in tropical regions such as the Amazon. Due to the importance of carnivores in the maintenance and functioning of the ecosystem, they are extremely important animals for conservation. We evaluated the impact of climate change on the geographic distribution of carnivores in the Amazon using Species Distribution Models (SDMs). Do we seek to answer the following questions: (1) What is the effect of climate change on the distribution of carnivores in the Amazon? (2) Will carnivore species lose or gain representation within the Protected Areas (PAs) of the Amazon in the future? Methods We evaluated the distribution area of 16 species of carnivores mammals in the Amazon, based on two future climate scenarios (RCP 4.5 and RCP 8.5) for the year 2070. For the construction of the SDMs we used bioclimatic and vegetation cover variables (land type). Based on these models, we calculated the area loss and climate suitability of the species, as well as the effectiveness of the protected areas inserted in the Amazon. We estimated the effectiveness of PAs on the individual persistence of carnivores in the future, for this, we used the SDMs to perform the gap analysis. Finally, we analyze the effectiveness of PAs in protecting taxonomic richness in future scenarios. Results The SDMs showed satisfactory predictive performance, with Jaccard values above 0.85 and AUC above 0.91 for all species. In the present and for the future climate scenarios, we observe a reduction of potencial distribution in both future scenarios (RCP4.5 and RCP8.5), where five species will be negatively affected by climate change in the RCP 4.5 future scenario and eight in the RCP 8.5 scenario. The remaining species stay stable in terms of total area. All species in the study showed a loss of climatic suitability. Some species lost almost all climatic suitability in the RCP 8.5 scenario. According to the GAP analysis, all species are protected within the PAs both in the current scenario and in both future climate scenarios. From the null models, we found that in all climate scenarios, the PAs are not efficient in protecting species richness.
Collapse
Affiliation(s)
- Camila Ferreira Leão
- Programa Pós-graduação em Ecologia, Universidade Federal do Pará, Belém, Pará, Brazil
- Laboratório de Biogeografia da Conservação e Macroecologia, Universidade Federal do Pará, Belém, Pará, Brazil
| | | | - Kauê Moraes
- Laboratório de Biogeografia da Conservação e Macroecologia, Universidade Federal do Pará, Belém, Pará, Brazil
- Programa de Pós-graduação em Zoologia, Universidade Federal do Pará, Belém, Pará, Brazil
| | | | | |
Collapse
|
7
|
Grunst ML, Grunst AS, Grémillet D, Fort J. Combined threats of climate change and contaminant exposure through the lens of bioenergetics. GLOBAL CHANGE BIOLOGY 2023; 29:5139-5168. [PMID: 37381110 DOI: 10.1111/gcb.16822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/17/2023] [Indexed: 06/30/2023]
Abstract
Organisms face energetic challenges of climate change in combination with suites of natural and anthropogenic stressors. In particular, chemical contaminant exposure has neurotoxic, endocrine-disrupting, and behavioral effects which may additively or interactively combine with challenges associated with climate change. We used a literature review across animal taxa and contaminant classes, but focused on Arctic endotherms and contaminants important in Arctic ecosystems, to demonstrate potential for interactive effects across five bioenergetic domains: (1) energy supply, (2) energy demand, (3) energy storage, (4) energy allocation tradeoffs, and (5) energy management strategies; and involving four climate change-sensitive environmental stressors: changes in resource availability, temperature, predation risk, and parasitism. Identified examples included relatively equal numbers of synergistic and antagonistic interactions. Synergies are often suggested to be particularly problematic, since they magnify biological effects. However, we emphasize that antagonistic effects on bioenergetic traits can be equally problematic, since they can reflect dampening of beneficial responses and result in negative synergistic effects on fitness. Our review also highlights that empirical demonstrations remain limited, especially in endotherms. Elucidating the nature of climate change-by-contaminant interactive effects on bioenergetic traits will build toward determining overall outcomes for energy balance and fitness. Progressing to determine critical species, life stages, and target areas in which transformative effects arise will aid in forecasting broad-scale bioenergetic outcomes under global change scenarios.
Collapse
Affiliation(s)
- Melissa L Grunst
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, La Rochelle, France
| | - Andrea S Grunst
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, La Rochelle, France
| | - David Grémillet
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
- Percy FitzPatrick Institute of African Ornithology, University of Cape Town, Rondebosch, South Africa
| | - Jérôme Fort
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, La Rochelle, France
| |
Collapse
|
8
|
Dahal N, Romine MG, Khatiwara S, Ramakrishnan U, Lamichhaney S. Gene flow drives genomic diversity in Asian Pikas distributed along the core and range-edge habitats in the Himalayas. Ecol Evol 2023; 13:e10129. [PMID: 37250448 PMCID: PMC10208896 DOI: 10.1002/ece3.10129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/31/2023] Open
Abstract
Studying the genetic variation among different species distributed across their core and range-edge habitats can provide valuable insights into how genetic variation changes across the species' distribution range. This information can be important for understanding local adaptation, as well as for conservation and management efforts. In this study, we have carried out genomic characterization of six species of Asian Pikas distributed along their core and range-edge habitats in the Himalayas. We utilized a population genomics approach using ~28,000 genome-wide SNP markers obtained from restriction-site associated DNA sequencing. We identified low nucleotide diversity and high inbreeding coefficients in all six species across their core and range-edge habitats. We also identified evidence of gene flow among genetically diverse species. Our results provide evidence of reduced genetic diversity in Asian pikas distributed across the Himalayas and the neighboring regions and indicate that recurrent gene flow is possibly a key mechanism for maintaining genetic diversity and adaptive potential in these pikas. However, full-scale genomics studies that utilize whole-genome sequencing approaches will be needed to quantify the direction and timing of gene flow and functional changes associated with introgressed regions in the genome. Our results represent an important step toward understanding the patterns and consequences of gene flow in species, sampled at the least studied, yet climatically vulnerable part of their habitat that can be further used to inform conservation strategies that promote connectivity and gene flow between populations.
Collapse
Affiliation(s)
- Nishma Dahal
- Biotechnology DivisionCSIR‐Institute of Himalayan Bioresource TechnologyPalampurHimachal PradeshIndia
- National Centre for Biological Sciences, TIFRBangaloreIndia
| | - Melia G. Romine
- School of Biomedical SciencesKent State UniversityKentOhioUSA
| | - Sunita Khatiwara
- Forest and Environment Department, Government of SikkimGangtokIndia
| | | | - Sangeet Lamichhaney
- School of Biomedical SciencesKent State UniversityKentOhioUSA
- Department of Biological SciencesKent State UniversityKentUSA
| |
Collapse
|
9
|
Cisternas-Fuentes A, Koski MH. Drivers of strong isolation and small effective population size at a leading range edge of a widespread plant. Heredity (Edinb) 2023:10.1038/s41437-023-00610-z. [PMID: 37016137 DOI: 10.1038/s41437-023-00610-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 04/06/2023] Open
Abstract
Climate change has influenced species distributions worldwide with upward elevational shifts observed in many systems. Leading range edge populations, like those at upper elevation limits, are crucial for climate change responses but can exhibit low genetic diversity due to founder effects, isolation, or limited outbreeding. These factors can hamper local adaptation at range limits. Using the widespread herb, Argentina anserina, we measured ecological attributes (population density on the landscape, area of population occupancy, and plant and flower density) spanning a 1000 m elevation gradient, with high elevation populations at the range limit. We measured vegetative clonal potential in the greenhouse for populations spanning the gradient. We combined these data with a ddRAD-seq dataset to test the hypotheses that high elevation populations would exhibit ecological and genomic signatures of leading range edge populations. We found that population density on the landscape declined towards the high elevation limit, as is expected towards range edges. However, plant density was elevated within edge populations. In the greenhouse, high elevation plants exhibited stronger clonal potential than low elevation plants, likely explaining increased plant density in the field. Phylogeographic analysis supported more recent colonization of high elevation populations which were also more genetically isolated, had more extreme heterozygote excess and had smaller effective population size than low. Results support that colonization of high elevations was likely accompanied by increased asexuality, contributing to a decline in effective population size. Despite high plant density in leading edge populations, their small effective size, isolation and clonality could constrain adaptive potential.
Collapse
Affiliation(s)
- Anita Cisternas-Fuentes
- Department of Biological Sciences, Clemson University, 132 Long Hall, Clemson, SC, 29634, USA.
| | - Matthew H Koski
- Department of Biological Sciences, Clemson University, 132 Long Hall, Clemson, SC, 29634, USA.
| |
Collapse
|
10
|
Karami P, Tavakoli S, Esmaeili M. Fine-scale habitat suitability and connectivity analysis for the core populations of Yellow-spotted mountain pond-breeding newt (Neurergus derjugini) in the west of Iran and east of Iraq. Glob Ecol Conserv 2023. [DOI: 10.1016/j.gecco.2023.e02429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
|
11
|
Pelletier E, de Lafontaine G. Jack pine of all trades: Deciphering intraspecific variability of a key adaptive trait at the rear edge of a widespread fire-embracing North American conifer. AMERICAN JOURNAL OF BOTANY 2023; 110:e16111. [PMID: 36462149 DOI: 10.1002/ajb2.16111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
PREMISE Understanding mechanisms fostering long-term persistence of marginal populations should provide key insights about species resilience facing climate change. Cone serotiny is a key adaptive trait in Pinus banksiana (jack pine), which shows phenotypic variation according to the fire regime. Compared to range-core populations within the fire-prone boreal forest, low and variable serotiny in rear-edge populations suggest local adaptation to uncommon and unpredictable wildfire regime. We assessed environmental/physiological factors that might modulate intraspecific variation in cone serotiny. METHODS We experimentally subjected closed cones to incrementing temperatures, then tested seed germination to determine whether and how various ecological factors (cone age, branch height, tree size, tree age) are related to cone dehiscence and seed viability in jack pines from rear-edge and range-core populations in eastern Canada. RESULTS Cones from rear-edge populations dehisce at a lower opening temperature, which increases with cone age. Cones from range-core stands open at a more constant, yet higher temperature. Cones from rear-edge stands take between 13 and 27 years to reach the level of serotiny achieved at the range core. At the rear edge, seed viability is steady (51%), whereas it decreases from 70% to 30% in 20 years at the range core. CONCLUSIONS We inferred the mechanisms of a bet-hedging strategy in rear-edge populations, which ensures steady recruitment during fire-free intervals and successful postfire regeneration. This capacity to cope with infrequent and unpredictable fire regime should increase the resilience of jack pine populations as global changes alter fire dynamics of the boreal forest.
Collapse
Affiliation(s)
- Emmanuelle Pelletier
- Canada Research Chair in Integrative Biology of the Northern Flora, Département de biologie, chimie et géographie, Centre for Northern Studies, Centre for Forest Research, Université du Québec à Rimouski, Rimouski, Québec, Canada
| | - Guillaume de Lafontaine
- Canada Research Chair in Integrative Biology of the Northern Flora, Département de biologie, chimie et géographie, Centre for Northern Studies, Centre for Forest Research, Université du Québec à Rimouski, Rimouski, Québec, Canada
| |
Collapse
|
12
|
Exploring Old Data with New Tricks: Long-Term Monitoring Indicates Spatial and Temporal Changes in Populations of Sympatric Prairie Grouse in the Nebraska Sandhills. DIVERSITY 2023. [DOI: 10.3390/d15010114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The contiguous grasslands of the Sandhills region in Nebraska, USA, provide habitat for two sympatric, grassland-obligate species of grouse, the greater prairie-chicken (Tympanuchus cupido pinnatus) and the plains sharp-tailed grouse (Tympanuchus phasianellus jamesi). Collectively referred to as prairie grouse, these birds are monitored and managed jointly by wildlife practitioners who face the novel challenge of conserving historically allopatric species in shared range. We reconstructed region-wide and route-specific prairie grouse population trends in the Sandhills, using a 63-year timeseries of breeding ground counts aggregated from old reports and paper archives. Our objective was to repurpose historical data collected for harvest management to address questions pertinent to the conservation of prairie grouse, species whose populations have declined precipitously throughout their respective ranges. Because we cannot change the sampling protocol of historical data to answer new questions, we applied 3 different methods of data analysis—traditional regional mean counts used to adjust harvest regulations, spatially implicit, site-specific counts, and spatially explicit trends. Prairie-chicken populations have increased since the 1950s, whereas sharp-tailed grouse populations have remained stable or slightly declined. However, each species exhibited unique shifts in abundance and distribution over time, and regional indices masked important aspects of population change. Our findings indicate that legacy data have the capacity to tell new stories apart from the questions they were collected to answer. By integrating concepts from landscape ecology—a discipline that emerged decades after the collection of our count data began—we demonstrate the potential of historical data to address questions of modern-day conservation concern, using prairie grouse as a case study.
Collapse
|
13
|
Sanchez DE, Walker FM, Sobek CJ, Lausen C, Chambers CL. Once upon a time in Mexico: Holocene biogeography of the spotted bat (Euderma maculatum). PLoS One 2023; 18:e0274342. [PMID: 37163547 PMCID: PMC10171611 DOI: 10.1371/journal.pone.0274342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 04/26/2023] [Indexed: 05/12/2023] Open
Abstract
Holocene-era range expansions are relevant to understanding how a species might respond to the warming and drying climates of today. The harsh conditions of North American deserts have phylogenetically structured desert bat communities but differences in flight capabilities are expected to affect their ability to compete, locate, and use habitat in the face of modern climate change. A highly vagile but data-deficient bat species, the spotted bat (Euderma maculatum), is thought to have expanded its range from central Mexico to western Canada during the Holocene. With specimens spanning this latitudinal extent, we examined historical demography, and used ecological niche modeling (ENM) and phylogeography (mitochondrial DNA), to investigate historic biogeography from the rear to leading edges of the species' range. The ENM supported the notion that Mexico was largely the Pleistocene-era range, whereas haplotype pattern and Skyline plots indicated that populations expanded from the southwestern US throughout the Holocene. This era provided substantial gains in suitable climate space and likely facilitated access to roosting habitat throughout the US Intermountain West. Incongruent phylogenies among different methods prevented a precise understanding of colonization history. However, isolation at the southern-most margin of the range suggests a population was left behind in Mexico as climate space contracted and are currently of unknown status. The species appears historically suited to follow shifts in climate space but differences in flight behaviors between leading edge and core-range haplogroups suggest range expansions could be influenced by differences in habitat quality or climate (e.g., drought). Although its vagility could facilitate response to environmental change and thereby avoid extinction, anthropogenic pressures at the core range could still threaten the ability for beneficial alleles to expand into the leading edge.
Collapse
Affiliation(s)
- Daniel Enrique Sanchez
- Bat Ecology & Genetics Lab, School of Forestry, Northern Arizona University, Flagstaff, AZ, United States of America
- The Pathogen & Microbiome Institute, Northern Arizona University, Flagstaff, AZ, United States of America
| | - Faith M Walker
- Bat Ecology & Genetics Lab, School of Forestry, Northern Arizona University, Flagstaff, AZ, United States of America
- The Pathogen & Microbiome Institute, Northern Arizona University, Flagstaff, AZ, United States of America
| | - Colin J Sobek
- Bat Ecology & Genetics Lab, School of Forestry, Northern Arizona University, Flagstaff, AZ, United States of America
- The Pathogen & Microbiome Institute, Northern Arizona University, Flagstaff, AZ, United States of America
| | - Cori Lausen
- Wildlife Conservation Society Canada, Kaslo, British Columbia, Canada
| | - Carol L Chambers
- Bat Ecology & Genetics Lab, School of Forestry, Northern Arizona University, Flagstaff, AZ, United States of America
| |
Collapse
|
14
|
Water-energy relationships shape the phylogenetic diversity of terricolous lichen communities in Mediterranean mountains: Implications for conservation in a climate change scenario. FUNGAL ECOL 2022. [DOI: 10.1016/j.funeco.2022.101189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
15
|
Gula J, Barlow CR. Decline of the marabou stork (
Leptoptilos crumenifer
) in West Africa and the need for immediate conservation action. Afr J Ecol 2022. [DOI: 10.1111/aje.13087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jonah Gula
- University of KwaZulu‐Natal Pietermaritzburg South Africa
| | | |
Collapse
|
16
|
Bertin RI, Spind CG. Are Rare Northern Plant Species Retreating from the Southern Edge of Their Ranges in Southern New England? Northeast Nat (Steuben) 2022. [DOI: 10.1656/045.029.0401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Robert I. Bertin
- Biology Department, College of the Holy Cross, Worcester, MA 01610
| | - Caitlin G. Spind
- Biology Department, College of the Holy Cross, Worcester, MA 01610
| |
Collapse
|
17
|
Rodríguez-Riaño T, Valtueña FJ, López J, Pérez-Bote JL, Ortega-Olivencia A. Demographic study of a peripheral population of the rare amphicarpic species Scrophularia arguta. Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2022.e02265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
18
|
Sękiewicz K, Danelia I, Farzaliyev V, Gholizadeh H, Iszkuło G, Naqinezhad A, Ramezani E, Thomas PA, Tomaszewski D, Walas Ł, Dering M. Past climatic refugia and landscape resistance explain spatial genetic structure in Oriental beech in the South Caucasus. Ecol Evol 2022; 12:e9320. [PMID: 36188519 PMCID: PMC9490144 DOI: 10.1002/ece3.9320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/29/2022] Open
Abstract
Predicting species-level effects of climatic changes requires unraveling the factors affecting the spatial genetic composition. However, disentangling the relative contribution of historical and contemporary drivers is challenging. By applying landscape genetics and species distribution modeling, we investigated processes that shaped the neutral genetic structure of Oriental beech (Fagus orientalis), aiming to assess the potential risks involved due to possible future distribution changes in the species. Using nuclear microsatellites, we analyze 32 natural populations from the Georgia and Azerbaijan (South Caucasus). We found that the species colonization history is the most important driver of the genetic pattern. The detected west-east gradient of genetic differentiation corresponds strictly to the Colchis and Hyrcanian glacial refugia. A significant signal of associations to environmental variables suggests that the distinct genetic composition of the Azerbaijan and Hyrcanian stands might also be structured by the local climate. Oriental beech retains an overall high diversity; however, in the context of projected habitat loss, its genetic resources might be greatly impoverished. The most affected are the Azerbaijan and Hyrcanian populations, for which the detected genetic impoverishment may enhance their vulnerability to environmental change. Given the adaptive potential of range-edge populations, the loss of these populations may ultimately affect the specie's adaptation, and thus the stability and resilience of forest ecosystems in the Caucasus ecoregion. Our study is the first approximation of the potential risks involved, inducing far-reaching conclusions about the need of maintaining the genetic resources of Oriental beech for a species' capacity to cope with environmental change.
Collapse
Affiliation(s)
| | - Irina Danelia
- Faculty of Agricultural Science and Biosystems EngineeringGeorgian Technical UniversityTbilisiGeorgia
- National Botanical Garden of GeorgiaTbilisiGeorgia
| | - Vahid Farzaliyev
- Forest Development ServiceMinistry of Ecology and Natural Resources of AzerbaijanBakuAzerbaijan
| | - Hamid Gholizadeh
- Department of Plant Biology, Faculty of Basic SciencesUniversity of MazandaranBabolsarIran
| | - Grzegorz Iszkuło
- Institute of DendrologyPolish Academy of SciencesKórnikPoland
- Faculty of Biological SciencesUniversity of Zielona GóraZielona GóraPoland
| | - Alireza Naqinezhad
- Department of Plant Biology, Faculty of Basic SciencesUniversity of MazandaranBabolsarIran
| | - Elias Ramezani
- Department of Forestry, Faculty of Natural ResourcesUrmia UniversityUrmiaIran
| | | | | | - Łukasz Walas
- Institute of DendrologyPolish Academy of SciencesKórnikPoland
| | - Monika Dering
- Institute of DendrologyPolish Academy of SciencesKórnikPoland
- Faculty of Forestry and Wood TechnologyPoznań University of Life SciencesPoznańPoland
| |
Collapse
|
19
|
Schaum CE, Buckling A, Smirnoff N, Yvon-Durocher G. Evolution of thermal tolerance and phenotypic plasticity under rapid and slow temperature fluctuations. Proc Biol Sci 2022; 289:20220834. [PMID: 35919998 PMCID: PMC9346350 DOI: 10.1098/rspb.2022.0834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Global warming is associated with an increase in sea surface temperature and its variability. The consequences of evolving in variable, fluctuating environments are explored by a large body of theory: when populations evolve in fluctuating environments the frequency of fluctuations determines the shapes of tolerance curves (indicative of habitats that organisms can inhabit) and trait reaction norms (the phenotypes that organisms display across these environments). Despite this well-established theoretical backbone, predicting how trait and tolerance curves will evolve in organisms at the foundation of marine ecosystems remains a challenge. Here, we used a globally distributed phytoplankton, Thalassiosira pseudonana, and show that fluctuations in temperature on scales of 3–4 generations rapidly selected for populations with enhanced trait plasticity and elevated thermal tolerance. Fluctuations spanning 30–40 generations selected for the formation of two stable, genetically and physiologically distinct populations, one evolving high trait plasticity and enhanced thermal tolerance, and the other, akin to samples evolved under constant warming, with lower trait plasticity and a smaller increase in thermal tolerance.
Collapse
Affiliation(s)
- C-E Schaum
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9EZ, UK.,Centre for Earth Systems and Sustainability (CEN)/ Institute for Marine Ecosystems and Fishery Science (IMF), Hamburg University, 22767 Hamburg, Germany
| | - A Buckling
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9EZ, UK
| | - N Smirnoff
- Biosciences, College of Life and Environmental Sciences, Geoffrey Pope Building University of Exeter, Exeter EX4 4QD, UK
| | - G Yvon-Durocher
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9EZ, UK
| |
Collapse
|
20
|
Klipel J, Bergamin RS, Esquivel‐Muelbert A, de Lima RAF, de Oliveira AA, Prado PI, Müller SC. Climatic distribution of tree species in the Atlantic Forest. Biotropica 2022. [DOI: 10.1111/btp.13140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Joice Klipel
- Laboratório de Ecologia Vegetal, Programa de Pós‐Graduação em Ecologia, Instituto de Biociências Universidade Federal do Rio Grande do Sul Porto Alegre Brazil
| | - Rodrigo Scarton Bergamin
- Laboratório de Ecologia Vegetal, Programa de Pós‐Graduação em Ecologia, Instituto de Biociências Universidade Federal do Rio Grande do Sul Porto Alegre Brazil
- Laboratório de Estudos em Vegetação Campestre, Programa de Pós‐Graduação em Botânica Universidade Federal do Rio Grande do Sul Porto Alegre Brazil
| | - Adriane Esquivel‐Muelbert
- School of Geography, Earth and Environmental Sciences University of Birmingham Birmingham UK
- Birmingham Institute of Forest Research University of Birmingham Birmingham UK
| | - Renato A. F. de Lima
- Tropical Botany, Naturalis Biodiversity Center Leiden The Netherlands
- Departamento de Ecologia, Instituto de Biociências Universidade de São Paulo São Paulo Brazil
| | | | - Paulo Inácio Prado
- Departamento de Ecologia, Instituto de Biociências Universidade de São Paulo São Paulo Brazil
| | - Sandra Cristina Müller
- Laboratório de Ecologia Vegetal, Programa de Pós‐Graduação em Ecologia, Instituto de Biociências Universidade Federal do Rio Grande do Sul Porto Alegre Brazil
| |
Collapse
|
21
|
Visscher DR, Wood JR. Decadal trends in a population of urban white-tailed jackrabbits at the northern edge of its range. MAMMAL RES 2022. [DOI: 10.1007/s13364-022-00641-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Götz J, Rajora OP, Gailing O. Genetic Structure of Natural Northern Range-Margin Mainland, Peninsular, and Island Populations of Northern Red Oak (Quercus rubra L.). Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.907414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Plant populations at the leading edge of the species’ native range often exhibit genetic structure as a result of genetic drift and adaptation to harsh environmental conditions. Hence, they are likely to harbour rare genetic adaptations to local environmental conditions and therefore are of particular interest to understand climate adaptation. We examined genetic structure of nine northern marginal mainland, peninsular and isolated island natural populations of northern red oak (Quercus rubraL.), a valuable long-lived North American hardwood tree species, covering a wide climatic range, using 17 nuclear microsatellites. We found pronounced genetic differentiation of a disjunct isolated island population from all mainland and peninsular populations. Furthermore, we observed remarkably strong fine-scale spatial genetic structure (SGS) in all investigated populations. Such high SGS values are uncommon and were previously solely observed in extreme range-edge marginal oak populations in one other study. We found a significant correlation between major climate parameters and SGS formation in northern range-edge red oak populations, with more pronounced SGS in colder and drier regions. Most likely, the harsh environment in leading edge populations influences the density of reproducing trees within the populations and therefore leads to restricted overlapping of seed shadows when compared to more central populations. Accordingly, SGS was negatively correlated with effective population size and increased with latitude of the population locations. The significant positive association between genetic distances and precipitation differences between populations may be indicative of isolation by adaptation in the observed range-edge populations. However, this association was not confirmed by a multiple regression analysis including geographic distances and precipitation distances, simultaneously. Our study provides new insights in the genetic structure of long-lived tree species at their leading distribution edge.
Collapse
|
23
|
Gargano D, Bernardo L, Rovito S, Passalacqua NG, Abeli T. Do marginal plant populations enhance the fitness of larger core units under ongoing climate change? Empirical insights from a rare carnation. AOB PLANTS 2022; 14:plac022. [PMID: 35673362 PMCID: PMC9167561 DOI: 10.1093/aobpla/plac022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Assisted gene flow (AGF) can restore fitness in small plant populations. Due to climate change, current fitness patterns could vary in the future ecological scenario, as highly performant lineages can undergo maladaptation under the new climatic contexts. Peripheral populations have been argued to represent a potential source of species adaptation against climate change, but experimental evidence is poor. This paper considers the consequences of within- and between-population mating between a large core population and the southernmost population, the rare Dianthus guliae, to evaluate optimal AGF design under current and future conditions. We performed experimental self-pollinations and within- and between-population cross-pollinations to generate seed material and test its adaptive value to aridity. Seed germination, seedling growth and survival were measured under current and expected aridity. Effects of population type, pollination treatment and stress treatment on fitness components were analysed by generalized linear models. Relative measures of inbreeding depression and heterosis were taken under different stress treatments. Self-pollination reduced fitness for all the considered traits compared to within- and between-population cross-pollination. Under current aridity regime, the core population expressed higher fitness, and a larger magnitude of inbreeding depression. This indicated the core unit is close to its fitness optimum and could allow for restoring the fitness of the small peripheral population. Contrarily, under increased aridity, the fitness of outbred core lineages decreased, suggesting the rise of maladaptation. In this scenario, AGF from the small peripheral population enhanced the fitness of the core unit, whereas AGF from the core population promoted a fitness loss in the peripheral population. Hence, the small peripheral population could improve fitness of large core units versus climate change, while the contrary could be not true. Integrating reciprocal breeding programmes and fitness analyses under current and predicted ecological conditions can support optimal AGF design in a long-term perspective.
Collapse
Affiliation(s)
| | - Liliana Bernardo
- Dipartimento di Biologia, Ecologia e Scienze della Terra dell’Università della Calabria, Via P. Bucci, I-87036 Arcavacata di Rende, Italy
- Museo di Storia Naturale della Calabria ed Orto Botanico dell’Università della Calabria, loc. Polifunzionale, I-87036 Arcavacata di Rende, Italy
| | - Simone Rovito
- Dipartimento di Biologia, Ecologia e Scienze della Terra dell’Università della Calabria, Via P. Bucci, I-87036 Arcavacata di Rende, Italy
| | - Nicodemo G Passalacqua
- Dipartimento di Biologia, Ecologia e Scienze della Terra dell’Università della Calabria, Via P. Bucci, I-87036 Arcavacata di Rende, Italy
- Museo di Storia Naturale della Calabria ed Orto Botanico dell’Università della Calabria, loc. Polifunzionale, I-87036 Arcavacata di Rende, Italy
| | - Thomas Abeli
- Department of Science, University of Roma Tre, Viale Guglielmo Marconi 446, 00146 Roma, Italy
| |
Collapse
|
24
|
Nagasawa K, Fukumoto S, Setoguchi H, Ishihara M, Hiratsuka KI, Masuda K, Sakaguchi S. Genetic purity of a rear-edge population of Carex podogyna Franch. et Sav. (Cyperaceae) maintained under interspecific hybridization. Gene 2022; 97:93-99. [PMID: 35545526 DOI: 10.1266/ggs.21-00087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Interspecific hybridization is a critical issue in conservation biology because it may drive small populations to extinction through direct or indirect processes. In this study, to develop a conservation strategy for an endangered rear-edge population of Carex podogyna in Ashiu, Kyoto, Japan, we performed a molecular genetic analysis of the wild population and an ex-situ population established from wild seeds. Microsatellite genotypic data revealed a complete loss of genetic diversity in the wild population, suggesting that it has long been prone to genetic drift due to isolation as a small population. In contrast, microsatellite analysis of 13 ex-situ individuals detected multiple alleles that are not harbored in the wild C. podogyna population. Sequence analysis revealed that these individuals are likely natural hybrids between C. podogyna and a co-occurring species, C. curvicollis, although established hybrids have never been found in the natural habitat. Based on our observation of variegated leaves in hybrid individuals, we propose that hybrids have been excluded by natural selection and/or interspecific competition caused by insufficient productivity of photosynthesis, although other genetic and ecological factors may also be influential. Overall, this study indicates that natural mechanisms selectively removing the hybrids have maintained the genetic purity of this rear-edge population of C. podogyna, and also emphasizes the importance of genetic assessment in ex-situ conservation programs.
Collapse
Affiliation(s)
- Koki Nagasawa
- Graduate School of Human and Environmental Studies, Kyoto University
| | | | - Hiroaki Setoguchi
- Graduate School of Human and Environmental Studies, Kyoto University
| | - Masae Ishihara
- Ashiu Forest Research Station, Field Science Education and Research Center, Kyoto University
| | | | - Kazutoshi Masuda
- Graduate School of Human and Environmental Studies, Kyoto University
| | - Shota Sakaguchi
- Graduate School of Human and Environmental Studies, Kyoto University
| |
Collapse
|
25
|
Adult cold tolerance and potential North American distribution of Myllocerus undecimpustulatus undatus (Coleoptera: Curculionidae). Biol Invasions 2021. [DOI: 10.1007/s10530-021-02601-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractCold tolerance and potential distribution of Myllocerus undecimpustulatus undatus Marshall, a polyphagous pest in the United States, were investigated. Adult survivorship after 2 days at 0 °C and − 5 °C averaged 60% and 18%, respectively. Four days of exposure resulted in survivorship of 11% at 0 °C and 4% at − 5 °C, respectively. Summer-collected weevils at − 5 °C through repeated cold exposure of 2 h survived 3 times longer than those subjected to sustained cold period of 10 h. Leaf consumption did not differ among summer-collected weevils at constant 20 °C and repeated cold exposure treatments; weevils under sustained cold exposure consumed less than weevils in repeated cold exposure treatments. Leaf area consumed after cold exposure was 2–4 times greater in winter-collected weevils compared to summer-collected weevils. Leaf consumption by winter-collected weevils decreased as the number of repeated cold exposure periods increased. Locality data from collections in Florida during 2000–2012 were used to produce a correlative model complemented by a mechanistic model from the cold tolerance data to project the potential distribution of M. undecimpustulatus undatus in North America. The models support the hypothesis that M. undecimpustulatus undatus could spread to areas of the southeastern and western United States. The predicted northern distribution followed an isothermal line about 33° North. The niche model defined an area along the western Gulf Coast as unsuitable for the weevil, possibly because the area receives greater annual rainfall than other areas of the southeastern United States and has aquic or udic soil unlike the well-drained sandy soil of peninsular Florida.
Collapse
|
26
|
McLaughlin B, Fogg A, Ennis KK, Halstrom G, Herrera A, Quadri P. Climate change‐adaptive participatory field gene banking for a California endemic oak. Restor Ecol 2021. [DOI: 10.1111/rec.13573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | - Alissa Fogg
- Point Blue Conservation Science 3820 Cypress Drive #11 Petaluma CA 94954 U.S.A
| | - Katherine K. Ennis
- Department of Integrative Biology University of California, Berkeley Berkeley CA 94720 U.S.A
| | - Grant Halstrom
- Point Blue Conservation Science 3820 Cypress Drive #11 Petaluma CA 94954 U.S.A
| | - Alicia Herrera
- Point Blue Conservation Science 3820 Cypress Drive #11 Petaluma CA 94954 U.S.A
| | - Paulo Quadri
- Sky Island Alliance 3127 N Cherry Avenue Tucson AZ 85719 U.S.A
| |
Collapse
|
27
|
Van Natto AC, Eckert CG. Genetic and conservation significance of populations at the polar vs. equatorial range limits of the Pacific coastal dune endemic Abronia umbellata (Nyctaginaceae). CONSERV GENET 2021. [DOI: 10.1007/s10592-021-01409-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Yu X, Yu K, Liao Z, Chen B, Deng C, Yu J, Yao Q, Qin Z, Liang J. Seasonal fluctuations in symbiotic bacteria and their role in environmental adaptation of the scleractinian coral Acropora pruinosa in high-latitude coral reef area of the South China Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 792:148438. [PMID: 34153755 DOI: 10.1016/j.scitotenv.2021.148438] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/09/2021] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
Coral-associated bacterial communities are paramount for coral ecosystems and holobiont health. However, the role of symbiotic bacteria in the adaptation of high-latitude corals to seasonal fluctuations remains underexplored. Therefore, we used 16S rRNA-based high-throughput sequencing to analyze the symbiotic bacterial diversity, composition, and core bacterial community in high-latitude coral and explored the seasonal fluctuation characteristics of symbiotic bacterial communities. We found that bacterial richness and α-diversity changed significantly across different seasons. Additionally, the community structure recombined seasonally, with different dominant bacterial phyla and genera in different seasons. However, the symbiotic bacterial community structures of Acropora pruinosa in winter and spring were similar. Proteobacteria were the dominant bacteria in spring, autumn, and winter. In summer, the dominant bacterial taxa were Bacteroidota and Proteobacteria. Ralstonia was the dominant bacterial genus in spring and winter, whereas in autumn, BD1-7_clade was dominant. Linear discriminant analysis effect size identified 20 abundant genera between the different groups. Core microbiome analysis revealed that 12 core bacterial operational taxonomic units were associated with A. pruinosa in all seasons, seven of which varied with the seasons, changing between dominant and rare. Distance-based redundancy and variation partitioning analyses revealed that sea surface temperature was the major contributor of variation in the microbial community structure. We hypothesized that the high diversity and abundance of symbiotic bacteria and the increase in Prosthecochloris abundance in coral in summer can help A. pruinosa maintain its physiological functions, ameliorating the negative physiological effects of the decrease in Symbiodiniaceae density under high-temperature stress. Thus, the rapid reorganization of the symbiotic bacterial community structure and core microflora in different seasons may allow the corals to adapt to large seasonal environmental fluctuations. In conclusion, seasonal variation of bacteria plays an important role in coral adaptation to large environmental fluctuations.
Collapse
Affiliation(s)
- Xiaopeng Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China.
| | - Zhiheng Liao
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Biao Chen
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Chuanqi Deng
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Jiaoyang Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Qiucui Yao
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Zhenjun Qin
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Jiayuan Liang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| |
Collapse
|
29
|
Billman PD, Beever EA, McWethy DB, Thurman LL, Wilson KC. Factors influencing distributional shifts and abundance at the range core of a climate-sensitive mammal. GLOBAL CHANGE BIOLOGY 2021; 27:4498-4515. [PMID: 34236759 DOI: 10.1111/gcb.15793] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 05/10/2021] [Accepted: 06/04/2021] [Indexed: 06/13/2023]
Abstract
Species are frequently responding to contemporary climate change by shifting to higher elevations and poleward to track suitable climate space. However, depending on local conditions and species' sensitivity, the nature of these shifts can be highly variable and difficult to predict. Here, we examine how the American pika (Ochotona princeps), a philopatric, montane lagomorph, responds to climatic gradients at three spatial scales. Using mixed-effects modeling in an information-theoretic approach, we evaluated a priori model suites regarding predictors of site occupancy, relative abundance, and elevational-range retraction across 760 talus patches, nested within 64 watersheds across the Northern Rocky Mountains of North America, during 2017-2020. The top environmental predictors differed across these response metrics. Warmer temperatures in summer and winter were associated with lower occupancy, lower relative abundances, and greater elevational retraction across watersheds. Occupancy was also strongly influenced by habitat patch size, but only when combined with climate metrics such as actual evapotranspiration. Using a second analytical approach, acute heat stress and summer precipitation best explained retraction residuals (i.e., the relative extent of retraction given the original elevational range of occupancy). Despite the study domain occurring near the species' geographic-range center, where populations might have higher abundances and be at lower risk of climate-related stress, 33.9% of patches showed evidence of recent extirpations. Pika-extirpated sites averaged 1.44℃ warmer in summer than did occupied sites. Additionally, the minimum elevation of pika occupancy has retracted upslope in 69% of watersheds (mean: 281 m). Our results emphasize the nuance associated with evaluating species' range dynamics in response to climate gradients, variability, and temperature exceedances, especially in regions where species occupy gradients of conditions that may constitute multiple range edges. Furthermore, this study highlights the importance of evaluating diverse drivers across response metrics to improve the predictive accuracy of widely used, correlative models.
Collapse
Affiliation(s)
- Peter D Billman
- Department of Earth Sciences, Montana State University, Bozeman, MT, USA
| | - Erik A Beever
- U.S. Geological Survey, Northern Rocky Mountain Science Center, Bozeman, MT, USA
- Department of Ecology, Montana State University, Bozeman, MT, USA
| | - David B McWethy
- Department of Earth Sciences, Montana State University, Bozeman, MT, USA
| | - Lindsey L Thurman
- U.S. Geological Survey, Northern Rocky Mountain Science Center, Bozeman, MT, USA
- U.S. Geological Survey, Northwest Climate Adaptation Science Center, Corvallis, OR, USA
| | - Kenneth C Wilson
- Department of Earth Sciences, Montana State University, Bozeman, MT, USA
| |
Collapse
|
30
|
The evolutionary genomics of species' responses to climate change. Nat Ecol Evol 2021; 5:1350-1360. [PMID: 34373621 DOI: 10.1038/s41559-021-01526-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 07/05/2021] [Indexed: 02/06/2023]
Abstract
Climate change is a threat to biodiversity. One way that this threat manifests is through pronounced shifts in the geographical range of species over time. To predict these shifts, researchers have primarily used species distribution models. However, these models are based on assumptions of niche conservatism and do not consider evolutionary processes, potentially limiting their accuracy and value. To incorporate evolution into the prediction of species' responses to climate change, researchers have turned to landscape genomic data and examined information about local genetic adaptation using climate models. Although this is an important advancement, this approach currently does not include other evolutionary processes-such as gene flow, population dispersal and genomic load-that are critical for predicting the fate of species across the landscape. Here, we briefly review the current practices for the use of species distribution models and for incorporating local adaptation. We next discuss the rationale and theory for considering additional processes, reviewing how they can be incorporated into studies of species' responses to climate change. We summarize with a conceptual framework of how manifold layers of information can be combined to predict the potential response of specific populations to climate change. We illustrate all of the topics using an exemplar dataset and provide the source code as potential tutorials. This Perspective is intended to be a step towards a more comprehensive integration of population genomics with climate change science.
Collapse
|
31
|
Demographic modeling informs functional connectivity and management interventions in Graham’s beardtongue. CONSERV GENET 2021. [DOI: 10.1007/s10592-021-01392-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractFunctional connectivity (i.e., the movement of individuals across a landscape) is essential for the maintenance of genetic variation and persistence of rare species. However, illuminating the processes influencing functional connectivity and ultimately translating this knowledge into management practice remains a fundamental challenge. Here, we combine various population structure analyses with pairwise, population-specific demographic modeling to investigate historical functional connectivity in Graham’s beardtongue (Penstemon grahamii), a rare plant narrowly distributed across a dryland region of the western US. While principal component and population structure analyses indicated an isolation-by-distance pattern of differentiation across the species’ range, spatial inferences of effective migration exposed an abrupt shift in population ancestry near the range center. To understand these seemingly conflicting patterns, we tested various models of historical gene flow and found evidence for recent admixture (~ 3400 generations ago) between populations near the range center. This historical perspective reconciles population structure patterns and suggests management efforts should focus on maintaining connectivity between these previously isolated lineages to promote the ongoing transfer of genetic variation. Beyond providing species-specific knowledge to inform management options, our study highlights how understanding demographic history may be critical to guide conservation efforts when interpreting population genetic patterns and inferring functional connectivity.
Collapse
|
32
|
Reed PB, Bridgham SD, Pfeifer-Meister LE, Peterson ML, Johnson BR, Roy BA, Bailes GT, Nelson AA, Morris WF, Doak DF. Climate warming threatens the persistence of a community of disturbance-adapted native annual plants. Ecology 2021; 102:e03464. [PMID: 34236709 DOI: 10.1002/ecy.3464] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 03/29/2021] [Accepted: 05/13/2021] [Indexed: 01/15/2023]
Abstract
With ongoing climate change, populations are expected to exhibit shifts in demographic performance that will alter where a species can persist. This presents unique challenges for managing plant populations and may require ongoing interventions, including in situ management or introduction into new locations. However, few studies have examined how climate change may affect plant demographic performance for a suite of species, or how effective management actions could be in mitigating climate change effects. Over the course of two experiments spanning 6 yr and four sites across a latitudinal gradient in the Pacific Northwest, United States, we manipulated temperature, precipitation, and disturbance intensity, and quantified effects on the demography of eight native annual prairie species. Each year we planted seeds and monitored germination, survival, and reproduction. We found that disturbance strongly influenced demographic performance and that seven of the eight species had increasingly poor performance with warmer conditions. Across species and sites, we observed 11% recruitment (the proportion of seeds planted that survived to reproduction) following high disturbance, but just 3.9% and 2.3% under intermediate and low disturbance, respectively. Moreover, mean seed production following high disturbance was often more than tenfold greater than under intermediate and low disturbance. Importantly, most species exhibited precipitous declines in their population growth rates (λ) under warmer-than-ambient experimental conditions and may require more frequent disturbance intervention to sustain populations. Aristida oligantha, a C4 grass, was the only species to have λ increase with warmer conditions. These results suggest that rising temperatures may cause many native annual plant species to decline, highlighting the urgency for adaptive management practices that facilitate their restoration or introduction to newly suitable locations. Frequent and intense disturbances are critical to reduce competitors and promote native annuals' persistence, but even such efforts may prove futile under future climate regimes.
Collapse
Affiliation(s)
- Paul B Reed
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, 97403, USA
| | - Scott D Bridgham
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, 97403, USA
| | | | - Megan L Peterson
- Plant Biology Department, University of Georgia, Athens, Georgia, 30606, USA
| | - Bart R Johnson
- Department of Landscape Architecture, University of Oregon, Eugene, Oregon, 97403, USA
| | - Bitty A Roy
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, 97403, USA
| | - Graham T Bailes
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, 97403, USA
| | - Aaron A Nelson
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, 97403, USA
| | - William F Morris
- Biology Department, Duke University, Durham, North Carolina, 27708, USA
| | - Daniel F Doak
- Environmental Studies Program, University of Colorado Boulder, Boulder, Colorado, 80309, USA
| |
Collapse
|
33
|
Zettlemoyer MA, Peterson ML. Does Phenological Plasticity Help or Hinder Range Shifts Under Climate Change? Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.689192] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Climate warming is predicted to shift species’ ranges as previously uninhabitable environments just beyond the leading range edges become suitable habitat and trailing range edges become increasingly unsuitable. Understanding which aspects of the environment and species traits mediate these range shifts is critical for understanding species’ possible redistributions under global change, yet we have a limited understanding of the ecological and evolutionary responses underlying population spread or extinction at species’ range edges. Within plant populations, shifts in flowering phenology have been one of the strongest and most consistent responses to climate change, and are likely to play an important role in mediating population dynamics within and beyond species’ ranges. However, the role of phenological shifts, and particularly phenological plasticity, in species’ range shifts remains relatively unstudied. Here, we synthesize literature on phenology, plasticity, and adaptation to suggest ways in which phenological responses to climate may vary across species’ ranges and review the empirical evidence for and against these hypotheses. We then outline how phenological plasticity could facilitate or hinder persistence and potential consequences of phenological plasticity in range expansions, including phenological cues, shifts in correlated traits, altered species interactions, and effects on gene flow. Finally, we suggest future avenues for research, such as characterizing reaction norms for phenology across a species’ range and in beyond-the-range transplant experiments. Given the prevalence and magnitude of phenological shifts, future work should carefully dissect its costs and benefits for population persistence, and incorporate phenological plasticity into models predicting species’ persistence and geographic range shifts under climate change.
Collapse
|
34
|
Bontrager M, Usui T, Lee-Yaw JA, Anstett DN, Branch HA, Hargreaves AL, Muir CD, Angert AL. Adaptation across geographic ranges is consistent with strong selection in marginal climates and legacies of range expansion. Evolution 2021; 75:1316-1333. [PMID: 33885152 DOI: 10.1111/evo.14231] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 03/14/2021] [Indexed: 12/27/2022]
Abstract
Every species experiences limits to its geographic distribution. Some evolutionary models predict that populations at range edges are less well adapted to their local environments due to drift, expansion load, or swamping gene flow from the range interior. Alternatively, populations near range edges might be uniquely adapted to marginal environments. In this study, we use a database of transplant studies that quantify performance at broad geographic scales to test how local adaptation, site quality, and population quality change from spatial and climatic range centers toward edges. We find that populations from poleward edges perform relatively poorly, both on average across all sites (15% lower population quality) and when compared to other populations at home (31% relative fitness disadvantage), consistent with these populations harboring high genetic load. Populations from equatorial edges also perform poorly on average (18% lower population quality) but, in contrast, outperform foreign populations (16% relative fitness advantage), suggesting that populations from equatorial edges have strongly adapted to unique environments. Finally, we find that populations from sites that are thermally extreme relative to the species' niche demonstrate strong local adaptation, regardless of their geographic position. Our findings indicate that both nonadaptive processes and adaptive evolution contribute to variation in adaptation across species' ranges.
Collapse
Affiliation(s)
- Megan Bontrager
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, V6T 1Z4, Canada.,Current Address: Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, M5S 3B2, Canada
| | - Takuji Usui
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Julie A Lee-Yaw
- Department of Biological Sciences, University of Lethbridge, Lethbridge, T1K 3M4, Canada
| | - Daniel N Anstett
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Haley A Branch
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, V6T 1Z4, Canada
| | | | - Christopher D Muir
- School of Life Sciences, University of Hawaii, Honolulu, Hawaii, 96822, United States
| | - Amy L Angert
- Departments of Botany and Zoology and the Biodiversity Research Centre, University of British Columbia, Vancouver, V6T 1Z4, Canada
| |
Collapse
|
35
|
Spatial activity and habitat use of a marginal population of the endangered Mediterranean horseshoe bat (Rhinolophus euryale). MAMMAL RES 2021. [DOI: 10.1007/s13364-021-00568-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
36
|
Di Nuzzo L, Vallese C, Benesperi R, Giordani P, Chiarucci A, Di Cecco V, Di Martino L, Di Musciano M, Gheza G, Lelli C, Spitale D, Nascimbene J. Contrasting multitaxon responses to climate change in Mediterranean mountains. Sci Rep 2021; 11:4438. [PMID: 33627718 PMCID: PMC7904820 DOI: 10.1038/s41598-021-83866-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 02/04/2021] [Indexed: 11/13/2022] Open
Abstract
We explored the influence of climatic factors on diversity patterns of multiple taxa (lichens, bryophytes, and vascular plants) along a steep elevational gradient to predict communities' dynamics under future climate change scenarios in Mediterranean regions. We analysed (1) species richness patterns in terms of heat-adapted, intermediate, and cold-adapted species; (2) pairwise beta-diversity patterns, also accounting for its two different components, species replacement and richness difference; (3) the influence of climatic variables on species functional traits. Species richness is influenced by different factors between three taxonomic groups, while beta diversity differs mainly between plants and cryptogams. Functional traits are influenced by different factors in each taxonomic group. On the basis of our observations, poikilohydric cryptogams could be more impacted by climate change than vascular plants. However, contrasting species-climate and traits-climate relationships were also found between lichens and bryophytes suggesting that each group may be sensitive to different components of climate change. Our study supports the usefulness of a multi-taxon approach coupled with a species traits analysis to better unravel the response of terrestrial communities to climate change. This would be especially relevant for lichens and bryophytes, whose response to climate change is still poorly explored.
Collapse
Affiliation(s)
- Luca Di Nuzzo
- Dipartimento di Biologia, Università di Firenze, Via la Pira 4, 50121, Florence, Italy
| | - Chiara Vallese
- Biodiversity and Macroecology Group, Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum - University of Bologna, Via Irnerio 42, 40126, Bologna, Italy
| | - Renato Benesperi
- Dipartimento di Biologia, Università di Firenze, Via la Pira 4, 50121, Florence, Italy
| | - Paolo Giordani
- Dipartimento di Farmacia, Università di Genova, viale Cembrano, 4, 16148, Genoa, Italy.
| | - Alessandro Chiarucci
- Biodiversity and Macroecology Group, Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum - University of Bologna, Via Irnerio 42, 40126, Bologna, Italy
| | - Valter Di Cecco
- Parco Nazionale della Majella, Via Badia, 28, 67039, Sulmona, Italy
| | | | - Michele Di Musciano
- Biodiversity and Macroecology Group, Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum - University of Bologna, Via Irnerio 42, 40126, Bologna, Italy
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Piazzale Salvatore Tommasi 1, 67100, L'Aquila, Italy
| | - Gabriele Gheza
- Biodiversity and Macroecology Group, Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum - University of Bologna, Via Irnerio 42, 40126, Bologna, Italy
| | - Chiara Lelli
- Biodiversity and Macroecology Group, Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum - University of Bologna, Via Irnerio 42, 40126, Bologna, Italy
| | - Daniel Spitale
- Museo di Scienze Naturali Dell'Alto Adige, Via Bottai, 1, 39100, Bolzano, Italy
| | - Juri Nascimbene
- Biodiversity and Macroecology Group, Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum - University of Bologna, Via Irnerio 42, 40126, Bologna, Italy
| |
Collapse
|
37
|
Amburgey SM, Miller DAW, Rochester CJ, Delaney KS, Riley SPD, Brehme CS, Hathaway SA, Fisher RN. The influence of species life history and distribution characteristics on species responses to habitat fragmentation in an urban landscape. J Anim Ecol 2021; 90:685-697. [PMID: 33300621 DOI: 10.1111/1365-2656.13403] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 10/28/2020] [Indexed: 11/26/2022]
Abstract
Fragmentation within urbanized environments often leads to a loss of native species diversity; however, variation exists in responses among-species and among-populations within species. We aimed to identify patterns in species biogeography in an urbanized landscape to understand anthropogenic effects on vertebrate communities and identify species that are more sensitive or resilient to landscape change. We investigated patterns in species richness and species responses to fragmentation in southern Californian small vertebrate communities using multispecies occupancy models and determined factors associated with overall commonness and sensitivity to patch size for 45 small vertebrate species both among and within remaining non-developed patches. In general, smaller patches had fewer species, with amphibian species richness being particularly sensitive to patch size effects. Mammals were generally more common, occurring both in a greater proportion of patches and a higher proportion of the sites within occupied patches. Alternatively, amphibians were generally restricted to larger patches but were more ubiquitous within smaller patches when occupied. Species range size was positively correlated with how common a species was across and within patches, even when controlling for only patches that fell within a species' range. We found sensitivity to patch size was greater for more fecund species and depended on where the patch occurred within a species' range. While all taxa were more likely to occur in patches in the warmer portions of their ranges, amphibians and mammals were more sensitive to fragmentation in these warmer areas as compared to the rest of their ranges. Similarly, amphibians occurred at a smaller proportion of sites within patches in drier portions of their ranges. Mammals occurred at a higher proportion of sites that were also in drier portions of their range while reptiles did not differ in their sensitivity to patch size by range position. We demonstrate that taxonomy, life history, range size and range position can predict commonness and sensitivity of species across this highly fragmented yet biodiverse landscape. The impacts of fragmentation on species communities within an urban landscape depend on scale, with differences emerging among and within species and populations.
Collapse
Affiliation(s)
- Staci M Amburgey
- Intercollege Graduate Degree Program in Ecology, Pennsylvania State University, University Park, PA, USA.,Ecosystem Sciences and Management, Pennsylvania State University, University Park, PA, USA
| | - David A W Miller
- Ecosystem Sciences and Management, Pennsylvania State University, University Park, PA, USA
| | - Carlton J Rochester
- U.S. Geological Survey, Western Ecological Research Center, San Diego, CA, USA
| | - Katy S Delaney
- National Park Service - Santa Monica Mountains National Recreation Area, Thousand Oaks, CA, USA
| | - Seth P D Riley
- National Park Service - Santa Monica Mountains National Recreation Area, Thousand Oaks, CA, USA
| | - Cheryl S Brehme
- U.S. Geological Survey, Western Ecological Research Center, San Diego, CA, USA
| | - Stacie A Hathaway
- U.S. Geological Survey, Western Ecological Research Center, San Diego, CA, USA
| | - Robert N Fisher
- U.S. Geological Survey, Western Ecological Research Center, San Diego, CA, USA
| |
Collapse
|
38
|
Ecological Diversity within Rear-Edge: A Case Study from Mediterranean Quercus pyrenaica Willd. FORESTS 2020. [DOI: 10.3390/f12010010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Understanding the ecology of populations located in the rear edge of their distribution is key to assessing the response of the species to changing environmental conditions. Here, we focus on rear-edge populations of Quercus pyrenaica in Sierra Nevada (southern Iberian Peninsula) to analyze their ecological and floristic diversity. We perform multivariate analyses using high-resolution environmental information and forest inventories to determine how environmental variables differ among oak populations, and to identify population groups based on environmental and floristic composition. We find that water availability is a key variable in explaining the distribution of Q. pyrenaica and the floristic diversity of their accompanying communities within its rear edge. Three cluster of oak populations were identified based on environmental variables. We found differences among these clusters regarding plant diversity, but not for forest attributes. A remarkable match between the populations clustering derived from analysis of environmental variables and the ordination of the populations according to species composition was found. The diversity of ecological behaviors for Q. pyrenaica populations in this rear edge are consistent with the high genetic diversity shown by populations of this oak in the Sierra Nevada. The identification of differences between oak populations within the rear-edge with respect to environmental variables can aid with planning the forest management and restoration actions, particularly considering the importance of some environmental factors in key ecological aspects.
Collapse
|
39
|
Land-Use Legacies and Climate Change as a Double Challenge to Oak Forest Resilience: Mismatches of Geographical and Ecological Rear Edges. Ecosystems 2020. [DOI: 10.1007/s10021-020-00547-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
40
|
Kennedy JP, Dangremond EM, Hayes MA, Preziosi RF, Rowntree JK, Feller IC. Hurricanes overcome migration lag and shape intraspecific genetic variation beyond a poleward mangrove range limit. Mol Ecol 2020; 29:2583-2597. [PMID: 32573031 DOI: 10.1111/mec.15513] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/06/2020] [Accepted: 06/08/2020] [Indexed: 12/30/2022]
Abstract
Expansion of many tree species lags behind climate change projections. Extreme storms can rapidly overcome this lag, especially for coastal species, but how will storm-driven expansion shape intraspecific genetic variation? Do storms provide recruits only from the nearest sources, or from more distant sources? Answers to these questions have ecological and evolutionary implications, but empirical evidence is absent from the literature. In 2017, Hurricane Irma provided an opportunity to address this knowledge gap at the northern range limit of the neotropical black mangrove (Avicennia germinans) on the Atlantic coast of Florida, USA. We observed massive post-hurricane increases in beach-stranded A. germinans propagules at, and past, this species' present day range margin when compared to a previously surveyed nonhurricane year. Yet, propagule dispersal does not guarantee subsequent establishment and reproductive success (i.e., effective dispersal). We also evaluated prior effective dispersal along this coastline with isolated A. germinans trees identified beyond the most northern established population. We used 12 nuclear microsatellite loci to genotype 896 hurricane-driven drift propagules from nine sites and 10 isolated trees from four sites, determined their sources of origin, and estimated dispersal distances. Almost all drift propagules and all isolated trees came from the nearest sources. This research suggests that hurricanes are a prerequisite for poleward range expansion of a coastal tree species and that storms can shape the expanding gene pool by providing almost exclusively range-margin genotypes. These insights and empirical estimates of hurricane-driven dispersal distances should improve our ability to forecast distributional shifts of coastal species.
Collapse
Affiliation(s)
- John Paul Kennedy
- Ecology and Environment Research Centre, Department of Natural Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK
| | - Emily M Dangremond
- Department of Biological, Physical, and Health Sciences, Roosevelt University, Chicago, IL, USA
| | - Matthew A Hayes
- Australian Rivers Institute - Coast & Estuaries, School of Environment & Science, Griffith University, Gold Coast, Queensland, Australia
| | - Richard F Preziosi
- Ecology and Environment Research Centre, Department of Natural Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK
| | - Jennifer K Rowntree
- Ecology and Environment Research Centre, Department of Natural Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK
| | - Ilka C Feller
- Smithsonian Environmental Research Center, Smithsonian Institution, Edgewater, MD, USA
| |
Collapse
|
41
|
Prasad A, Pedlar J, Peters M, McKenney D, Iverson L, Matthews S, Adams B. Combining US and Canadian forest inventories to assess habitat suitability and migration potential of 25 tree species under climate change. DIVERS DISTRIB 2020. [DOI: 10.1111/ddi.13078] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Anantha Prasad
- Northern Institute of Applied Climate Science and Northern Research Station USDA Forest Service Delaware OH USA
| | - John Pedlar
- Great Lakes Forestry Centre Canadian Forest Service Sault Ste Marie ON Canada
| | - Matt Peters
- Northern Institute of Applied Climate Science and Northern Research Station USDA Forest Service Delaware OH USA
| | - Dan McKenney
- Great Lakes Forestry Centre Canadian Forest Service Sault Ste Marie ON Canada
| | - Louis Iverson
- Northern Institute of Applied Climate Science and Northern Research Station USDA Forest Service Delaware OH USA
| | - Steve Matthews
- Northern Institute of Applied Climate Science and Northern Research Station USDA Forest Service Delaware OH USA
- School of Environment and Natural Resources Columbus OH USA
| | - Bryce Adams
- School of Environment and Natural Resources Columbus OH USA
| |
Collapse
|
42
|
Population genomic diversity and structure at the discontinuous southern range of the Great Gray Owl in North America. CONSERV GENET 2020. [DOI: 10.1007/s10592-020-01280-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
43
|
Rudin-Bitterli TS, Evans JP, Mitchell NJ. Geographic variation in adult and embryonic desiccation tolerance in a terrestrial-breeding frog. Evolution 2020; 74:1186-1199. [PMID: 32255513 DOI: 10.1111/evo.13973] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 02/28/2020] [Accepted: 03/09/2020] [Indexed: 02/03/2023]
Abstract
Intraspecific variation in the ability of individuals to tolerate environmental perturbations is often neglected when considering the impacts of climate change. Yet this information is potentially crucial for mitigating deleterious effects of climate change on threatened species. Here we assessed patterns of intraspecific variation in desiccation tolerance in the frog Pseudophryne guentheri, a terrestrial-breeding species experiencing a drying climate. Adult frogs were collected from six populations across a rainfall gradient and their dehydration and rehydration rates were assessed. We also compared desiccation tolerance of embryos and hatchlings originating from within-population parental crosses from four of the populations. Embryos were reared on soil at three soil-water potentials and their desiccation tolerance was assessed across a range of traits. We found significant and strong patterns of intraspecific variation in almost all traits, both in adults and first-generation offspring. Adult frogs exhibited clinal variation in their water balance responses, with populations from drier sites both dehydrating and rehydrating more slowly compared to frogs from more mesic sites. Similarly, desiccation tolerance of first-generation offspring was significantly greater in populations from xeric sites. Our findings suggest that populations within this species will respond differently to the regional reduction in rainfall predicted by climate change models.
Collapse
Affiliation(s)
- Tabitha Silja Rudin-Bitterli
- School of Biological Sciences, The University of Western Australia, Crawley, Western Australia, 6009, Australia.,Centre for Evolutionary Biology, The University of Western Australia, Crawley, Western Australia, 6009, Australia
| | - Jonathan Paul Evans
- School of Biological Sciences, The University of Western Australia, Crawley, Western Australia, 6009, Australia.,Centre for Evolutionary Biology, The University of Western Australia, Crawley, Western Australia, 6009, Australia
| | - Nicola Jane Mitchell
- School of Biological Sciences, The University of Western Australia, Crawley, Western Australia, 6009, Australia
| |
Collapse
|
44
|
Regos A, Vidal M, Lorenzo M, Domínguez J. Integrating intraseasonal grassland dynamics in cross-scale distribution modeling to support waterbird recovery plans. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2020; 34:494-504. [PMID: 31461173 DOI: 10.1111/cobi.13415] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 08/03/2019] [Accepted: 08/16/2019] [Indexed: 06/10/2023]
Abstract
Despite much discussion about the utility of remote sensing for effective conservation, the inclusion of these technologies in species recovery plans remains largely anecdotal. We developed a modeling approach for the integration of local, spatially measured ecosystem functional dynamics into a species distribution modeling (SDM) framework in which other ecologically relevant factors are modeled separately at broad scales. To illustrate the approach, we incorporated intraseasonal water-vegetation dynamics into a cross-scale SDM for the Common Snipe (Gallinago gallinago), which is highly dependent on water and vegetation dynamics. The Common Snipe is an Iberian grassland waterbird characteristic of European agricultural meadows and a member of one of the most threatened bird guilds. The intraseasonal dynamics of water content of vegetation were measured using the standard deviation of the normalized difference water index time series computed from bimonthly images of the Sentinel-2 satellite. The recovery plan for the Common Snipe in Galicia (northwestern Iberian Peninsula) provided an opportunity to apply our modeling framework. Model accuracy in predicting the species' distribution at a regional scale (resulting from integration of downscaled climate projections with regional habitat-topographic suitability models) was very high (area under the curve [AUC] of 0.981 and Boyce's index of 0.971). Local water-vegetation dynamic models, based exclusively on Sentinel-2 imagery, were good predictors (AUC of 0.849 and Boyce's index of 0.976). The predictive power improved (AUC of 0.92 and Boyce's index of 0.98) when local model predictions were restricted to areas identified by the continental and regional models as priorities for conservation. Our models also performed well (AUC of 0.90 and Boyce's index of 0.93) when projected to updated water-vegetation conditions. Our modeling framework enabled incorporation of key ecosystem processes closely related to water and carbon cycles while accounting for other factors ecologically relevant to endangered grassland waterbirds across different scales, allowed identification of priority areas for conservation, and provided an opportunity for cost-effective recovery planning by monitoring management effectiveness from space.
Collapse
Affiliation(s)
- Adrián Regos
- Departamento de Zooloxía, Xenética e Antropoloxía Física, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
- CIBIO/InBIO, Research Center in Biodiversity and Genetic Resources, ECOCHANGE Group, Vairão, Portugal
| | - María Vidal
- Departamento de Zooloxía, Xenética e Antropoloxía Física, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Miguel Lorenzo
- Servizo de Conservación de Espazos Naturais, Dirección Xeral de Patrimonio Natural Consellería de Medio Ambiente e Ordenación do Territorio, Xunta de Galicia, San Lázaro, s/n, 15781, Santiago de Compostela, Spain
| | - Jesús Domínguez
- Departamento de Zooloxía, Xenética e Antropoloxía Física, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| |
Collapse
|
45
|
Oldfather MF, Kling MM, Sheth SN, Emery NC, Ackerly DD. Range edges in heterogeneous landscapes: Integrating geographic scale and climate complexity into range dynamics. GLOBAL CHANGE BIOLOGY 2020; 26:1055-1067. [PMID: 31674701 DOI: 10.1111/gcb.14897] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 10/01/2019] [Indexed: 05/04/2023]
Abstract
The impacts of climate change have re-energized interest in understanding the role of climate in setting species geographic range edges. Despite the strong focus on species' distributions in ecology and evolution, defining a species range edge is theoretically and empirically difficult. The challenge of determining a range edge and its relationship to climate is in part driven by the nested nature of geography and the multidimensionality of climate, which together generate complex patterns of both climate and biotic distributions across landscapes. Because range-limiting processes occur in both geographic and climate space, the relationship between these two spaces plays a critical role in setting range limits. With both conceptual and empirical support, we argue that three factors-climate heterogeneity, collinearity among climate variables, and spatial scale-interact to shape the spatial structure of range edges along climate gradients, and we discuss several ways that these factors influence the stability of species range edges with a changing climate. We demonstrate that geographic and climate edges are often not concordant across species ranges. Furthermore, high climate heterogeneity and low climate collinearity across landscapes increase the spectrum of possible relationships between geographic and climatic space, suggesting that geographic range edges and climatic niche limits correspond less frequently than we may expect. More empirical explorations of how the complexity of real landscapes shapes the ecological and evolutionary processes that determine species range edges will advance the development of range limit theory and its applications to biodiversity conservation in the context of changing climate.
Collapse
Affiliation(s)
- Meagan F Oldfather
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Matthew M Kling
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
| | - Seema N Sheth
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - Nancy C Emery
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, USA
| | - David D Ackerly
- Department of Integrative Biology, Department of Environmental Science, Policy, and Management, Jepson Herbarium, University of California Berkeley, Berkeley, CA, USA
| |
Collapse
|
46
|
Kim DI, Park IK, Bae SY, Fong JJ, Zhang YP, Li SR, Ota H, Kim JS, Park D. Prediction of present and future distribution of the Schlegel’s Japanese gecko (Gekko japonicus) using MaxEnt modeling. ACTA ACUST UNITED AC 2020. [DOI: 10.1186/s41610-020-0147-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Abstract
Background
Understanding the geographical distribution of a species is a key component of studying its ecology, evolution, and conservation. Although Schlegel’s Japanese gecko (Gekko japonicus) is widely distributed in Northeast Asia, its distribution has not been studied in detail. We predicted the present and future distribution of G. japonicus across China, Japan, and Korea based on 19 climatic and 5 environmental variables using the maximum entropy (MaxEnt) species distribution model.
Results
Present time major suitable habitats for G. japonicus, having greater than 0.55 probability of presence (threshold based on the average predicted probability of the presence records), are located at coastal and inland cities of China; western, southern, and northern coasts of Kyushu and Honshu in Japan; and southern coastal cities of Korea. Japan contained 69.3% of the suitable habitats, followed by China (27.1%) and Korea (4.2%). Temperature seasonality (66.5% of permutation importance) was the most important predictor of the distribution. Future distributions according to two climate change scenarios predicted that by 2070, and overall suitable habitats would decrease compared to the present habitats by 18.4% (scenario RCP 4.5) and 10.4% (scenario RCP 8.5). In contrast to these overall trends, range expansions are expected in inland areas of China and southern parts of Korea.
Conclusions
Suitable habitats predicted for G. japonicus are currently located in coastal cities of Japan, China, and Korea, as well as in isolated patches of inland China. Due to climate change, suitable habitats are expected to shrink along coastlines, particularly at the coastal-edge of climate change zones. Overall, our results provide essential distribution range information for future ecological studies of G. japonicus across its distribution range.
Collapse
|
47
|
Kirchman JJ, Ross AM, Johnson G. Historical decline of genetic diversity in a range-periphery population of Spruce Grouse (Falcipennis canadensis) inhabiting the Adirondack Mountains. CONSERV GENET 2020. [DOI: 10.1007/s10592-019-01246-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
48
|
Monsarrat S, Novellie P, Rushworth I, Kerley G. Shifted distribution baselines: neglecting long-term biodiversity records risks overlooking potentially suitable habitat for conservation management. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190215. [PMID: 31679487 PMCID: PMC6863494 DOI: 10.1098/rstb.2019.0215] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2019] [Indexed: 11/12/2022] Open
Abstract
Setting appropriate conservation measures to halt the loss of biodiversity requires a good understanding of species' habitat requirements and potential distribution. Recent (past few decades) ecological data are typically used to estimate and understand species' ecological niches. However, historical local extinctions may have truncated species-environment relationships, resulting in a biased perception of species' habitat preferences. This may result in incorrect assessments of the area potentially available for their conservation. Incorporating long-term (centuries-old) occurrence records with recent records may provide better information on species-environment relationships and improve the modelling and understanding of habitat suitability. We test whether neglecting long-term occurrence records leads to an underestimation of species' historical niche and potential distribution and identify which species are more vulnerable to this effect. We compare outputs of species distribution models and niche hypervolumes built using recent records only with those built using both recent and long-term (post-1500) records, for a set of 34 large mammal species in South Africa. We find that, while using recent records only is adequate for some species, adding historical records in the analyses impacts estimates of the niche and habitat suitability for 12 species (34%) in our dataset, and that this effect is significantly higher for carnivores. These results show that neglecting long-term biodiversity records in spatial analyses risks misunderstanding, and generally underestimating, species' niches, which in turn may lead to ill-informed management decisions, with significant implications for the effectiveness of conservation efforts. This article is part of a discussion meeting issue 'The past is a foreign country: how much can the fossil record actually inform conservation?'
Collapse
Affiliation(s)
- Sophie Monsarrat
- Centre for African Conservation Ecology, Nelson Mandela University, Port Elizabeth 6031, South Africa
- Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Aarhus University, Ny Munkegade 114, 8000 Aarhus C, Denmark
- Section for Ecoinformatics and Biodiversity, Department of Bioscience, Aarhus University, Ny Munkegade 114, 8000 Aarhus C, Denmark
| | - Peter Novellie
- Centre for African Conservation Ecology, Nelson Mandela University, Port Elizabeth 6031, South Africa
| | - Ian Rushworth
- Ezemvelo KZN Wildlife, Pietermaritzburg, South Africa
| | - Graham Kerley
- Centre for African Conservation Ecology, Nelson Mandela University, Port Elizabeth 6031, South Africa
| |
Collapse
|
49
|
Carbognani M, Piotti A, Leonardi S, Pasini L, Spanu I, Vendramin GG, Tomaselli M, Petraglia A. Reproductive and genetic consequences of extreme isolation in Salix herbacea L. at the rear edge of its distribution. ANNALS OF BOTANY 2019; 124:849-860. [PMID: 31361802 PMCID: PMC6868362 DOI: 10.1093/aob/mcz129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 07/19/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND AND AIMS At the rear edge of the distribution of species, extreme isolation and small population size influence the genetic diversity and differentiation of plant populations. This may be particularly true for Arctic-alpine species in mid-latitude mountains, but exactly how peripherality has shaped their genetic and reproductive characteristics is poorly investigated. The present study, focused on Salix herbacea, aims at providing new insights into the causes behind ongoing demographic dynamics and their consequences for peripheral populations of Arctic-alpine species. METHODS We performed a whole-population, highly detailed sampling of the only two S. herbacea populations in the northern Apennines, comparing their clonal and genetic diversity, sex ratio and spatial genetic structure with a reference population from the Alps. After inspecting ~1800 grid intersections in the three populations, 563 ramets were genotyped at 11 nuclear microsatellite markers (nSSRs). Past demography and mating patterns of Apennine populations were investigated to elucidate the possible causes of altered reproductive dynamics. KEY RESULTS Apennine populations, which experienced a Holocene bottleneck and are highly differentiated (FST = 0.15), had lower clonal and genetic diversity compared with the alpine population (RMLG = 1 and HE = 0.71), with the smaller population exhibiting the lowest diversity (RMLG = 0.03 and HE = 0.24). An unbalanced sex ratio was found in the larger (63 F:37 M) and the smaller (99 F:1 M) Apennine population. Both were characterized by the presence of extremely large clones (up to 2500 m2), which, however, did not play a dominant role in local reproductive dynamics. CONCLUSIONS Under conditions of extreme isolation and progressive size reduction, S. herbacea has experienced an alteration of genetic characteristics produced by the prevalence of clonal growth over sexual reproduction. However, our results showed that the larger Apennine population has maintained levels of sexual reproduction enough to counteract a dramatic loss of genetic and clonal diversity.
Collapse
Affiliation(s)
- M Carbognani
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - A Piotti
- Institute of Biosciences and BioResources (IBBR), National Research Council (CNR), Sesto Fiorentino (Firenze), Italy
| | - S Leonardi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - L Pasini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - I Spanu
- Institute of Biosciences and BioResources (IBBR), National Research Council (CNR), Sesto Fiorentino (Firenze), Italy
| | - G G Vendramin
- Institute of Biosciences and BioResources (IBBR), National Research Council (CNR), Sesto Fiorentino (Firenze), Italy
| | - M Tomaselli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - A Petraglia
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| |
Collapse
|
50
|
Schwarzer C, Joshi J. Ecotypic differentiation, hybridization and clonality facilitate the persistence of a cold-adapted sedge in European bogs. Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/blz141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Recent research has shown that many cold-adapted species survived the last glacial maximum (LGM) in northern refugia. Whether this evolutionary history has had consequences for their genetic diversity and adaptive potential remains unknown. We sampled 14 populations of Carex limosa, a sedge specialized to bog ecosystems, along a latitudinal gradient from its Scandinavian core to the southern lowland range-margin in Germany. Using microsatellite and experimental common-garden data, we evaluated the impacts of global climate change along this gradient and assessed the conservation status of the southern marginal populations. Microsatellite data revealed two highly distinct genetic groups and hybrid individuals. In our common-garden experiment, the two groups showed divergent responses to increased nitrogen/phosphorus (N/P) availability, suggesting ecotypic differentiation. Each group formed genetically uniform populations at both northern and southern sampling areas. Mixed populations occurred throughout our sampling area, an area that was entirely glaciated during the LGM. The fragmented distribution implies allopatric divergence at geographically separated refugia that putatively differed in N/P availability. Molecular data and an observed low hybrid fecundity indicate the importance of clonal reproduction for hybrid populations. At the southern range-margin, however, all populations showed effects of clonality, lowered fecundity and low competitiveness, suggesting abiotic and biotic constraints to population persistence.
Collapse
Affiliation(s)
- Christian Schwarzer
- University of Potsdam, Biodiversity Research/Systematic Botany, Maulbeerallee 1, 14469 Potsdam, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstr. 6, 14195 Berlin, Germany
| | - Jasmin Joshi
- University of Potsdam, Biodiversity Research/Systematic Botany, Maulbeerallee 1, 14469 Potsdam, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstr. 6, 14195 Berlin, Germany
- Hochschule für Technik HSR Rapperswil, Institute for Landscape and Open Space, Oberseestrasse 10, 8640 Rapperswil, Switzerland
| |
Collapse
|