1
|
Nieto-Blázquez ME, Gómez-Suárez M, Pfenninger M, Koch K. Impact of feralization on evolutionary trajectories in the genomes of feral cat island populations. PLoS One 2024; 19:e0308724. [PMID: 39137187 PMCID: PMC11321585 DOI: 10.1371/journal.pone.0308724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/29/2024] [Indexed: 08/15/2024] Open
Abstract
Feralization is the process of domesticated animals returning to the wild and it is considered the counterpart of domestication. Molecular genetic changes are well documented in domesticated organisms but understudied in feral populations. In this study, the genetic differentiation between domestic and feral cats was inferred by analysing whole-genome sequencing data of two geographically distant feral cat island populations, Dirk Hartog Island (Australia) and Kaho'olawe (Hawaii) as well as domestic cats and European wildcats. The study investigated population structure, genetic differentiation, genetic diversity, highly differentiated genes, and recombination rates. Genetic structure analyses linked both feral cat populations to North American domestic and European cat populations. Recombination rates in feral cats were lower than in domestic cats but higher than in wildcats. For Australian and Hawaiian feral cats, 105 and 94 highly differentiated genes compared to domestic cats respectively, were identified. Annotated genes had similar functions, with almost 30% of the divergent genes related to nervous system development in both feral groups. Twenty mutually highly differentiated genes were found in both feral populations. Evolution of highly differentiated genes was likely driven by specific demographic histories, the relaxation of the selective pressures associated with domestication, and adaptation to novel environments to a minor extent. Random drift was the prevailing force driving highly divergent regions, with relaxed selection in feral populations also playing a significant role in differentiation from domestic cats. The study demonstrates that feralization is an independent process that brings feral cats on a unique evolutionary trajectory.
Collapse
Affiliation(s)
- María Esther Nieto-Blázquez
- Department of Molecular Ecology, Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
| | - Manuela Gómez-Suárez
- Department of Molecular Ecology, Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
| | - Markus Pfenninger
- Department of Molecular Ecology, Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
| | - Katrin Koch
- Department of Biodiversity, Conservation and Attractions, Former, Biodiversity and Conservation Science, Woodvale, Australia
| |
Collapse
|
2
|
Otgontamir C, Fehér Á, Schally G, Lkhagvasuren D, Biró Z. Assessing Changes in the Distribution Patterns of the European Wildcat in Hungary. Animals (Basel) 2024; 14:785. [PMID: 38473170 PMCID: PMC10931392 DOI: 10.3390/ani14050785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
The European wildcat (Felis silvestris Schreber, 1777) is an endangered and elusive carnivore that is slowly recovering in Central Europe after persecution and a decline in its distribution over the past two centuries, and specific conservation plans are needed in most of its range. Knowledge of the continent-wide distribution and status of this species is still poor. Using an online questionnaire, we evaluated the nationwide distribution of wildcats across three time periods (2004, 2014, and 2022) in Hungary. The species' reported occurrence was analyzed according to binominal logistic regression using the percent cover of land cover categories as explanatory variables. We found that the spatial cover of broad-leaved forest was positively associated with the occurrence of wildcats, and the analysis revealed a positive trend in the larger 2004-2022 time frame. We also recorded that although wildcats have disappeared from areas of the central, southern, and western parts of Hungary, regions in the eastern, northern, and south-western areas appear to retain stable populations.
Collapse
Affiliation(s)
- Chimed Otgontamir
- Department of Wildlife Biology and Management, Institute for Wildlife Management and Nature Conservation, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1, H-2100 Godollo, Hungary; (C.O.); (G.S.)
- Department of Biology, School of Arts and Sciences, National University of Mongolia, WWF9+6H6, Ulaanbaatar 14200, Mongolia
| | - Ádám Fehér
- Department of Wildlife Biology and Management, Institute for Wildlife Management and Nature Conservation, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1, H-2100 Godollo, Hungary; (C.O.); (G.S.)
| | - Gergely Schally
- Department of Wildlife Biology and Management, Institute for Wildlife Management and Nature Conservation, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1, H-2100 Godollo, Hungary; (C.O.); (G.S.)
| | - Davaa Lkhagvasuren
- Department of Biology, School of Arts and Sciences, National University of Mongolia, WWF9+6H6, Ulaanbaatar 14200, Mongolia
| | - Zsolt Biró
- Department of Wildlife Biology and Management, Institute for Wildlife Management and Nature Conservation, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1, H-2100 Godollo, Hungary; (C.O.); (G.S.)
| |
Collapse
|
3
|
Velli E, Caniglia R, Mattucci F. Phylogenetic History and Phylogeographic Patterns of the European Wildcat ( Felis silvestris) Populations. Animals (Basel) 2023; 13:ani13050953. [PMID: 36899811 PMCID: PMC10000227 DOI: 10.3390/ani13050953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023] Open
Abstract
Disentangling phylogenetic and phylogeographic patterns is fundamental to reconstruct the evolutionary histories of taxa and assess their actual conservation status. Therefore, in this study, for the first time, the most exhaustive biogeographic history of European wildcat (Felis silvestris) populations was reconstructed by typing 430 European wildcats, 213 domestic cats, and 72 putative admixed individuals, collected across the entire species' distribution range, at a highly diagnostic portion of the mitochondrial ND5 gene. Phylogenetic and phylogeographic analyses identified two main ND5 lineages (D and W) roughly associated with domestic and wild polymorphisms. Lineage D included all domestic cats, 83.3% of putative admixed individuals, and also 41.4% of wildcats; these latter mostly showed haplotypes belonging to sub-clade Ia, that diverged about 37,700 years ago, long pre-dating any evidence for cat domestication. Lineage W included all the remaining wildcats and putative admixed individuals, spatially clustered into four main geographic groups, which started to diverge about 64,200 years ago, corresponding to (i) the isolated Scottish population, (ii) the Iberian population, (iii) a South-Eastern European cluster, and (iv) a Central European cluster. Our results suggest that the last Pleistocene glacial isolation and subsequent re-expansion from Mediterranean and extra-Mediterranean glacial refugia were pivotal drivers in shaping the extant European wildcat phylogenetic and phylogeographic patterns, which were further modeled by both historical natural gene flow among wild lineages and more recent wild x domestic anthropogenic hybridization, as confirmed by the finding of F. catus/lybica shared haplotypes. The reconstructed evolutionary histories and the wild ancestry contents detected in this study could be used to identify adequate Conservation Units within European wildcat populations and help to design appropriate long-term management actions.
Collapse
|
4
|
Molecular analysis of blood-associated pathogens in European wildcats (Felis silvestris silvestris) from Germany. Int J Parasitol Parasites Wildl 2022; 19:128-137. [PMID: 36119442 PMCID: PMC9477852 DOI: 10.1016/j.ijppaw.2022.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/29/2022] [Accepted: 08/29/2022] [Indexed: 12/05/2022]
Abstract
European wildcats (Felis silvestris silvestris) have not been investigated in large numbers for blood-associated pathogens in Germany, because wildcats, being a protected species, may not be hunted, and the collection of samples is therefore difficult. Thus, spleen tissue and whole blood from 96 wildcats from Germany found as roadkill or dead from other causes in the years 1998–2020 were examined for the prevalence of blood associated pathogens using molecular genetic tools. PCR was used to screen for haemotrophic Mycoplasma spp., Hepatozoon spp., Cytauxzoon spp., Bartonella spp., Filarioidea, Anaplasmataceae, and Rickettsiales, and positive samples were subsequently sequenced. Phylogenetic analyses were performed for Mycoplasma spp. and Hepatozoon spp. by calculating phylogenetic trees and DNA haplotype networks. The following pathogens were found: Candidatus Mycoplasma haematominutum (7/96), Mycoplasma ovis (1/96), Hepatozoon silvestris (34/96), Hepatozoon felis (6/96), Cytauxzoon europaeus (45/96), and Bartonella spp. (3/96). This study elucidates the prevalence of blood-associated pathogens in wildcats from Germany. European wildcats from Germany carry different blood-associated pathogens. Pathogens can also affect domestic cats. Transmision by vectors or other transmisison routes are possible.
Collapse
|
5
|
Nieto-Blázquez ME, Schreiber D, Mueller SA, Koch K, Nowak C, Pfenninger M. Human impact on the recent population history of the elusive European wildcat inferred from whole genome data. BMC Genomics 2022; 23:709. [PMID: 36258177 PMCID: PMC9578205 DOI: 10.1186/s12864-022-08930-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 10/07/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The extent and impact of evolutionary change occurring in natural populations in response to rapid anthropogenic impact is still poorly understood on the genome-wide level. Here, we explore the genetic structure, demographic history, population differentiation, and domestic introgression based on whole genome data of the endangered European wildcat in Germany, to assess potential genomic consequences of the species' recent spread across human-dominated cultural landscapes. RESULTS Reconstruction of demographic history and introgression rates based on 47 wildcat and 37 domestic cat genomes suggested late introgression between wild and domestic cat, coinciding with the introduction of domestic cat during the Roman period, but overall relatively low rates of hybridization and introgression from domestic cats. Main population divergence found between an eastern and central German wildcat clade was found to be of rather recent origin (200 y), and thus the likely consequence of anthropogenic persecution and resulting isolation in population refugia. We found similar effective population sizes and no substantial inbreeding across populations. Interestingly, highly differentiated genes between wild cat populations involved in the tryptophan-kynurenine-serotonin pathway were revealed, which plays a role in behavioral processes such as stress susceptibility and tolerance, suggesting that differential selection acted in the populations. CONCLUSIONS We found strong evidence for substantial recent anthropogenic impact on the genetic structure of European wildcats, including recent persecution-driven population divergence, as well as potential adaptation to human-dominate environments. In contrast, the relatively low levels of domestic introgression and inbreeding found in this study indicate a substantial level of "resistance" of this elusive species towards major anthropogenic impacts, such as the omnipresence of domestic cats as well as substantial habitat fragmentation. While those findings have strong implications for ongoing conservation strategies, we demand closer inspection of selective pressures acting on this and other wildlife species in anthropogenic environments.
Collapse
Affiliation(s)
- María Esther Nieto-Blázquez
- Molecular Ecology Group, Senckenberg Biodiversity and Climate Research Centre (SBiK-F), 60325, Frankfurt am Main, Germany.
| | - Dennis Schreiber
- Molecular Ecology Group, Senckenberg Biodiversity and Climate Research Centre (SBiK-F), 60325, Frankfurt am Main, Germany
| | - Sarah A Mueller
- Division of Evolutionary Biology, Faculty of Biology, Ludwig Maximilian University of Munich, Planegg-Martinsried 82152, Munich, Germany
- Centre for Wildlife Genetics, Senckenberg Research Institute and Natural History Museum Frankfurt, 63571, Gelnhausen, Germany
| | - Katrin Koch
- European Wildcat Monitoring, Bund Für Umwelt Und Naturschutz, Rheinland-Pfalz, 55118, Mainz, Germany
| | - Carsten Nowak
- Centre for Wildlife Genetics, Senckenberg Research Institute and Natural History Museum Frankfurt, 63571, Gelnhausen, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), 60325, Frankfurt am Main, Germany
| | - Markus Pfenninger
- Molecular Ecology Group, Senckenberg Biodiversity and Climate Research Centre (SBiK-F), 60325, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), 60325, Frankfurt am Main, Germany
- Institute for Molecular and Organismic Evolution, Johannes Gutenberg University, 55128, Mainz, Germany
| |
Collapse
|
6
|
Gaudiano L, Corriero G, Villani M, Anile S. Gone before it’s known? Camera-trapping shows alarming levels of putative hybrids in the wildcat ( Felis silvestris) population of the Gargano National Park (Southern Italy). MAMMALIA 2022. [DOI: 10.1515/mammalia-2021-0125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The European wildcat is a small carnivore widespread across Europe and hybridization with the domestic cat is one of the major threats to wildcats. We estimate the population density of wild-living cats (both wildcats and putative hybrids based on pelage) in the Gargano National Park (Southern Italy). We sampled 20 stations for 540 camera days. We obtained 23 images from 17 detections at 10 cameras, and we identified 10 individuals (6 wildcats and 4 putative hybrids). Population density was estimated at 0.34 ± 0.15 SE wild-living cats/km2. The proportion of putative hybrids indicates an alarming hybridization for this population.
Collapse
Affiliation(s)
- Lorenzo Gaudiano
- Dipartimento di Biologia , Universita’ di Bari , 70126 Bari , Italy
| | | | | | - Stefano Anile
- Cooperative Wildlife Research Laboratory, University of Southern Illinois , Carbondale 62901 , USA
| |
Collapse
|
7
|
Vecchioni L, Marrone F, Costa S, Muscarella C, Carra E, Arizza V, Arculeo M, Faraone FP. The European Pine Marten Martes martes (Linnaeus, 1758) Is Autochthonous in Sicily and Constitutes a Well-Characterised Major Phylogroup within the Species (Carnivora, Mustelidae). Animals (Basel) 2022; 12:2546. [PMID: 36230287 PMCID: PMC9558521 DOI: 10.3390/ani12192546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/22/2022] [Accepted: 09/22/2022] [Indexed: 11/29/2022] Open
Abstract
No molecular data are currently available for the Sicilian populations of the European pine marten Martes martes, thus preventing any sound inference about its native or non-native status on the island, as well as the local phylogeography of the species. In order to investigate these issues, we sequenced two mtDNA markers in road-killed specimens collected in Sicily. Both markers consistently demonstrated the existence of a well-characterised Sicilian clade of the species, which is endemic to the island and constitutes the sister group of a clade including the Mediterranean and Central-North European major phylogroups of the European pine marten. Such evidence supports the autochthony of Martes martes in Sicily and points to a natural Pleistocene colonisation of the island followed by isolation. The occurrence of a, to date undetected, major phylogroup of the species in Sicily calls for the dedicated monitoring of the Sicilian populations of the species in order to preserve this evolutionarily significant unit.
Collapse
Affiliation(s)
- Luca Vecchioni
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 18, 90123 Palermo, Italy
| | - Federico Marrone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 18, 90123 Palermo, Italy
| | - Simone Costa
- Cooperativa Silene, Via D’Ondes Reggio 8a, 90127 Palermo, Italy
| | | | - Elena Carra
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 18, 90123 Palermo, Italy
| | - Vincenzo Arizza
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 18, 90123 Palermo, Italy
| | - Marco Arculeo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 18, 90123 Palermo, Italy
| | | |
Collapse
|
8
|
“Guess Who’s Coming to Dinner”: Molecular Tools to Reconstruct multilocus Genetic Profiles from Wild Canid Consumption Remains. Animals (Basel) 2022; 12:ani12182428. [PMID: 36139288 PMCID: PMC9495216 DOI: 10.3390/ani12182428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/05/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
Non-invasive genetic sampling is a practical tool to monitor pivotal ecological parameters and population dynamic patterns of endangered species. It can be particularly suitable when applied to elusive carnivores such as the Apennine wolf (Canis lupus italicus) and the European wildcat (Felis silvestris silvestris), which can live in overlapping ecological contexts and sometimes share their habitats with their domestic free-ranging relatives, increasing the risk of anthropogenic hybridisation. In this case study, we exploited all the ecological and genetic information contained in a single biological canid faecal sample, collected in a forested area of central Italy, to detect any sign of trophic interactions between wolves and European wildcats or their domestic counterparts. Firstly, the faecal finding was morphologically examined, showing the presence of felid hair and claw fragment remains. Subsequently, total genomic DNA contained in the hair and claw samples was extracted and genotyped, through a multiple-tube approach, at canid and felid diagnostic panels of microsatellite loci. Finally, the obtained individual multilocus genotypes were analysed with reference wild and domestic canid and felid populations to assess their correct taxonomic status using Bayesian clustering procedures. Assignment analyses classified the genotype obtained from the endothelial cells present on the hair sample as a wolf with slight signals of dog ancestry, showing a qi = 0.954 (C.I. 0.780–1.000) to the wolf cluster, and the genotype obtained from the claw as a domestic cat, showing a qi = 0.996 (95% C.I. = 0.982–1.000) to the domestic cat cluster. Our results clearly show how a non-invasive multidisciplinary approach allows the cost-effective identification of both prey and predator genetic profiles and their taxonomic status, contributing to the improvement of our knowledge about feeding habits, predatory dynamics, and anthropogenic hybridisation risk in threatened species.
Collapse
|
9
|
Lazzeri L, Fazzi P, Lucchesi M, Mori E, Velli E, Cappai N, Ciuti F, Ferretti F, Fonda F, Paniccia C, Pavanello M, Pecorella S, Sangiuliano A, Sforzi A, Siclari A, Spada A. The rhythm of the night: patterns of activity of the European wildcat in the Italian peninsula. Mamm Biol 2022. [DOI: 10.1007/s42991-022-00276-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
AbstractThe European wildcat is a threatened carnivore, whose ecology is still scarcely studied, especially in Mediterranean areas. In this study, we estimated activity rhythm patterns of this felid, by means of camera-trapping at three spatial scales: (i) whole country (Italy); (ii) biogeographical areas; (iii) latitudinal zones. The activity rhythms patterns were also calculated according to temporal scales: (1) warm semester; (2) cold semester and (3) seasonal scales. Lastly, we also tested whether the effect of moon phases affected the wildcat activity. We conducted the analysis on a total of 975 independent events collected in 2009–2021, from 285 locations, in ~ 65,800 camera days. We showed that the wildcat in Italy exhibits a > 70% nocturnal behaviour, with 20% of diurnal activity, at all spatial scales, and throughout the whole year, with peaks at 10.00 p.m. and 04.00 a.m. We observed a high overlap of wildcat activity rhythms between different biogeographical and latitudinal zones. The wildcat was mainly active on the darkest nights, reducing its activity in bright moonlight nights. Diurnal activity was greater in the warm months and decreased with the distance from shrubs and woodlands, most likely according to activity rhythms of its main prey, water presence in summer, the care of offspring and the availability of shelter sites. Conversely, the distance to paved roads seems to have no significant effects on diurnal activity, suggesting that, in presence of natural shelters, the wildcat probably may tolerate these infrastructures. We suggested limited plasticity in activity rhythm patterns of the wildcat, emphasizing the importance of dark hours for this species.
Collapse
|
10
|
Landscape genetic connectivity in European wildcat (Felis silvestris silvestris): a matter of food, shelters and demographic status of populations. CONSERV GENET 2022. [DOI: 10.1007/s10592-022-01443-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
11
|
Lioy FG, Franculli D, Calandri S, Francescangeli D, Pecorella S, Gaudiano L, Filacorda S, Valvo ML, Nielsen CK, Anile S. Show me your tail, if you have one! Is inbreeding depression occurring in wildcats (Felis silvestris silvestris) from Italy? MAMMAL RES 2022. [DOI: 10.1007/s13364-022-00627-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
12
|
Adavoudi R, Pilot M. Consequences of Hybridization in Mammals: A Systematic Review. Genes (Basel) 2021; 13:50. [PMID: 35052393 PMCID: PMC8774782 DOI: 10.3390/genes13010050] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/14/2021] [Accepted: 12/20/2021] [Indexed: 12/18/2022] Open
Abstract
Hybridization, defined as breeding between two distinct taxonomic units, can have an important effect on the evolutionary patterns in cross-breeding taxa. Although interspecific hybridization has frequently been considered as a maladaptive process, which threatens species genetic integrity and survival via genetic swamping and outbreeding depression, in some cases hybridization can introduce novel adaptive variation and increase fitness. Most studies to date focused on documenting hybridization events and analyzing their causes, while relatively little is known about the consequences of hybridization and its impact on the parental species. To address this knowledge gap, we conducted a systematic review of studies on hybridization in mammals published in 2010-2021, and identified 115 relevant studies. Of 13 categories of hybridization consequences described in these studies, the most common negative consequence (21% of studies) was genetic swamping and the most common positive consequence (8%) was the gain of novel adaptive variation. The total frequency of negative consequences (49%) was higher than positive (13%) and neutral (38%) consequences. These frequencies are biased by the detection possibilities of microsatellite loci, the most common genetic markers used in the papers assessed. As negative outcomes are typically easier to demonstrate than positive ones (e.g., extinction vs hybrid speciation), they may be over-represented in publications. Transition towards genomic studies involving both neutral and adaptive variation will provide a better insight into the real impacts of hybridization.
Collapse
Affiliation(s)
| | - Małgorzata Pilot
- Museum and Institute of Zoology, Polish Academy of Sciences, ul. Nadwiślańska 108, 80-680 Gdańsk, Poland;
| |
Collapse
|
13
|
von Thaden A, Cocchiararo B, Mueller SA, Reiners TE, Reinert K, Tuchscherer I, Janke A, Nowak C. Informing conservation strategies with museum genomics: Long-term effects of past anthropogenic persecution on the elusive European wildcat. Ecol Evol 2021; 11:17932-17951. [PMID: 35003648 PMCID: PMC8717334 DOI: 10.1002/ece3.8385] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 11/04/2021] [Accepted: 11/09/2021] [Indexed: 12/13/2022] Open
Abstract
Like many carnivore species, European wildcats (Felis silvestris) have suffered severe anthropogenic population declines in the past, resulting in a strong population bottleneck at the beginning of the 20th century. In Germany, the species has managed to survive its near extinction in small isolated areas and is currently recolonizing former habitats owing to legal protection and concerted conservation efforts. Here, we SNP-genotyped and mtDNA-sequenced 56 historical and 650 contemporary samples to assess the impact of massive persecution on genetic diversity, population structure, and hybridization dynamics of wildcats. Spatiotemporal analyses suggest that the presumed postglacial differentiation between two genetically distinct metapopulations in Germany is in fact the result of the anthropogenic bottleneck followed by re-expansion from few secluded refugia. We found that, despite the bottleneck, populations experienced no severe genetic erosion, nor suffered from elevated inbreeding or showed signs of increased hybridization with domestic cats. Our findings have significant implications for current wildcat conservation strategies, as the data analyses show that the two presently recognized wildcat population clusters should be treated as a single conservation unit. Although current populations appear under no imminent threat from genetic factors, fostering connectivity through the implementation of forest corridors will facilitate the preservation of genetic diversity and promote long-term viability. The present study documents how museum collections can be used as essential resource for assessing long-term anthropogenic effects on natural populations, for example, regarding population structure and the delineation of appropriate conservation units, potentially informing todays' species conservation.
Collapse
Affiliation(s)
- Alina von Thaden
- Conservation Genetics GroupSenckenberg Research Institute and Natural History Museum FrankfurtGelnhausenGermany
- Institute of Ecology, Evolution & DiversityJohann Wolfgang Goethe‐University, BiologicumFrankfurt am MainGermany
| | - Berardino Cocchiararo
- Conservation Genetics GroupSenckenberg Research Institute and Natural History Museum FrankfurtGelnhausenGermany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE‐TBG)Frankfurt am MainGermany
| | - Sarah Ashley Mueller
- Conservation Genetics GroupSenckenberg Research Institute and Natural History Museum FrankfurtGelnhausenGermany
- Institute of Ecology, Evolution & DiversityJohann Wolfgang Goethe‐University, BiologicumFrankfurt am MainGermany
| | - Tobias Erik Reiners
- Conservation Genetics GroupSenckenberg Research Institute and Natural History Museum FrankfurtGelnhausenGermany
| | - Katharina Reinert
- Conservation Genetics GroupSenckenberg Research Institute and Natural History Museum FrankfurtGelnhausenGermany
- Department of Physical GeographyJohann Wolfgang Goethe‐UniversityFrankfurt am MainGermany
| | - Iris Tuchscherer
- Conservation Genetics GroupSenckenberg Research Institute and Natural History Museum FrankfurtGelnhausenGermany
- Institute of Ecology, Evolution & DiversityJohann Wolfgang Goethe‐University, BiologicumFrankfurt am MainGermany
| | - Axel Janke
- Institute of Ecology, Evolution & DiversityJohann Wolfgang Goethe‐University, BiologicumFrankfurt am MainGermany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE‐TBG)Frankfurt am MainGermany
- Senckenberg Biodiversity and Climate Research CentreSenckenberg Gesellschaft für NaturforschungFrankfurt am MainGermany
| | - Carsten Nowak
- Conservation Genetics GroupSenckenberg Research Institute and Natural History Museum FrankfurtGelnhausenGermany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE‐TBG)Frankfurt am MainGermany
| |
Collapse
|
14
|
Fonda F, Bacaro G, Battistella S, Chiatante G, Pecorella S, Pavanello M. Population density of European wildcats in a pre-alpine area (northeast Italy) and an assessment of estimate robustness. MAMMAL RES 2021. [DOI: 10.1007/s13364-021-00609-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Spatial Ecology and Diel Activity of European Wildcat ( Felis silvestris) in a Protected Lowland Area in Northern Greece. Animals (Basel) 2021; 11:ani11113030. [PMID: 34827762 PMCID: PMC8614438 DOI: 10.3390/ani11113030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/11/2021] [Accepted: 10/19/2021] [Indexed: 01/08/2023] Open
Abstract
Simple Summary The European wildcat is a species of conservation concern protected across its range in Europe, where it occurs in five discontinuous populations. The Balkan population has received little attention, making it difficult to assess whether the ecological traits reported for other populations apply also to this population. This hampers the development of targeted conservation measures. The present study reports the first findings on the spatial ecology and daily activity pattern of wildcats in a human modified landscape in Greece, using cutting edge data loggers attached to wildcat collars. In Greece, wildcat home range sizes are within the range of those reported for other populations. Male wildcats are active primarily at night and near dawn and dusk, as is typical for the species. However, the activity of some females varied from this pattern in late spring, in ways expected for wildcats, caring for offspring at a den. Overall, our findings help fill the ecological knowledge gap of the species in Greece and suggest that lowland agricultural areas with patches of natural habitats may have a significant role in the future conservation of the species. Abstract The Balkan populations of the European wildcat are among the least studied. This study reports the first findings on the spatial ecology and activity pattern of the wildcat in Greece and compares them to those of better studied northern populations. We fitted five wildcats (two males, three females) with collars containing GPS and accelerometer loggers (E-obs 1A) and collected data from fall to early summer. All animals moved within a mosaic of lowland agricultural fields, woodland patches, riparian forests and wetlands near the banks of a lake. The trapping rate was the highest reported for the species. The home range sizes, estimated using Brownian bridge movement models, ranged from 0.94 to 3.08 km2 for females and from 1.22 to 4.43 km2 for males. Based on overall dynamic body acceleration (ODBA) values estimated from the accelerometer data, the diel activity of male wildcats followed the species’ typical nocturnal pattern with crepuscular peaks. Female activity varied seasonally, at times being cathemeral. We found only weak effects of environmental variables on wildcat activity, and no significant difference in the activity in open versus forested areas. Our findings suggest that human modified landscapes can play a significant role in the conservation of this typically forest-associated species.
Collapse
|
16
|
Population genetic structure of European wildcats inhabiting the area between the Dinaric Alps and the Scardo-Pindic mountains. Sci Rep 2021; 11:17984. [PMID: 34504218 PMCID: PMC8429547 DOI: 10.1038/s41598-021-97401-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/12/2021] [Indexed: 11/09/2022] Open
Abstract
Habitat fragmentation and loss have contributed significantly to the demographic decline of European wildcat populations and hybridization with domestic cats poses a threat to the loss of genetic purity of the species. In this study we used microsatellite markers to analyse genetic variation and structure of the wildcat populations from the area between the Dinaric Alps and the Scardo-Pindic mountains in Slovenia, Croatia, Serbia and North Macedonia. We also investigated hybridisation between populations of wildcats and domestic cats in the area. One hundred and thirteen samples from free-leaving European wildcats and thirty-two samples from domestic cats were analysed. Allelic richness across populations ranged from 3.61 to 3.98. The observed Ho values ranged between 0.57 and 0.71. The global FST value for the four populations was 0.080 (95% CI 0.056-0.109) and differed significantly from zero (P < 0.001). The highest FST value was observed between the populations North Macedonia and Slovenia and the lowest between Slovenia and Croatia. We also found a signal for the existence of isolation by distance between populations. Our results showed that wildcats are divided in two genetic clusters largely consistent with a geographic division into a genetically diverse northern group (Slovenia, Croatia) and genetically eroded south-eastern group (Serbia, N. Macedonia). Hybridisation rate between wildcats and domestic cats varied between 13% and 52% across the regions.
Collapse
|
17
|
Howard-McCombe J, Ward D, Kitchener AC, Lawson D, Senn HV, Beaumont M. On the use of genome-wide data to model and date the time of anthropogenic hybridisation: An example from the Scottish wildcat. Mol Ecol 2021; 30:3688-3702. [PMID: 34042240 DOI: 10.1111/mec.16000] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 11/28/2022]
Abstract
While hybridisation has long been recognised as an important natural phenomenon in evolution, the conservation of taxa subject to introgressive hybridisation from domesticated forms is a subject of intense debate. Hybridisation of Scottish wildcats and domestic cats is a good example in this regard. Here, we developed a modelling framework to determine the timescale of introgression using approximate Bayesian computation (ABC). Applying the model to ddRAD-seq data from 129 individuals, genotyped at 6546 loci, we show that a population of wildcats genetically distant from domestic cats is still present in Scotland. These individuals were found almost exclusively within the captive breeding programme. Most wild-living cats sampled were introgressed to some extent. The demographic model predicts high levels of gene-flow between domestic cats and Scottish wildcats (13% migrants per generation) over a short timeframe, the posterior mean for the onset of hybridisation (T1 ) was 3.3 generations (~10 years) before present. Although the model had limited power to detect signals of ancient admixture, we found evidence that significant recent hybridisation may have occurred subsequent to the founding of the captive breeding population (T2 ). The model consistently predicts T1 after T2 , estimated here to be 19.3 generations (~60 years) ago, highlighting the importance of this population as a resource for conservation management. Additionally, we evaluate the effectiveness of current methods to classify hybrids. We show that an optimised 35 SNP panel is a better predictor of the ddRAD-based hybrid score in comparison with a morphological method.
Collapse
Affiliation(s)
| | - Daniel Ward
- School of Mathematics, University of Bristol, Bristol, UK
| | - Andrew C Kitchener
- Department of Natural Sciences, National Museums Scotland, Edinburgh, UK
| | - Daniel Lawson
- School of Mathematics, University of Bristol, Bristol, UK
| | - Helen V Senn
- RZSS WildGenes Laboratory, Royal Zoological Society of Scotland, Edinburgh, UK
| | - Mark Beaumont
- School of Biological Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
18
|
Westekemper K, Tiesmeyer A, Steyer K, Nowak C, Signer J, Balkenhol N. Do all roads lead to resistance? State road density is the main impediment to gene flow in a flagship species inhabiting a severely fragmented anthropogenic landscape. Ecol Evol 2021; 11:8528-8541. [PMID: 34257914 PMCID: PMC8258205 DOI: 10.1002/ece3.7635] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/10/2021] [Accepted: 04/13/2021] [Indexed: 11/20/2022] Open
Abstract
AIM Connectivity conservation is ideally based on empirical information on how landscape heterogeneity influences species-specific movement and gene flow. Here, we present the first large-scale evaluation of landscape impacts on genetic connectivity in the European wildcat (Felis silvestris), a flagship and umbrella species for connectivity conservation across Europe. LOCATION The study was carried out in the core area of the distributional range of wildcats in Germany, covering about 186,000 km2 of a densely populated and highly fragmented landscape. METHODS We used data of 975 wildcats genotyped at 14 microsatellites and an individual-based landscape genetic framework to assess the importance of twelve landscape variables for explaining observed genetic connectivity. For this, we optimized landscape resistance surfaces for all variables and compared their relative impacts using multiple regression on distance matrices and commonality analysis. RESULTS Genetic connectivity was best explained by a synergistic combination of six landscape variables and isolation by distance. Of these variables, road density had by far the strongest individual impact followed by synergistic effects of agricultural lands and settlements. Subsequent analyses involving different road types revealed that the strong effect of road density was largely due to state roads, while highways and federal roads had a much smaller, and county roads only a negligible impact. MAIN CONCLUSIONS Our results highlight that landscape-wide genetic connectivity in wildcats across Germany is strongly shaped by the density of roads and in particular state roads, with higher densities providing larger resistance to successful dispersal. These findings have important implications for conservation planning, as measures to mitigate fragmentation effects of roads (e.g., over- or underpasses) often focus on large, federally managed transportation infrastructures. While these major roads exert local barrier effects, other road types can be more influential on overall connectivity, as they are more abundant and more widespread across the landscape.
Collapse
Affiliation(s)
| | - Annika Tiesmeyer
- Conservation Genetics SectionSenckenberg Research Institute and Natural History Museum FrankfurtGelnhausenGermany
- Department of Ecology and EvolutionJohann Wolfgang Goethe‐University, BiologicumFrankfurt am MainGermany
| | - Katharina Steyer
- Conservation Genetics SectionSenckenberg Research Institute and Natural History Museum FrankfurtGelnhausenGermany
- Department of Ecology and EvolutionJohann Wolfgang Goethe‐University, BiologicumFrankfurt am MainGermany
| | - Carsten Nowak
- Conservation Genetics SectionSenckenberg Research Institute and Natural History Museum FrankfurtGelnhausenGermany
| | | | - Niko Balkenhol
- Wildlife SciencesUniversity of GoettingenGoettingenGermany
| |
Collapse
|
19
|
Pârâu LG, Wink M. Common patterns in the molecular phylogeography of western palearctic birds: a comprehensive review. JOURNAL OF ORNITHOLOGY 2021; 162:937-959. [PMID: 34007780 PMCID: PMC8118378 DOI: 10.1007/s10336-021-01893-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 04/26/2021] [Accepted: 05/02/2021] [Indexed: 06/12/2023]
Abstract
A plethora of studies have offered crucial insights in the phylogeographic status of Western Palearctic bird species. However, an overview integrating all this information and analyzing the combined results is still missing. In this study, we compiled all published peer-reviewed and grey literature available on the phylogeography of Western Palearctic bird species. Our literature review indicates a total number of 198 studies, with the overwhelming majority published as journal articles (n = 186). In total, these literature items offer information on 145 bird species. 85 of these species are characterized by low genetic differentiation, 46 species indicate genetic variation but no geographic structuring i.e. panmixia, while 14 species show geographically distinct lineages and haplotypes. Majority of bird species inhabiting the Western Palearctic display genetic admixture. The glaciation cycles in the past few million years were pivotal factors in shaping this situation: during warm periods many species expanded their distribution range to the north over wide areas of Eurasia; whereas, during ice ages most areas were no longer suitable and species retreated to refugia, where lineages mixed. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10336-021-01893-x.
Collapse
Affiliation(s)
- Liviu G. Pârâu
- Institute of Pharmacy and Molecular Biotechnology, Department Biology, Heidelberg University, Im Neuenheimer Feld 364, 4 OG, Heidelberg, Germany
- Present Address: SARS-CoV-2 Data Evaluation Office, Eurofins Genomics Europe Applied Genomics GmbH, Anzinger Straße 7a, 85560 Ebersberg, Germany
| | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Department Biology, Heidelberg University, Im Neuenheimer Feld 364, 4 OG, Heidelberg, Germany
| |
Collapse
|
20
|
|
21
|
Hassanin A, Veron G, Ropiquet A, Jansen van Vuuren B, Lécu A, Goodman SM, Haider J, Nguyen TT. Evolutionary history of Carnivora (Mammalia, Laurasiatheria) inferred from mitochondrial genomes. PLoS One 2021; 16:e0240770. [PMID: 33591975 PMCID: PMC7886153 DOI: 10.1371/journal.pone.0240770] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/06/2021] [Indexed: 11/18/2022] Open
Abstract
The order Carnivora, which currently includes 296 species classified into 16 families, is distributed across all continents. The phylogeny and the timing of diversification of members of the order are still a matter of debate. Here, complete mitochondrial genomes were analysed to reconstruct the phylogenetic relationships and to estimate divergence times among species of Carnivora. We assembled 51 new mitogenomes from 13 families, and aligned them with available mitogenomes by selecting only those showing more than 1% of nucleotide divergence and excluding those suspected to be of low-quality or from misidentified taxa. Our final alignment included 220 taxa representing 2,442 mitogenomes. Our analyses led to a robust resolution of suprafamilial and intrafamilial relationships. We identified 21 fossil calibration points to estimate a molecular timescale for carnivorans. According to our divergence time estimates, crown carnivorans appeared during or just after the Early Eocene Climatic Optimum; all major groups of Caniformia (Cynoidea/Arctoidea; Ursidae; Musteloidea/Pinnipedia) diverged from each other during the Eocene, while all major groups of Feliformia (Nandiniidae; Feloidea; Viverroidea) diversified more recently during the Oligocene, with a basal divergence of Nandinia at the Eocene/Oligocene transition; intrafamilial divergences occurred during the Miocene, except for the Procyonidae, as Potos separated from other genera during the Oligocene.
Collapse
Affiliation(s)
- Alexandre Hassanin
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Sorbonne Université, MNHN, CNRS, EPHE, UA, Paris, France
| | - Géraldine Veron
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Sorbonne Université, MNHN, CNRS, EPHE, UA, Paris, France
| | - Anne Ropiquet
- Faculty of Science and Technology, Department of Natural Sciences, Middlesex University, London, United Kingdom
| | - Bettine Jansen van Vuuren
- Department of Zoology, Centre for Ecological Genomics and Wildlife Conservation, University of Johannesburg, Johannesburg, South Africa
| | - Alexis Lécu
- Parc zoologique de Paris, Muséum national d’Histoire naturelle, Paris, France
| | - Steven M. Goodman
- Field Museum of Natural History, Chicago, IL, United States of America
| | - Jibran Haider
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Sorbonne Université, MNHN, CNRS, EPHE, UA, Paris, France
- Department of Wildlife Management, Pir Mehr Ali Shah, Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
- Forest Parks & Wildlife Department Gilgit-Baltistan, Skardu, Pakistan
| | - Trung Thanh Nguyen
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Sorbonne Université, MNHN, CNRS, EPHE, UA, Paris, France
| |
Collapse
|
22
|
Abstract
AbstractFollowing severe population decline and local extinction due to massive habitat destruction and persecution, wildcats have recently reappeared in several parts of Germany’s low mountain region. It remains unknown how this reemergence occurred, specifically if local populations have been overlooked at low densities or if the species has successfully spread across the highly fragmented anthropogenic landscape. In the central German Rhön Mountains, for instance, wildcats were believed to be extinct during most of the twentieth century, however, the species was recently detected and subsequent genetic monitoring found the presence of a sizeable population. In this study, we used microsatellite and SNP genotypes from 146 wildcat individuals from 2008 to 2017 across a ~ 15,000 km2 area in the central German low mountain region to understand the population re-establishment of wildcats in the region. Bayesian clustering and subsequent analyses revealed that animals in the Rhön Mountains appear to be a mix from the two adjacent populations in the North and South of the area, suggesting a recent range expansion from two different directions. Both populations meet in the Rhön Biosphere Reserve, leading to an admixture of the northern, autochthonous, and the southern reintroduced wildcat population. While we cannot completely exclude the possibility of undetected population persistence, the high genetic homogeneity in the central German wildcat population and the lack of any signatures of past population decline in the Rhön favor a scenario of natural expansion. Our findings thus suggest that wildcats are well capable of rapid range expansion across richly structured landscape mosaics consisting of open land, settlements, and forest patches and document the potential of massive non-invasive genetic sampling when aiming to reconstruct the complex population and range dynamics of wildlife.
Collapse
|
23
|
Spada E, Perego R, Baggiani L, Salatino E, Priolo V, Mangano C, Pennisi MG, Proverbio D. Prevalence of Blood Types and Alloantibodies of the AB Blood Group System in Non-Pedigree Cats from Northern (Lombardy) and Southern (Sicily) Italy. Animals (Basel) 2020; 10:ani10071129. [PMID: 32635140 PMCID: PMC7401586 DOI: 10.3390/ani10071129] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 12/03/2022] Open
Abstract
Simple Summary The most important blood group system in cats is the AB, in which cats are classified as type-A, B or AB. Cats have antibodies against the blood type they do not possess, called alloantibodies. The aims of this study were to update blood type prevalence in cats from Northern Italy and study for the first time the blood type in cats from an insular region of Southern Italy, Sicily; to detect alloantibodies in these feline populations; to compare results with previous studies performed in Italy and between regions in Northern and Southern Italy. Cats from Southern Italy had the highest prevalence of type-B and type-AB, and the lowest prevalence of type-A blood in Italy. In particular, type-AB prevalence was higher than all previous reports in non-pedigree cats in Europe and the Italian prevalence of anti-type-B alloantibodies in type-A cats was the lowest reported worldwide. These results highlight the usefulness of regional studies to report different prevalences in feline blood types. Compatibility tests such as blood typing and cross matching must be considered fundamental in cats of any origin to ensure safe and efficient blood transfusion and to prevent neonatal isoerythrolysis. Abstract The aims of this study were to determine the prevalence of A, B and AB blood types and alloantibodies in non-pedigree cats from two regions, one in Northern and one in Southern Italy (Lombardy and Sicily, respectively). A total of 448 samples (52.0% from Northern and 48.0% from Southern Italy) were blood typed. The prevalence of A, B and AB blood types in northern and southern cats were 91.0%, 5.2%, 3.8%, and 77.2%, 12.1% and 10.7%, respectively. The prevalence of type-A blood in southern cats was significantly lower (p = 0.0001) than in northern cats, while type-B and AB blood were significantly higher (p = 0.0085 and p = 0.0051, respectively) in Southern compared to Northern Italian cats. Alloantibodies against type-A blood were found in 94.1% of type-B cats, 11.2% of type-A cats had alloantibodies against type-B blood, while no type-AB cats had alloantibodies with no significant difference between the two Italian populations. Type-AB prevalence in non-pedigree cats in Southern Italy was the highest reported in Europe. Italian type-A cats had the lowest worldwide prevalence of alloantibodies against type-B blood. These results highlight the usefulness of regional studies to report different prevalences in feline blood types and reinforce the importance of blood typing cats before transfusions and mating.
Collapse
Affiliation(s)
- Eva Spada
- Veterinary Transfusion Research Laboratory (REVLab), Department of Veterinary Medicine (DIMEVET), University of Milan, 20133 Milan, Italy; (L.B.); (E.S.); (D.P.)
- Correspondence: (E.S.); (R.P.)
| | - Roberta Perego
- Veterinary Transfusion Research Laboratory (REVLab), Department of Veterinary Medicine (DIMEVET), University of Milan, 20133 Milan, Italy; (L.B.); (E.S.); (D.P.)
- Correspondence: (E.S.); (R.P.)
| | - Luciana Baggiani
- Veterinary Transfusion Research Laboratory (REVLab), Department of Veterinary Medicine (DIMEVET), University of Milan, 20133 Milan, Italy; (L.B.); (E.S.); (D.P.)
| | - Elisabetta Salatino
- Veterinary Transfusion Research Laboratory (REVLab), Department of Veterinary Medicine (DIMEVET), University of Milan, 20133 Milan, Italy; (L.B.); (E.S.); (D.P.)
| | - Vito Priolo
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (V.P.); (C.M.); (M.G.P.)
| | - Cyndi Mangano
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (V.P.); (C.M.); (M.G.P.)
| | - Maria Grazia Pennisi
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (V.P.); (C.M.); (M.G.P.)
| | - Daniela Proverbio
- Veterinary Transfusion Research Laboratory (REVLab), Department of Veterinary Medicine (DIMEVET), University of Milan, 20133 Milan, Italy; (L.B.); (E.S.); (D.P.)
| |
Collapse
|
24
|
von Thaden A, Nowak C, Tiesmeyer A, Reiners TE, Alves PC, Lyons LA, Mattucci F, Randi E, Cragnolini M, Galián J, Hegyeli Z, Kitchener AC, Lambinet C, Lucas JM, Mölich T, Ramos L, Schockert V, Cocchiararo B. Applying genomic data in wildlife monitoring: Development guidelines for genotyping degraded samples with reduced single nucleotide polymorphism panels. Mol Ecol Resour 2020. [PMID: 31925943 DOI: 10.1111/1755-0998.13136.applying] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The genomic era has led to an unprecedented increase in the availability of genome-wide data for a broad range of taxa. Wildlife management strives to make use of these vast resources to enable refined genetic assessments that enhance biodiversity conservation. However, as new genomic platforms emerge, problems remain in adapting the usually complex approaches for genotyping of noninvasively collected wildlife samples. Here, we provide practical guidelines for the standardized development of reduced single nucleotide polymorphism (SNP) panels applicable for microfluidic genotyping of degraded DNA samples, such as faeces or hairs. We demonstrate how microfluidic SNP panels can be optimized to efficiently monitor European wildcat (Felis silvestris S.) populations. We show how panels can be set up in a modular fashion to accommodate informative markers for relevant population genetics questions, such as individual identification, hybridization assessment and the detection of population structure. We discuss various aspects regarding the implementation of reduced SNP panels and provide a framework that will allow both molecular ecologists and practitioners to help bridge the gap between genomics and applied wildlife conservation.
Collapse
Affiliation(s)
- Alina von Thaden
- Conservation Genetics Group, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany.,Institute for Ecology, Evolution and Diversity, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | - Carsten Nowak
- Conservation Genetics Group, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany.,LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
| | - Annika Tiesmeyer
- Conservation Genetics Group, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany.,Institute for Ecology, Evolution and Diversity, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | - Tobias E Reiners
- Conservation Genetics Group, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany.,Institute for Ecology, Evolution and Diversity, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | - Paulo C Alves
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO - Laboratório Associado, Universidade do Porto, Vairão, Portugal.,Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal.,Wildlife Biology Program, University of Montana, Missoula, MT, USA
| | - Leslie A Lyons
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Federica Mattucci
- Area per la Genetica della Conservazione, ISPRA, Ozzano dell'Emilia, Bologna, Italy
| | - Ettore Randi
- Department BIGEA, University of Bologna, Bologna, Italy.,Department 18/Section of Environmental Engineering, Aalborg University, Aalborg, Denmark
| | - Margherita Cragnolini
- Institut für Spezielle Zoologie und Evolutionsbiologie, Biologisch-Pharmazeutische Fakultät, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - José Galián
- Departamento de Zoología y Antropología Física, Facultad de Veterinaria, Universidad de Murcia, Murcia, Spain
| | - Zsolt Hegyeli
- "Milvus Group" Bird and Nature Protection Association, Tîrgu Mureş, Romania
| | - Andrew C Kitchener
- Department of Natural Sciences, National Museums Scotland, Edinburgh, UK.,Institute of Geography, School of Geosciences, University of Edinburgh, Edinburgh, UK
| | - Clotilde Lambinet
- Department of Science and Environmental Management, University of Liège, Liège, Belgium
| | - José M Lucas
- Departamento de Zoología y Antropología Física, Facultad de Veterinaria, Universidad de Murcia, Murcia, Spain
| | - Thomas Mölich
- Landesverband Thüringen e.V., BUND für Umwelt und Naturschutz Deutschland (BUND), Erfurt, Germany
| | - Luana Ramos
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO - Laboratório Associado, Universidade do Porto, Vairão, Portugal.,Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
| | - Vinciane Schockert
- Department of Science and Environmental Management, University of Liège, Liège, Belgium
| | - Berardino Cocchiararo
- Conservation Genetics Group, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany.,LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
| |
Collapse
|
25
|
Albrecht F, Hering J, Fuchs E, Illera JC, Ihlow F, Shannon TJ, Collinson JM, Wink M, Martens J, Päckert M. Phylogeny of the Eurasian Wren Nannus troglodytes (Aves: Passeriformes: Troglodytidae) reveals deep and complex diversification patterns of Ibero-Maghrebian and Cyrenaican populations. PLoS One 2020; 15:e0230151. [PMID: 32191719 PMCID: PMC7082076 DOI: 10.1371/journal.pone.0230151] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 02/22/2020] [Indexed: 11/19/2022] Open
Abstract
The Mediterranean Basin represents a Global Biodiversity Hotspot where many organisms show high inter- and intraspecific differentiation. Extant phylogeographic patterns of terrestrial circum-Mediterranean faunas were mainly shaped through Pleistocene range shifts and range fragmentations due to retreat into different glacial refugia. Thus, several extant Mediterranean bird species have diversified by surviving glaciations in different hospitable refugia and subsequently expanded their distribution ranges during the Holocene. Such a scenario was also suggested for the Eurasian Wren (Nannus troglodytes) despite the lack of genetic data for most Mediterranean subspecies. Our phylogenetic multi-locus analysis comprised 18 out of 28 currently accepted subspecies of N. troglodytes, including all but one subspecies which are present in the Mediterranean Basin. The resulting phylogenetic reconstruction dated the onset of the entire Holarctic radiation of three Nannus species to the early Pleistocene. In the Eurasian Wren, two North African subspecies represented separate basal lineages from the Maghreb (N. t. kabylorum) and from the Libyan Cyrenaica (N. t. juniperi), being only distantly related to other Mediterranean populations. Although N. troglodytes appeared to be paraphyletic with respect to the Nearctic Winter Wren (N. hiemalis), respective nodes did not receive strong statistical support. In contrast, paraphyly of the Ibero-Maghrebian taxon N. t. kabylorum was strongly supported. Southern Iberian populations of N. t. kabylorum did not clade with Maghrebian populations of the same subspecies but formed a sister clade to a highly diverse European clade (including nominate N. t. troglodytes and eight further taxa). In accordance with a pattern also found in other birds, Eurasian populations were split into a western clade (Europe, Caucasus) and an eastern clade (Central Asia, Sino-Himalayas, East Asia). This complex phylogeographic pattern revealed cryptic diversification in N. troglodytes, especially in the Iberio-Maghrebian region.
Collapse
Affiliation(s)
- Frederik Albrecht
- Museum of Zoology, Senckenberg Natural History Collections Dresden, Senckenberg|Leibniz Institution for Biodiversity and Earth System Research, Dresden, Saxony, Germany
- * E-mail:
| | - Jens Hering
- Verein Sächsischer Ornithologen e.V., Limbach-Oberfrohna, Saxony, Germany
| | - Elmar Fuchs
- Verein Sächsischer Ornithologen e.V., Weimar, Thuringia, Germany
| | - Juan Carlos Illera
- Research Unit of Biodiversity (UO-CSIC-PA), Oviedo University, Asturias, Spain
| | - Flora Ihlow
- Museum of Zoology, Senckenberg Natural History Collections Dresden, Senckenberg|Leibniz Institution for Biodiversity and Earth System Research, Dresden, Saxony, Germany
| | - Thomas J. Shannon
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | - J. Martin Collinson
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Baden-Württemberg, Germany
| | - Jochen Martens
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Rhineland-Palatinate, Germany
| | - Martin Päckert
- Museum of Zoology, Senckenberg Natural History Collections Dresden, Senckenberg|Leibniz Institution for Biodiversity and Earth System Research, Dresden, Saxony, Germany
| |
Collapse
|
26
|
Sauther ML, Bertolini F, Dollar LJ, Pomerantz J, Alves PC, Gandolfi B, Kurushima JD, Mattucci F, Randi E, Rothschild MF, Cuozzo FP, Larsen RS, Moresco A, Lyons LA, Jacky IAY. Taxonomic identification of Madagascar’s free-ranging “forest cats”. CONSERV GENET 2020. [DOI: 10.1007/s10592-020-01261-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
27
|
von Thaden A, Nowak C, Tiesmeyer A, Reiners TE, Alves PC, Lyons LA, Mattucci F, Randi E, Cragnolini M, Galián J, Hegyeli Z, Kitchener AC, Lambinet C, Lucas JM, Mölich T, Ramos L, Schockert V, Cocchiararo B. Applying genomic data in wildlife monitoring: Development guidelines for genotyping degraded samples with reduced single nucleotide polymorphism panels. Mol Ecol Resour 2020; 20. [PMID: 31925943 DOI: 10.1111/1755-0998.13136] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/24/2019] [Accepted: 01/05/2020] [Indexed: 01/16/2023]
Abstract
The genomic era has led to an unprecedented increase in the availability of genome-wide data for a broad range of taxa. Wildlife management strives to make use of these vast resources to enable refined genetic assessments that enhance biodiversity conservation. However, as new genomic platforms emerge, problems remain in adapting the usually complex approaches for genotyping of noninvasively collected wildlife samples. Here, we provide practical guidelines for the standardized development of reduced single nucleotide polymorphism (SNP) panels applicable for microfluidic genotyping of degraded DNA samples, such as faeces or hairs. We demonstrate how microfluidic SNP panels can be optimized to efficiently monitor European wildcat (Felis silvestris S.) populations. We show how panels can be set up in a modular fashion to accommodate informative markers for relevant population genetics questions, such as individual identification, hybridization assessment and the detection of population structure. We discuss various aspects regarding the implementation of reduced SNP panels and provide a framework that will allow both molecular ecologists and practitioners to help bridge the gap between genomics and applied wildlife conservation.
Collapse
Affiliation(s)
- Alina von Thaden
- Conservation Genetics Group, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany.,Institute for Ecology, Evolution and Diversity, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | - Carsten Nowak
- Conservation Genetics Group, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany.,LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
| | - Annika Tiesmeyer
- Conservation Genetics Group, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany.,Institute for Ecology, Evolution and Diversity, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | - Tobias E Reiners
- Conservation Genetics Group, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany.,Institute for Ecology, Evolution and Diversity, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | - Paulo C Alves
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO - Laboratório Associado, Universidade do Porto, Vairão, Portugal.,Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal.,Wildlife Biology Program, University of Montana, Missoula, MT, USA
| | - Leslie A Lyons
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Federica Mattucci
- Area per la Genetica della Conservazione, ISPRA, Ozzano dell'Emilia, Bologna, Italy
| | - Ettore Randi
- Department BIGEA, University of Bologna, Bologna, Italy.,Department 18/Section of Environmental Engineering, Aalborg University, Aalborg, Denmark
| | - Margherita Cragnolini
- Institut für Spezielle Zoologie und Evolutionsbiologie, Biologisch-Pharmazeutische Fakultät, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - José Galián
- Departamento de Zoología y Antropología Física, Facultad de Veterinaria, Universidad de Murcia, Murcia, Spain
| | - Zsolt Hegyeli
- "Milvus Group" Bird and Nature Protection Association, Tîrgu Mureş, Romania
| | - Andrew C Kitchener
- Department of Natural Sciences, National Museums Scotland, Edinburgh, UK.,Institute of Geography, School of Geosciences, University of Edinburgh, Edinburgh, UK
| | - Clotilde Lambinet
- Department of Science and Environmental Management, University of Liège, Liège, Belgium
| | - José M Lucas
- Departamento de Zoología y Antropología Física, Facultad de Veterinaria, Universidad de Murcia, Murcia, Spain
| | - Thomas Mölich
- Landesverband Thüringen e.V., BUND für Umwelt und Naturschutz Deutschland (BUND), Erfurt, Germany
| | - Luana Ramos
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO - Laboratório Associado, Universidade do Porto, Vairão, Portugal.,Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
| | - Vinciane Schockert
- Department of Science and Environmental Management, University of Liège, Liège, Belgium
| | - Berardino Cocchiararo
- Conservation Genetics Group, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany.,LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
| |
Collapse
|
28
|
Gil-Sánchez JM, Barea-Azcón JM, Jaramillo J, Herrera-Sánchez FJ, Jiménez J, Virgós E. Fragmentation and low density as major conservation challenges for the southernmost populations of the European wildcat. PLoS One 2020; 15:e0227708. [PMID: 31990935 PMCID: PMC6986748 DOI: 10.1371/journal.pone.0227708] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 12/26/2019] [Indexed: 11/18/2022] Open
Abstract
Knowledge of population dynamics of threatened species in the wild is key to effective conservation actions. However, at present, there are many examples of endangered animals for which their current situation is unknown, and not just in remote areas and less developed countries. We have explored this topic by studying the paradigmatic case of the European wildcat (Felis silvestris silvestris), an endangered small carnivore whose status has been subjectively established on the basis of non-systematic approaches and opportunistic records. Little is known about its demographic situation, prompting the need for information to improve conservation measures. However, the secretive behaviour of felines along with its low density in natural conditions have prevented the gathering of sufficient data. We developed a field sampling strategy for one of the largest populations (Andalusia, South Spain, 87,268 km2), based on a logistically viable systematic non-intrusive survey by camera-trapping. This study offers the first large-scale estimation for any European wildcat population, based on analytical approaches applied on Species Distribution Models. A hierarchical approach based on a Maxent model for distribution estimation was used, along with Generalised Linear Models for density estimation from explicit spatial capture-recapture data. Our results show that the distribution range is smaller and more highly fragmented than previously assumed. The overall estimated density was very low (0.069 ±0.0019 wildcats/km2) and the protected areas network seems to be insufficient to cover a significant part of the population or a viable nucleus in demographic terms. Indeed, the most important areas remain unprotected. Our main recommendations are to improve the protected area network and/or vigilance programs in hunting estates, in addition to studying and improving connectivity between the main population patches.
Collapse
Affiliation(s)
| | - Jose Miguel Barea-Azcón
- Agencia de Medio Ambiente y Agua (Consejería de Agricultura, Ganadería, Pesca y Desarrollo Sostenible, Junta de Andalucía), Gerencia de Granada, Edificio Zeus III, Granada, Spain
| | - Javier Jaramillo
- Agencia de Medio Ambiente y Agua (Consejería de Agricultura, Ganadería, Pesca y Desarrollo Sostenible, Junta de Andalucía), Gerencia de Granada, Edificio Zeus III, Granada, Spain
| | | | - José Jiménez
- Instituto de Investigación en Recursos Cinegéticos (IREC, CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - Emilio Virgós
- Department of Biology, Geology, Physics and Inorganic Chemistry, ESCET, Universidad Rey Juan Carlos, C/Tulipán, Móstoles, Madrid, Spain
| |
Collapse
|
29
|
Tiesmeyer A, Ramos L, Manuel Lucas J, Steyer K, Alves PC, Astaras C, Brix M, Cragnolini M, Domokos C, Hegyeli Z, Janssen R, Kitchener AC, Lambinet C, Mestdagh X, Migli D, Monterroso P, Mulder JL, Schockert V, Youlatos D, Pfenninger M, Nowak C. Range-wide patterns of human-mediated hybridisation in European wildcats. CONSERV GENET 2020. [DOI: 10.1007/s10592-019-01247-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
AbstractHybridisation between wild taxa and their domestic congeners is a significant conservation issue. Domestic species frequently outnumber their wild relatives in population size and distribution and may therefore genetically swamp the native species. The European wildcat (Felis silvestris) has been shown to hybridise with domestic cats (Felis catus). Previously suggested spatially divergent introgression levels have not been confirmed on a European scale due to significant differences in the applied methods to assess hybridisation of the European wildcat. We analysed 926 Felis spp. samples from 13 European countries, using a set of 86 selected ancestry-informative SNPs, 14 microsatellites, and ten mitochondrial and Y-chromosome markers to study regional hybridisation and introgression patterns and population differentiation. We detected 51 hybrids (four F1 and 47 F2 or backcrosses) and 521 pure wildcats throughout Europe. The abundance of hybrids varied considerably among studied populations. All samples from Scotland were identified as F2 hybrids or backcrosses, supporting previous findings that the genetic integrity of that wildcat population has been seriously compromised. In other European populations, low to moderate levels of hybridisation were found, with the lowest levels being in Central and Southeast Europe. The occurrence of distinct maternal and paternal markers between wildcat and domestic cat suggests that there were no severe hybridisation episodes in the past. The overall low (< 1%) prevalence of F1 hybrids suggests a low risk of hybridisation for the long-term genetic integrity of the wildcat in most of Europe. However, regionally elevated introgression rates confirm that hybridisation poses a potential threat. We propose regional in-depth monitoring of hybridisation rates to identify factors driving hybridisation so as to develop effective strategies for conservation.
Collapse
|
30
|
Beugin M, Salvador O, Leblanc G, Queney G, Natoli E, Pontier D. Hybridization between Felis silvestris silvestris and Felis silvestris catus in two contrasted environments in France. Ecol Evol 2020; 10:263-276. [PMID: 31988727 PMCID: PMC6972816 DOI: 10.1002/ece3.5892] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 11/04/2019] [Accepted: 11/06/2019] [Indexed: 11/30/2022] Open
Abstract
European wildcat (Felis silvestris silvestris) populations are fragmented throughout most of the whole range of the subspecies and may be threatened by hybridization with the domestic cat F.s. catus. The underlying ecological processes promoting hybridization remain largely unknown. In France, wildcats are mainly present in the northeast and signs of their presence in the Pyrenees have been recently provided. However, no studies have been carried out in the French Pyrenees to assess their exposure to hybridization. We compared two local populations of wildcats, one living in a continuous forest habitat in the French Pyrenees, the other living in a highly fragmented forest-agricultural landscape in northeastern France to get insights into the variability of hybridization rates. Strong evidence of hybridization was detected in northeastern France and not in the Pyrenees. Close kin in the Pyrenees were not found in the same geographic location contrary to what was previously reported for females in the northeastern wildcat population. The two wildcat populations were significantly differentiated (F ST = 0.072) to an extent close to what has been reported (F ST = 0.103) between the Iberian population, from which the Pyrenean population may originate, and the German population, which is connected to the northeastern population. The genetic diversity of the Pyrenean wildcats was lower than that of northeastern wildcat populations in France and in other parts of Europe. The lower hybridization in the Pyrenees may result from the continuity of natural forest habitats. Further investigations should focus on linking landscape features to hybridization rates working on local populations.
Collapse
Affiliation(s)
- Marie‐Pauline Beugin
- Laboratoire de Biométrie et Biologie Evolutive UMR5558CNRSUniv LyonUniversité Lyon 1VilleurbanneFrance
- Animal Genomics LaboratoryANTAGENELa tour de SalvagnyFrance
| | - Olivier Salvador
- Réserve naturelle nationale de Jujols et de NohèdesRéserves Naturelles CatalanesPradesFrance
| | | | | | | | - Dominique Pontier
- Laboratoire de Biométrie et Biologie Evolutive UMR5558CNRSUniv LyonUniversité Lyon 1VilleurbanneFrance
| |
Collapse
|
31
|
Anile S, Devillard S, Ragni B, Rovero F, Mattucci F, Valvo ML. Habitat fragmentation and anthropogenic factors affect wildcat Felis silvestris silvestris occupancy and detectability on Mt Etna. WILDLIFE BIOLOGY 2019. [DOI: 10.2981/wlb.00561] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Stefano Anile
- S. Anile, (https://orcid.org/0000-0001-8871-9615) ✉ , Cooperative Wildlife Research Laboratory, Southern Illinois Univ., Carbondale, IL 62901, USA
| | - Sebastien Devillard
- S. Devillard, Univ Lyon, Université Claude Bernard Lyon, CNRS, Laboratoire de Biométrie et Biologie Evolutive, Villeurbanne, France
| | - Bernardino Ragni
- B. Ragni, Dipto di Chimica, Biologia e Biotecnologie, Univ. degli Studi di Perugia, Perugia, Italy
| | - Francesco Rovero
- F. Rovero, Dept of Biology, Univ. of Florence, Sesto Fiorentino, Italy, and: Sezione di Biodiversità Tropicale, MUSE – Museo delle Scienze di Trento, Trento, Italy
| | - Federica Mattucci
- F. Mattucci, Laboratorio di Genetica, Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), Bologna, Italy
| | - Mario Lo Valvo
- M. Lo Valvo, Dipto STEBICEF, Univ. di Palermo, Palermo, Italy
| |
Collapse
|
32
|
Mousavi M, Rezaei HR, Naderi S. Phylogeographic analysis of Iranian wildcats (Felis lybica / Felis silvestris) as revealed by mitochondrial cytochromebgene. ZOOLOGY IN THE MIDDLE EAST 2019. [DOI: 10.1080/09397140.2019.1663875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Marzieh Mousavi
- Department of Environmental Sciences, Faculty of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hamid Reza Rezaei
- Department of Environment, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Saeid Naderi
- Department of Environment, Faculty of Natural Resources, University of Guilan, Rasht, Iran
| |
Collapse
|
33
|
Mattucci F, Galaverni M, Lyons LA, Alves PC, Randi E, Velli E, Pagani L, Caniglia R. Genomic approaches to identify hybrids and estimate admixture times in European wildcat populations. Sci Rep 2019; 9:11612. [PMID: 31406125 PMCID: PMC6691104 DOI: 10.1038/s41598-019-48002-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 07/25/2019] [Indexed: 12/22/2022] Open
Abstract
The survival of indigenous European wildcat (Felis silvestris silvestris) populations can be locally threatened by introgressive hybridization with free-ranging domestic cats. Identifying pure wildcats and investigating the ancestry of admixed individuals becomes thus a conservation priority. We analyzed 63k cat Single Nucleotide Polymorphisms (SNPs) with multivariate, Bayesian and gene-search tools to better evaluate admixture levels between domestic and wild cats collected in Europe, timing and ancestry proportions of their hybrids and backcrosses, and track the origin (wild or domestic) of the genomic blocks carried by admixed cats, also looking for possible deviations from neutrality in their inheritance patterns. Small domestic ancestry blocks were detected in the genomes of most admixed cats, which likely originated from hybridization events occurring from 6 to 22 generations in the past. We identified about 1,900 outlier coding genes with excess of wild or domestic ancestry compared to random expectations in the admixed individuals. More than 600 outlier genes were significantly enriched for Gene Ontology (GO) categories mainly related to social behavior, functional and metabolic adaptive processes (wild-like genes), involved in cognition and neural crest development (domestic-like genes), or associated with immune system functions and lipid metabolism (parental-like genes). These kinds of genomic ancestry analyses could be reliably applied to unravel the admixture dynamics in European wildcats, as well as in other hybridizing populations, in order to design more efficient conservation plans.
Collapse
Affiliation(s)
- Federica Mattucci
- Area per la Genetica della Conservazione (BIO-CGE), Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), Ozzano dell'Emilia, Italy.
| | | | - Leslie A Lyons
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, USA
| | - Paulo C Alves
- Centro de Investigação em Biodiversidade e Recursos Genéticos (CIBIO), InBio - Laboratório Associado, Campus Agrário de Vairão, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- Wildlife Biology Program, Department of Ecosystem and Conservation Sciences, University of Montana, Missoula, USA
| | - Ettore Randi
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
- Department of Chemistry and Bioscience, Faculty of Engineering and Science, University of Aalborg, Aalborg, Denmark
| | - Edoardo Velli
- Area per la Genetica della Conservazione (BIO-CGE), Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), Ozzano dell'Emilia, Italy
| | - Luca Pagani
- Dipartimento di Biologia, Università degli Studi di Padova, Padua, Italy
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Romolo Caniglia
- Area per la Genetica della Conservazione (BIO-CGE), Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), Ozzano dell'Emilia, Italy
| |
Collapse
|
34
|
Occurrence of canine and feline extra-intestinal nematodes in key endemic regions of Italy. Acta Trop 2019; 193:227-235. [PMID: 30857861 DOI: 10.1016/j.actatropica.2019.03.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/22/2019] [Accepted: 03/06/2019] [Indexed: 12/24/2022]
Abstract
Extra-intestinal nematodes of companion animals are of growing concern in veterinary medicine for their pathogenic potential and the current expansion throughout Europe. The present study has evaluated the occurrence of major canine and feline extra-intestinal nematodes in regions of Italy having epidemiological relevance. Associations of various recorded parameters related to the examined animals have been statistically evaluated, along with a comparative analysis with the most recent epidemiological data. Overall, 1055 dogs and 1000 cats were tested. Among extra-intestinal nematodes Angiostrongylus vasorum was the most common in dogs followed by Capillaria aerophila and Dirofilaria spp.; Aelurostrongylus abstrusus was the most recorded parasite in cats, followed by C. aerophila and Troglostrongylus brevior. The statistical analysis revealed that outdoor access is associated with A. vasorum, A. abstrusus and T. brevior infections, that were also more prevalent in animals with cardio-respiratory signs. Moreover, cats aged less than 12 months had more chances to be infected by lungworms. The data herein presented confirm the occurrence and the possible risk of expansion of different extra-intestinal parasitoses of dogs and cats in Italy, underlining the importance of a constant epidemiologic vigilance and of appropriate control methods.
Collapse
|
35
|
How to spot a black-footed cat? Successful application of cross-species markers to identify captive-bred individuals from non-invasive genetic sampling. MAMMAL RES 2018. [DOI: 10.1007/s13364-018-0407-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
36
|
Oliveira T, Urra F, López‐Martín JM, Ballesteros‐Duperón E, Barea‐Azcón JM, Moléon M, Gil‐Sánchez JM, Alves PC, Díaz‐Ruíz F, Ferreras P, Monterroso P. Females know better: Sex-biased habitat selection by the European wildcat. Ecol Evol 2018; 8:9464-9477. [PMID: 30377515 PMCID: PMC6194279 DOI: 10.1002/ece3.4442] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 01/13/2018] [Accepted: 07/06/2018] [Indexed: 02/05/2023] Open
Abstract
The interactions between animals and their environment vary across species, regions, but also with gender. Sex-specific relations between individuals and the ecosystem may entail different behavioral choices and be expressed through different patterns of habitat use. Regardless, only rarely sex-specific traits are addressed in ecological modeling approaches. The European wildcat (Felis silvestris silvestris) is a species of conservation concern in Europe, with a highly fragmented and declining distribution across most of its range. We assessed sex-specific habitat selection patterns for the European wildcat, at the landscape and home range levels, across its Iberian biogeographic distribution using a multipopulation approach. We developed resource selection functions in a use-availability framework using radio-telemetry data from five wildcat populations. At the landscape level, we observed that, while both genders preferentially established home ranges in areas close to broadleaf forests and far from humanized areas, females selected mid-range elevation areas with some topographic complexity, whereas males used lowland areas. At the home range level, both females and males selected areas dominated by scrublands or broadleaf forests, but habitat features were less important at this level. The strength of association to habitat features was higher for females at both spatial levels, suggesting a tendency to select habitats with higher quality that can grant them enhanced access to shelter and feeding resources. Based on our results, we hypothesize that sex-biased behavioral patterns may contribute to the resilience of wildcats' genetic integrity through influencing the directionality of hybridization with domestic cats. Our study provides information about European wildcats' habitat use in an Iberian context, relevant for the implementation of conservation plans, and highlights the ecological relevance of considering sex-related differences in environmental preferences.
Collapse
Affiliation(s)
- Teresa Oliveira
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos GenéticosUniversidade do PortoVairãoPortugal
- Departamento de BiologiaFaculdade de CiênciasUniversidade do PortoPortoPortugal
| | - Fermín Urra
- Gestión Ambiental de NavarraPamplonaNavarraSpain
| | - José María López‐Martín
- Secció d'Activitats Cinegètiques i Pesca ContinentalServeis Territorials de BarcelonaDepartment of D'Agricultura, Ramaderia, Pesca i AlimentacióGeneralitat de CatalunyaBarcelonaSpain
- Wildlife Ecology and Health GroupFacultat de VeterinàriaUniversitat Autònoma de Barcelona (UAB)BellaterraBarcelonaSpain
| | - Elena Ballesteros‐Duperón
- Agencia de Medio Ambiente y AguaConsejería de Medio Ambiente y Ordenación del TerritorioJunta de AndalucíaGranadaSpain
| | - José Miguel Barea‐Azcón
- Agencia de Medio Ambiente y AguaConsejería de Medio Ambiente y Ordenación del TerritorioJunta de AndalucíaGranadaSpain
| | - Marcos Moléon
- Department of ZoologyUniversity of GranadaGranadaSpain
| | | | - Paulo Celio Alves
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos GenéticosUniversidade do PortoVairãoPortugal
- Departamento de BiologiaFaculdade de CiênciasUniversidade do PortoPortoPortugal
- Wildlife Biology ProgramUniversity of MontanaMissoulaMontana
| | - Francisco Díaz‐Ruíz
- Biogeography, Diversity and Conservation Research TeamDepartment of Animal BiologyFaculty of SciencesUniversity of MalagaMalagaSpain
| | - Pablo Ferreras
- Instituto de Investigación en Recursos Cinegéticos (IREC, CSIC‐UCLM‐JCCM)Ciudad RealSpain
| | - Pedro Monterroso
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos GenéticosUniversidade do PortoVairãoPortugal
| |
Collapse
|
37
|
Hodžić A, Alić A, Duscher GG. High diversity of blood-associated parasites and bacteria in European wild cats in Bosnia and Herzegovina: A molecular study. Ticks Tick Borne Dis 2018; 9:589-593. [PMID: 29422447 DOI: 10.1016/j.ttbdis.2018.01.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 12/11/2017] [Accepted: 01/24/2018] [Indexed: 01/10/2023]
Abstract
Wild felids may play a significant role in the transmission of various pathogens to domestic cats, in particular, but also to other animals and humans. However, since data on the occurrence of blood-borne organisms in European wild cats (Felis silvestris silvestris) are scarce, the present study aimed to provide an insight into the genetic diversity of the agents carried by this sylvatic species in Bosnia and Herzegovina and to elucidate their pathogenic impact. Tissue samples from 18 adult wild cats were collected and examined by PCR and histopathology. Five species of apicomplexan parasites belonging to three genera (Babesia sp., Cytauxzoon sp., Hepatozoon silvestris, H. felis, Hepatozoon sp.), as well as two different sequence types of undescribed hemotropic mycoplasmas (designated as type A and type B), were identified in 15 animals (83%). Histopathology revealed no relevant lesions associated with any of the agents detected. The results clearly showed that European wild cats can harbour a broad range of blood-associated parasites and bacteria. However, further studies are required to investigate the possible implication of hematophagous arthropod vectors in their transmission and to clarify the true pathogenic significance of these organisms. Direct transmission of the agents by bites should also be considered as an alternative, non-vectorial route of transmission in wild cats.
Collapse
Affiliation(s)
- Adnan Hodžić
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Amer Alić
- Department of Pathology, Faculty of Veterinary Medicine, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Georg Gerhard Duscher
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria.
| |
Collapse
|
38
|
Zwijacz-Kozica T, Ważna A, Muñoz-Fuentes V, Tiesmeyer A, Cichocki J, Nowak C. Not European Wildcats, But Domestic Cats Inhabit Tatra National Park. POLISH JOURNAL OF ECOLOGY 2017. [DOI: 10.3161/15052249pje2017.65.4.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
| | - Agnieszka Ważna
- Department of Zoology, University of Zielona Góra, Szafrana 1, 65-516 Zielona Góra, Poland
| | - Violeta Muñoz-Fuentes
- Conservation Genetics Group, Senckenberg Research Institute and Natural History Museum Frankfurt, Clamecystrasse 12, Gelnhausen 63571, Germany
| | - Annika Tiesmeyer
- Conservation Genetics Group, Senckenberg Research Institute and Natural History Museum Frankfurt, Clamecystrasse 12, Gelnhausen 63571, Germany
- Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt, Max-von-Laue-Straße 13, Frankfurt am Main 60439, Germany
| | - Jan Cichocki
- Department of Zoology, University of Zielona Góra, Szafrana 1, 65-516 Zielona Góra, Poland
| | - Carsten Nowak
- Conservation Genetics Group, Senckenberg Research Institute and Natural History Museum Frankfurt, Clamecystrasse 12, Gelnhausen 63571, Germany
| |
Collapse
|
39
|
Scicchitano V, Dedeine F, Bagnères AG, Luchetti A, Mantovani B. Genetic diversity and invasion history of the European subterranean termite Reticulitermes urbis (Blattodea, Termitoidae, Rhinotermitidae). Biol Invasions 2017. [DOI: 10.1007/s10530-017-1510-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
40
|
Ottoni C, Van Neer W, De Cupere B, Daligault J, Guimaraes S, Peters J, Spassov N, Prendergast ME, Boivin N, Morales-Muñiz A, Bălăşescu A, Becker C, Benecke N, Boroneant A, Buitenhuis H, Chahoud J, Crowther A, Llorente L, Manaseryan N, Monchot H, Onar V, Osypińska M, Putelat O, Quintana Morales EM, Studer J, Wierer U, Decorte R, Grange T, Geigl EM. The palaeogenetics of cat dispersal in the ancient world. Nat Ecol Evol 2017. [DOI: 10.1038/s41559-017-0139] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
41
|
Large-scale genetic census of an elusive carnivore, the European wildcat (Felis s. silvestris). CONSERV GENET 2016. [DOI: 10.1007/s10592-016-0853-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|