1
|
Wang Z, Wang G, Li Y, Zhang Z. Determinants of carbon sequestration in thinned forests. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175540. [PMID: 39151612 DOI: 10.1016/j.scitotenv.2024.175540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Given global climate change and the projected increases in the greenhouse effect, enhancing the carbon storage capacity of forest ecosystems is especially critical. To fully realize the potential carbon sequestration, it is imperative to understand the drivers affecting carbon storage in forest ecosystems, particularly with disturbances that disrupt existing balance. In this study, we explored the effects of stem-only harvest at various thinning intensities on forest structure and carbon density in middle-aged natural secondary forests, located in the northern temperate zone. Carbon density included aboveground carbon density (ACD), soil organic carbon stocks (SOCD), and total carbon density (TCD), which was the sum of ACD and SOCD. We employed the random forest analysis method to identify significant variables influencing changes in carbon density. Structural equation modelling (SEM) was then used to determine the drivers of changes in forest carbon density. The results showed that moderate thinning (20 %-35 % trees removed), is an effective management practice for increasing the TCD in forests. Although heavy thinning (35.1 %-59.9 % trees removed) accelerated individual growth, it did not fully offset the carbon removed due to thinning. It is noteworthy that light thinning (0-19.9 % trees removed) not only reduced the species richness but also caused a significant number of tree deaths. Large live trees were an important direct determining factor of ACD, but not the only one. In addition, thinning indirectly influenced ACD by reducing canopy density and deformed tree density. The increase in dead tree density had an adverse impact on SOCD, and this phenomenon increased with the passage of recovery time. Conversely, greater thinning intensity enhanced SOCD. Moreover, TCD was directly influenced by tree height, large live trees, and stand density. Furthermore, thinning altered the conifer ratio, thereby influencing tree growth and indirectly controlling the TCD. We believe that this knowledge will be highly beneficial for successful forest management and enhancing the carbon sequestration capacity of forest ecosystems.
Collapse
Affiliation(s)
- Zichun Wang
- College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin 150040, China; Department of Forest Resources Management, University of British Columbia, Vancouver, Canada
| | - Guangyu Wang
- Department of Forest Resources Management, University of British Columbia, Vancouver, Canada
| | - Yaoxiang Li
- College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin 150040, China.
| | - Zheyu Zhang
- College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
2
|
de la Mata R, Zas R. Plasticity in growth is genetically variable and highly conserved across spatial scales in a Mediterranean pine. THE NEW PHYTOLOGIST 2023; 240:542-554. [PMID: 37491863 DOI: 10.1111/nph.19158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 07/04/2023] [Indexed: 07/27/2023]
Abstract
Phenotypic plasticity is a main mechanism for sessile organisms to cope with changing environments. Plasticity is genetically based and can evolve under natural selection so that populations within a species show distinct phenotypic responses to environment. An important question that remains elusive is whether the intraspecific variation in plasticity at different spatial scales is independent from each other. To test whether variation in plasticity to macro- and micro-environmental variation is related among each other, we used growth data of 25 Pinus pinaster populations established in seven field common gardens in NW Spain. Phenotypic plasticity to macro-environmental variation was estimated across test sites while plasticity to micro-environmental variation was estimated by using semivariography and kriging for modeling within-site heterogeneity. We provide empirical evidence of among-population variation in the magnitude of plastic responses to both micro- and macro-environmental variation. Importantly, we found that such responses were positively correlated across spatial scales. Selection for plasticity at one scale of environmental variation may impact the expression of plasticity at other scales, having important consequences on the ability of populations to buffer climate change. These results improve our understanding of the ecological drivers underlying the expression of phenotypic plasticity.
Collapse
Affiliation(s)
- Raul de la Mata
- Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (EBD-CSIC), Sevilla, Andalucía, 41092, Spain
| | - Rafael Zas
- Misión Biológica de Galicia, Consejo Superior de Investigaciones Científicas (MBG-CSIC), Apdo 28, Pontevedra, 36080, Spain
| |
Collapse
|
3
|
Merino G, Ramírez-Barahona S, Olson ME, Núñez-Farfán J, García-Oliva F, Eguiarte LE. Distribution and morphological variation of tree ferns (Cyatheaceae) along an elevation gradient. PLoS One 2023; 18:e0291945. [PMID: 37756353 PMCID: PMC10530041 DOI: 10.1371/journal.pone.0291945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
Knowing how species and communities respond to environmental change is fundamental in the context of climate change. The search for patterns of abundance and phenotypic variation along altitudinal gradients can provide evidence on adaptive limits. We evaluated the species abundance and the variation in morphometric and stomatal characters in five tree ferns species (Cyathea fulva, C. divergens, C. myosuroides, Alsophila firma and Gymnosphaera salvinii) distributed along an elevation gradient in a well-preserved Mexican cloud forest. Variation at the community and species level was assessed using exploratory and multivariate data analysis methods. We wanted to explore if the species abundance is environmentally determined, to determine the degree of variation along the elevation gradient, to test for differences between zones and associations with elevation, humidity and soil nutrients, and to assess contribution of the intra- and interspecific variation to the community response to elevation and soil nutrients. The studied fern community showed strong species turnover along the elevation gradient, with some influence of soil nutrient concentration, supporting environmental determinism. All measured characters displayed variation along the gradient. Stomatal characters (size and density) had significantly less variation than morphometric characters (trunk diameter, stipe length and blade length), but stomatal density also shows interesting intraspecific patterns. In general, patterns within the fern community suggest a strong influence of species identity, especially of species inhabiting the lower edge of the cloud forest, which showed the clearest morphometric and stomatal patterns, associated to contrasting environments rather than to changes in elevation. The coincidence between morphometric and stomatal patterns in this area suggest hydraulic adjustments in response to contrasting environments. Our results provide evidence that tree ferns species respond to environmental changes through adjustments of morphometric plasticity and stomatal density, which is relevant to predict possible responses to variation in environmental conditions resulting from climate change.
Collapse
Affiliation(s)
- Gabriel Merino
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Unidad de Posgrado, Ciudad Universitaria, Coyoacán, Mexico City, Mexico
| | - Santiago Ramírez-Barahona
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Mark E. Olson
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Juan Núñez-Farfán
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Felipe García-Oliva
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México (UNAM), Morelia, Michoacán, Mexico
| | - Luis E. Eguiarte
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
4
|
Ramírez-Valiente JA, Solé-Medina A, Pyhäjärvi T, Savolainen O, Heer K, Opgenoorth L, Danusevicius D, Robledo-Arnuncio JJ. Adaptive responses to temperature and precipitation variation at the early-life stages of Pinus sylvestris. THE NEW PHYTOLOGIST 2021; 232:1632-1647. [PMID: 34388269 DOI: 10.1111/nph.17678] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 08/07/2021] [Indexed: 06/13/2023]
Abstract
Early-stage fitness variation has been seldom evaluated at broad scales in forest tree species, despite the long tradition of studying climate-driven intraspecific genetic variation. In this study, we evaluated the role of climate in driving patterns of population differentiation at early-life stages in Pinus sylvestris and explored the fitness and growth consequences of seed transfer within the species range. We monitored seedling emergence, survival and growth over a 2-yr period in a multi-site common garden experiment which included 18 European populations and spanned 25° in latitude and 1700 m in elevation. Climate-fitness functions showed that populations exhibited higher seedling survival and growth at temperatures similar to their home environment, which is consistent with local adaptation. Northern populations experienced lower survival and growth at warmer sites, contrary to previous studies on later life stages. Seed mass was higher in populations from warmer areas and was positively associated with survival and growth at more southern sites. Finally, we did not detect a survival-growth trade-off; on the contrary, bigger seedlings exhibited higher survival probabilities under most climatic conditions. In conclusion, our results reveal that contrasting temperature regimes have played an important role in driving the divergent evolution of P. sylvestris populations at early-life stages.
Collapse
Affiliation(s)
- José Alberto Ramírez-Valiente
- Department of Forest Ecology & Genetics, Forest Research Centre (INIA, CSIC), Ctra. de la Coruña km 7.5, Madrid, 28040, Spain
- Ecological and Forestry Applications Research Centre, CREAF, Campus de Bellaterra (UAB) Edifici C 08193, Cerdanyola del Vallès, Barcelona, Spain
| | - Aida Solé-Medina
- Department of Forest Ecology & Genetics, Forest Research Centre (INIA, CSIC), Ctra. de la Coruña km 7.5, Madrid, 28040, Spain
- Escuela Internacional de Doctorado, Universidad Rey Juan Carlos, C/Tulipán s/n, Móstoles, 28933, Spain
| | - Tanja Pyhäjärvi
- Department of Ecology and Genetics, University of Oulu, Oulu, FI-90014, Finland
- Department of Forest Sciences, University of Helsinki, Helsinki, FI-00014, Finland
| | - Outi Savolainen
- Conservation Biology, Philipps Universität Marburg, Karl-von-Frisch Strasse 8, Marburg, 35043, Germany
| | - Katrin Heer
- Plant Ecology and Geobotany, Philipps Universität Marburg, Karl-von-Frisch Strasse 8, Marburg, 35043, Germany
| | - Lars Opgenoorth
- Plant Ecology and Geobotany, Philipps Universität Marburg, Karl-von-Frisch Strasse 8, Marburg, 35043, Germany
- Swiss Federal Research Institute WSL, Zürcherstrasse 111, Birmensdorf, 8903, Switzerland
| | - Darius Danusevicius
- Faculty of Forest Science and Evology, Vytautas Magnus University, Studentu str. 11, Akademija, Kaunas, LT-53361, Lithuania
| | - Juan José Robledo-Arnuncio
- Department of Forest Ecology & Genetics, Forest Research Centre (INIA, CSIC), Ctra. de la Coruña km 7.5, Madrid, 28040, Spain
| |
Collapse
|
5
|
Valledor L, Guerrero S, García-Campa L, Meijón M. Proteometabolomic characterization of apical bud maturation in Pinus pinaster. TREE PHYSIOLOGY 2021; 41:508-521. [PMID: 32870277 DOI: 10.1093/treephys/tpaa111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/30/2020] [Accepted: 08/22/2020] [Indexed: 05/03/2023]
Abstract
Bud maturation is a physiological process that implies a set of morphophysiological changes that lead to the transition of growth patterns from young to mature. This transition defines tree growth and architecture, and in consequence traits such as biomass production and wood quality. In Pinus pinaster Aiton, a conifer of great timber value, bud maturation is closely related to polycyclism (multiple growth periods per year). This process causes a lack of apical dominance, and consequently increased branching that reduces its timber quality and value. However, despite its importance, little is known about bud maturation. In this work, proteomics and metabolomics were employed to study apical and basal sections of young and mature buds in P. pinaster. Proteins and metabolites in samples were described and quantified using (n)UPLC-LTQ-Orbitrap. The datasets were analyzed employing an integrative statistical approach, which allowed the determination of the interactions between proteins and metabolites and the different bud sections and ages. Specific dynamics of proteins and metabolites such as histones H3 and H4, ribosomal proteins L15 and L12, chaperonin TCP1, 14-3-3 protein gamma, gibberellins A1, A3 and A8, strigolactones and abscisic acid, involved in epigenetic regulation, proteome remodeling, hormonal signaling and abiotic stress pathways showed their potential role during bud maturation. Candidates and pathways were validated employing interaction databases and targeted transcriptomics. These results increase our understanding of the molecular processes behind bud maturation, a key step towards improving timber production and natural pine forests management in a future scenario of climate change. However, further studies are necessary using different P. pinaster populations that show contrasting wood quality and stress tolerance in order to generalize the results.
Collapse
Affiliation(s)
- Luis Valledor
- Plant Physiology, Department of Organisms and Systems Biology, C/Catedrático Rodrigo Uría, University of Oviedo, Oviedo 33071, Asturias, Spain
| | - Sara Guerrero
- Plant Physiology, Department of Organisms and Systems Biology, C/Catedrático Rodrigo Uría, University of Oviedo, Oviedo 33071, Asturias, Spain
| | - Lara García-Campa
- Plant Physiology, Department of Organisms and Systems Biology, C/Catedrático Rodrigo Uría, University of Oviedo, Oviedo 33071, Asturias, Spain
| | - Mónica Meijón
- Plant Physiology, Department of Organisms and Systems Biology, C/Catedrático Rodrigo Uría, University of Oviedo, Oviedo 33071, Asturias, Spain
| |
Collapse
|
6
|
Vizcaíno-Palomar N, Fady B, Alía R, Raffin A, Mutke S, Benito Garzón M. The legacy of climate variability over the last century on populations' phenotypic variation in tree height. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 749:141454. [PMID: 32814202 DOI: 10.1016/j.scitotenv.2020.141454] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/21/2020] [Accepted: 08/01/2020] [Indexed: 06/11/2023]
Abstract
Phenotypic plasticity and local adaptation are the two main processes underlying trait variability. Under rapid environmental change, phenotypic plasticity, if adaptive, could increase the odds for organisms to persist. However, little is known on how environmental variation has shaped plasticity across species ranges over time. Here, we assess whether the portion of phenotypic variation of tree populations linked to the environment is related to the inter-annual climate variability of the last century and how it varies among populations across species ranges and age. To this aim, we used 372,647 individual tree height measurements of three pine species found in low elevation forests in Europe: Pinus nigra Arnold, P. pinaster Aiton and P. pinea L. Measurements were taken in a network of 38 common gardens established in Europe and North Africa with 315 populations covering the distribution range of the species. We fitted linear mixed-effect models of tree height as a function of age, population, climate and competition effects. Models allowed us to estimate tree height response curves at the population level and indexes of populations' phenotypic variation, as a proxy of phenotypic plasticity, at 4, 8 and 16 years old, and relate these indexes to the inter-annual climate variability of the last century. We found that phenotypic variation in tree height was higher in young trees than in older ones. We also found that P. pinea showed the highest phenotypic variation in tree height compared with P. pinaster and P. nigra. Finally, phenotypic variation in tree height may be partly adaptive, and differently across species, as climate variability during the last century at the origin of the populations explained between 51 and 69% of the current phenotypic variation of P. nigra and P. pinea, almost twice of the levels of P. pinaster. MAIN CONCLUSIONS: Populations' phenotypic variation in tree height is largely explained by the climate variability that the populations experienced during the last century, which we attribute to the genetic diversity among populations.
Collapse
Affiliation(s)
| | - Bruno Fady
- INRAE, Unité de Recherches Ecologie des Forêts Méditerranéennes (URFM), Avignon, France.
| | - Ricardo Alía
- INIA, Forest Research Centre & iuFOR UVa-INIA, Ctra La Coruña km 7.5, 28040 Madrid, Spain.
| | - Annie Raffin
- INRAE, Unité Expérimentale Forêt Pierroton (UEFP), 33610 Cestas, France.
| | - Sven Mutke
- INIA, Forest Research Centre & iuFOR UVa-INIA, Ctra La Coruña km 7.5, 28040 Madrid, Spain.
| | | |
Collapse
|
7
|
Santini F, Climent JM, Voltas J. Phenotypic integration and life history strategies among populations of Pinus halepensis: an insight through structural equation modelling. ANNALS OF BOTANY 2020; 124:1161-1172. [PMID: 31115443 PMCID: PMC6943711 DOI: 10.1093/aob/mcz088] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 05/20/2019] [Indexed: 05/26/2023]
Abstract
BACKGROUND AND AIMS Understanding inter-population variation in the allocation of resources to specific anatomical compartments and physiological processes is crucial to disentangle adaptive patterns in forest species. This work aims to evaluate phenotypic integration and trade-offs among functional traits as determinants of life history strategies in populations of a circum-Mediterranean pine that dwells in environments where water and other resources are in limited supply. METHODS Adult individuals of 51 populations of Pinus halepensis grown in a common garden were characterized for 11 phenotypic traits, including direct and indirect measures of water uptake at different depths, leaf area, stomatal conductance, chlorophyll content, non-structural carbohydrates, stem diameter and tree height, age at first reproduction and cone production. The population differentiation in these traits was tested through analysis of variance (ANOVA). The resulting populations' means were carried forward to a structural equation model evaluating phenotypic integration between six latent variables (summer water uptake depth, summer transpiration, spring photosynthetic capacity, growth, reserve accumulation and reproduction). KEY RESULTS Water uptake depth and transpiration covaried negatively among populations, as the likely result of a common selective pressure for drought resistance, while spring photosynthetic capacity was lower in populations originating from dry areas. Transpiration positively influenced growth, while growth was negatively related to reproduction and reserves among populations. Water uptake depth negatively influenced reproduction. CONCLUSIONS The observed patterns indicate a differentiation in life cycle features between fast-growing and slow-growing populations, with the latter investing significantly more in reproduction and reserves. We speculate that such contrasting strategies result from different arrays of life history traits underlying the very different ecological conditions that the Aleppo pine must face across its distribution range. These comprise, principally, drought as the main stressor and fire as the main ecological disturbance of the Mediterranean basin.
Collapse
Affiliation(s)
- Filippo Santini
- Joint Research Unit CTFC – AGROTECNIO, Lleida, Spain
- Department of Crop and Forest Sciences, University of Lleida, Lleida, Spain
| | - José M Climent
- INIA-CIFOR, Department of Ecology and Forest Genetics, Madrid, Spain
| | - Jordi Voltas
- Joint Research Unit CTFC – AGROTECNIO, Lleida, Spain
- Department of Crop and Forest Sciences, University of Lleida, Lleida, Spain
| |
Collapse
|
8
|
Thinning Effects on the Tree Height–Diameter Allometry of Masson Pine (Pinus massoniana Lamb.). FORESTS 2019. [DOI: 10.3390/f10121129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The stem height–diameter allometric relationship is fundamental in determining forest and ecosystem structures as well as in estimating tree volume, biomass, and carbon stocks. Understanding the effects of silvicultural practices on tree height–diameter allometry is necessary for sustainable forest management, though the impact of measures such as thinning on the allometric relationship remain understudied. In the present study, the effects of thinning on tree height–diameter allometry were evaluated using Masson pine height and diameter growth data from a plantation experiment that included unthinned and thinned treatments with different intensities. To determine whether thinning altered the height–diameter allometry rhythm, the optimal height–diameter model was identified and dummy variable methods were used to investigate the differences among model parameters for different thinning treatments. Periodic (annual) allometric coefficients were calculated based on height and diameter increment data and were modeled using the generalized additive mixed model (GAMM) to further illustrate the response of tree height–diameter allometry to different thinning treatments over time. Significant differences were detected among the parameters of the optimal height–diameter model (power function) for different thinning treatments, which indicated that the pattern of the height–diameter allometry relationship of Masson pine was indeed altered by thinning treatments. Results also indicated a nonlinear trend in the allometric relationship through time which was significantly affected by thinning. The height–diameter allometric coefficient exhibited a unimodal convex bell curve with time in unthinned plots, and thinning significantly interfered with the original trend of the height–diameter allometric coefficient. Thinning caused trees to increase diameter growth at the expense of height growth, resulting in a decrease of the ratio of tree height to diameter, and this trend was more obvious as the thinning intensity increased.
Collapse
|
9
|
Rudgers JA, Hallmark A, Baker SR, Baur L, Hall KM, Litvak ME, Muldavin EH, Pockman WT, Whitney KD. Sensitivity of dryland plant allometry to climate. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13463] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
| | - Alesia Hallmark
- Department of Biology University of New Mexico Albuquerque NM USA
| | | | - Lauren Baur
- Department of Biology University of New Mexico Albuquerque NM USA
| | | | - Marcy E. Litvak
- Department of Biology University of New Mexico Albuquerque NM USA
| | | | | | | |
Collapse
|
10
|
Species Mixing Effects on Height–Diameter and Basal Area Increment Models for Scots Pine and Maritime Pine. FORESTS 2019. [DOI: 10.3390/f10030249] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Models that incorporate known species-mixing effects on tree growth are essential tools to properly design silvicultural guidelines for mixed-species stands. Here, we developed generalized height–diameter (h-d) and basal area growth models for mixed stands of two main forest species in Spain: Scots pine (Pinus sylvestris L.) and Maritime pine (Pinus pinaster Ait.). Mixed-effects models were fitted from plot measurement and tree rings data from 726 Scots pine and 693 Maritime pine trees from mixed and pure stands in the Northern Iberian Range in Spain, with the primary objective of representing interactions between the species where they are interspersed in mixtures of varying proportions. An independent dataset was used to test the performance of the h-d models against models previously fitted for monospecific stands of both species. Basal area increment models were evaluated using a 10-fold block cross-validation procedure. We found that species mixing had contrasting effects on the species in both models. In h-d models, the species-mixing proportion determined the effect of species interactions. Basal area growth models showed that interspecific competition was influential only for Maritime pine; however, these effects differed depending on the mode of competition. For Scots pine, tree growth was not restricted by interspecies competition. The combination of mixed-effect models and the inclusion of parameters expressing species-mixing enhanced estimates of tree height and basal area growth compared with the available models previously developed for pure stands. Although the species-mixing effects were successfully represented in the fitted models, additional model components for accurately simulating the stand dynamics of mixtures with Scots pine and Maritime pine and other species mixtures require similar model refinements. Upon the completion of analyses required for these model refinements, the degree of improvement in simulating growth in species mixtures, including the effects of different management options, can be evaluated.
Collapse
|
11
|
Bachofen C, Wohlgemuth T, Moser B. Biomass partitioning in a future dry and
CO
2
enriched climate: Shading aggravates drought effects in Scots pine but not European black pine seedlings. J Appl Ecol 2019. [DOI: 10.1111/1365-2664.13325] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Christoph Bachofen
- Forest DynamicsSwiss Federal Institute for Forest, Snow and Landscape Research WSL Birmensdorf Switzerland
- Department of Environmental Systems ScienceETH Zurich Zürich Switzerland
| | - Thomas Wohlgemuth
- Forest DynamicsSwiss Federal Institute for Forest, Snow and Landscape Research WSL Birmensdorf Switzerland
| | - Barbara Moser
- Forest DynamicsSwiss Federal Institute for Forest, Snow and Landscape Research WSL Birmensdorf Switzerland
| |
Collapse
|
12
|
Gao SB, Mo LD, Zhang LH, Zhang JL, Wu JB, Wang JL, Zhao NX, Gao YB. Phenotypic plasticity vs. local adaptation in quantitative traits differences of Stipa grandis in semi-arid steppe, China. Sci Rep 2018; 8:3148. [PMID: 29453378 PMCID: PMC5816645 DOI: 10.1038/s41598-018-21557-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 02/06/2018] [Indexed: 11/09/2022] Open
Abstract
Whether plants are able to adapt to environmental changes depends on their genetic characteristics and phenotypic plastic responses. We investigated the phenotypic responses of 7 populations of an important dominant species in semi-arid steppe of China - Stipa grandis, and then distinguished which adaptive mechanism(s), phenotypic plasticity or local adaptation, was/were involved in this species to adapt to environmental changes. (1) All traits were significantly influenced by the interaction of population and growth condition and by population in each condition, and inter-population variability (CVinter) was larger in the field than in the common garden for 8/9 traits, indicating that both phenotypic plasticity and genetic differentiation controlled the phenotypic differences of S. grandis. (2) From a functional standpoint, the significant relationships between the values of traits in the common garden and the environmental variables in their original habitats couldn't support local habitat adaptation of these traits. (3) Low CVintra, low quantitative differentiation among populations (Q ST ), and low plasticity shown in the western populations indicated the very low adaptive potential of S. grandis to environmental changes. (4) From the original habitats to the common garden which is far away from S. grandis distribution region, positive phenotypic responses were found in several populations, indicating that some original habitats have become unfavorable for S. grandis.
Collapse
Affiliation(s)
- Shao-Bo Gao
- Department of Plant Biology and Ecology, College of Life Science, Nankai University, Tianjin, 300071, P.R. China
| | - Li-Dong Mo
- Department of Plant Biology and Ecology, College of Life Science, Nankai University, Tianjin, 300071, P.R. China
| | - Li-Hong Zhang
- Department of Plant Biology and Ecology, College of Life Science, Nankai University, Tianjin, 300071, P.R. China
| | - Jian-Li Zhang
- Department of Plant Biology and Ecology, College of Life Science, Nankai University, Tianjin, 300071, P.R. China
| | - Jian-Bo Wu
- Department of Plant Biology and Ecology, College of Life Science, Nankai University, Tianjin, 300071, P.R. China
| | - Jin-Long Wang
- College of Agronomy & Resources and Environment, Tianjin Agricultural University, Tianjin, 300384, P.R. China
| | - Nian-Xi Zhao
- Department of Plant Biology and Ecology, College of Life Science, Nankai University, Tianjin, 300071, P.R. China.
| | - Yu-Bao Gao
- Department of Plant Biology and Ecology, College of Life Science, Nankai University, Tianjin, 300071, P.R. China
| |
Collapse
|
13
|
Vizcaíno-Palomar N, Ibáñez I, González-Martínez SC, Zavala MA, Alía R. Adaptation and plasticity in aboveground allometry variation of four pine species along environmental gradients. Ecol Evol 2016; 6:7561-7573. [PMID: 31110659 PMCID: PMC6512899 DOI: 10.1002/ece3.2153] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 02/22/2016] [Accepted: 03/20/2016] [Indexed: 02/01/2023] Open
Abstract
Plant species aboveground allometry can be viewed as a functional trait that reflects the evolutionary trade-off between above- and belowground resources. In forest trees, allometry is related to productivity and resilience in different environments, and it is tightly connected with a compromise between efficiency-safety and competitive ability. A better understanding on how this trait varies within and across species is critical to determine the potential of a species/population to perform along environmental gradients. We followed a hierarchical framework to assess tree height-diameter allometry variation within and across four common European Pinus species. Tree height-diameter allometry variation was a function of solely genetic components -approximated by either population effects or clinal geographic responses of the population's site of origin- and differential genetic plastic responses -approximated by the interaction between populations and two climatic variables of the growing sites (temperature and precipitation)-. Our results suggest that, at the species level, climate of the growing sites set the tree height-diameter allometry of xeric and mesic species (Pinus halepensis, P. pinaster and P. nigra) apart from the boreal species (P. sylvestris), suggesting a weak signal of their phylogenies in the tree height-diameter allometry variation. Moreover, accounting for interpopulation variability within species for the four pine species aided to: (1) detect genetic differences among populations in allometry variation, which in P. nigra and P. pinaster were linked to gene pools -genetic diversity measurements-; (2) reveal the presence of differential genetic variation in plastic responses along two climatic gradients in tree allometry variation. In P. sylvestris and P. nigra, genetic variation was the result of adaptive patterns to climate, while in P. pinaster and P. halepensis, this signal was either weaker or absent, respectively; and (3) detect local adaptation in the exponent of the tree height-diameter allometry relationship in two of the four species (P. sylvestris and P. nigra), as it was a function of populations' latitude and altitude variables. Our findings suggest that the four species have been subjected to different historical and climatic constraints that might have driven their aboveground allometry and promoted different life strategies.
Collapse
Affiliation(s)
- Natalia Vizcaíno-Palomar
- Department of Forest Ecology and Genetics Forest Research Centre (INIA) Ctra. A Coruña, km 7.5 28040 Madrid Spain.,Forest Ecology and Restoration Group Department of Life Sciences Universidad de Alcalá Science Building Campus Universitario, 28871 Alcalá de Henares Madrid Spain
| | - Inés Ibáñez
- School of Natural Resources and Environment University of Michigan Ann Arbor Michigan 48109
| | - Santiago C González-Martínez
- Department of Forest Ecology and Genetics Forest Research Centre (INIA) Ctra. A Coruña, km 7.5 28040 Madrid Spain.,Sustainable Forest Management Research Institute University of Valladolid-INIA Avd. Madrid s/n 34004 Palencia Spain.,BIOGECO, INRA University of Bordeaux 33610 Cestas France
| | - Miguel A Zavala
- Forest Ecology and Restoration Group Department of Life Sciences Universidad de Alcalá Science Building Campus Universitario, 28871 Alcalá de Henares Madrid Spain
| | - Ricardo Alía
- Department of Forest Ecology and Genetics Forest Research Centre (INIA) Ctra. A Coruña, km 7.5 28040 Madrid Spain.,Sustainable Forest Management Research Institute University of Valladolid-INIA Avd. Madrid s/n 34004 Palencia Spain
| |
Collapse
|