1
|
Twining CW, Bernhardt JR, Derry AM, Hudson CM, Ishikawa A, Kabeya N, Kainz MJ, Kitano J, Kowarik C, Ladd SN, Leal MC, Scharnweber K, Shipley JR, Matthews B. The evolutionary ecology of fatty-acid variation: Implications for consumer adaptation and diversification. Ecol Lett 2021; 24:1709-1731. [PMID: 34114320 DOI: 10.1111/ele.13771] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/20/2021] [Accepted: 04/09/2021] [Indexed: 12/20/2022]
Abstract
The nutritional diversity of resources can affect the adaptive evolution of consumer metabolism and consumer diversification. The omega-3 long-chain polyunsaturated fatty acids eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3) have a high potential to affect consumer fitness, through their widespread effects on reproduction, growth and survival. However, few studies consider the evolution of fatty acid metabolism within an ecological context. In this review, we first document the extensive diversity in both primary producer and consumer fatty acid distributions amongst major ecosystems, between habitats and amongst species within habitats. We highlight some of the key nutritional contrasts that can shape behavioural and/or metabolic adaptation in consumers, discussing how consumers can evolve in response to the spatial, seasonal and community-level variation of resource quality. We propose a hierarchical trait-based approach for studying the evolution of consumers' metabolic networks and review the evolutionary genetic mechanisms underpinning consumer adaptation to EPA and DHA distributions. In doing so, we consider how the metabolic traits of consumers are hierarchically structured, from cell membrane function to maternal investment, and have strongly environment-dependent expression. Finally, we conclude with an outlook on how studying the metabolic adaptation of consumers within the context of nutritional landscapes can open up new opportunities for understanding evolutionary diversification.
Collapse
Affiliation(s)
- Cornelia W Twining
- Max Planck Institute of Animal Behavior, Radolfzell, Germany.,Limnological Institute, University of Konstanz, Konstanz-Egg, Germany
| | - Joey R Bernhardt
- Department of Biology, McGill University, Montréal, QC, Canada.,Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| | - Alison M Derry
- Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, QC, Canada
| | - Cameron M Hudson
- Department of Fish Ecology and Evolution, Eawag, Center of Ecology, Evolution and Biochemistry, Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
| | - Asano Ishikawa
- Ecological Genetics Laboratory, National Institute of Genetics, Shizuoka, Japan
| | - Naoki Kabeya
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology (TUMSAT, Tokyo, Japan
| | - Martin J Kainz
- WasserCluster Lunz-Inter-university Center for Aquatic Ecosystems Research, Lunz am See, Austria
| | - Jun Kitano
- Ecological Genetics Laboratory, National Institute of Genetics, Shizuoka, Japan
| | - Carmen Kowarik
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Sarah Nemiah Ladd
- Ecosystem Physiology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Miguel C Leal
- ECOMARE and CESAM - Centre for Environmental and Marine Studies and Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Kristin Scharnweber
- Department of Ecology and Genetics; Limnology, Uppsala University, Uppsala, Sweden.,University of Potsdam, Plant Ecology and Nature Conservation, Potsdam-Golm, Germany
| | - Jeremy R Shipley
- Max Planck Institute of Animal Behavior, Radolfzell, Germany.,Department of Fish Ecology and Evolution, Eawag, Center of Ecology, Evolution and Biochemistry, Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
| | - Blake Matthews
- Department of Fish Ecology and Evolution, Eawag, Center of Ecology, Evolution and Biochemistry, Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
| |
Collapse
|
2
|
Goossens S, Wybouw N, Van Leeuwen T, Bonte D. The physiology of movement. MOVEMENT ECOLOGY 2020; 8:5. [PMID: 32042434 PMCID: PMC7001223 DOI: 10.1186/s40462-020-0192-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 01/08/2020] [Indexed: 05/05/2023]
Abstract
Movement, from foraging to migration, is known to be under the influence of the environment. The translation of environmental cues to individual movement decision making is determined by an individual's internal state and anticipated to balance costs and benefits. General body condition, metabolic and hormonal physiology mechanistically underpin this internal state. These physiological determinants are tightly, and often genetically linked with each other and hence central to a mechanistic understanding of movement. We here synthesise the available evidence of the physiological drivers and signatures of movement and review (1) how physiological state as measured in its most coarse way by body condition correlates with movement decisions during foraging, migration and dispersal, (2) how hormonal changes underlie changes in these movement strategies and (3) how these can be linked to molecular pathways. We reveale that a high body condition facilitates the efficiency of routine foraging, dispersal and migration. Dispersal decision making is, however, in some cases stimulated by a decreased individual condition. Many of the biotic and abiotic stressors that induce movement initiate a physiological cascade in vertebrates through the production of stress hormones. Movement is therefore associated with hormone levels in vertebrates but also insects, often in interaction with factors related to body or social condition. The underlying molecular and physiological mechanisms are currently studied in few model species, and show -in congruence with our insights on the role of body condition- a central role of energy metabolism during glycolysis, and the coupling with timing processes during migration. Molecular insights into the physiological basis of movement remain, however, highly refractory. We finalise this review with a critical reflection on the importance of these physiological feedbacks for a better mechanistic understanding of movement and its effects on ecological dynamics at all levels of biological organization.
Collapse
Affiliation(s)
- Steven Goossens
- Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Nicky Wybouw
- Laboratory of Agrozoology, Department of Plants and Crops, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Thomas Van Leeuwen
- Laboratory of Agrozoology, Department of Plants and Crops, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Dries Bonte
- Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| |
Collapse
|
3
|
Dahirel M, Masier S, Renault D, Bonte D. The distinct phenotypic signatures of dispersal and stress in an arthropod model: from physiology to life history. J Exp Biol 2019; 222:jeb.203596. [DOI: 10.1242/jeb.203596] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 07/29/2019] [Indexed: 11/20/2022]
Abstract
Dispersing individuals are expected to encounter costs during transfer and in the novel environment, and may also have experienced stress in their natal patch. Given this, a non-random subset of the population should engage in dispersal and show divergent stress-related responses. This includes physiological shifts as expressed in the metabolome, which form a major part of responses to stress. We analyzed how metabolic profiles and life-history traits varied between dispersers and residents of the model two-spotted spider mite Tetranychus urticae, and whether and how these syndromes varied with exposure to a stressful new host plant (tomato). Regardless of the effect of host plant, we found a physiological dispersal syndrome where, relative to residents, dispersers were characterized by lower leaf consumption and a lower concentration of several amino acids, indicating a potential dispersal-foraging trade-off. As a possible consequence of this lower food intake, dispersers also laid smaller eggs. Responses to tomato were consistent with this plant being a stressor for Tetranychus urticae, including reduced fecundity and reduced feeding. Tomato-exposed mites laid larger eggs, which we interpret as a plastic response to food stress, increasing survival to maturity. Contrary to what was expected from the costs of dispersal and from previous meta-population level studies, there was no interaction between dispersal status and host plant for any of the examined traits, meaning stress impacts were equally incurred by residents and dispersers. We thus provide novel insights in the processes shaping dispersal and the feedbacks on ecological dynamics in spatially structured populations.
Collapse
Affiliation(s)
- Maxime Dahirel
- Ghent University, Department of Biology, B-9000 Ghent, Belgium
- Univ Rennes, CNRS, ECOBIO (Ecosystèmes, biodiversité, évolution) - UMR 6553, F-35000 Rennes, France
| | - Stefano Masier
- Ghent University, Department of Biology, B-9000 Ghent, Belgium
| | - David Renault
- Univ Rennes, CNRS, ECOBIO (Ecosystèmes, biodiversité, évolution) - UMR 6553, F-35000 Rennes, France
- Institut Universitaire de France, Paris, France
| | - Dries Bonte
- Ghent University, Department of Biology, B-9000 Ghent, Belgium
| |
Collapse
|
4
|
Renault D, Laparie M, McCauley SJ, Bonte D. Environmental Adaptations, Ecological Filtering, and Dispersal Central to Insect Invasions. ANNUAL REVIEW OF ENTOMOLOGY 2018; 63:345-368. [PMID: 29029589 DOI: 10.1146/annurev-ento-020117-043315] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Insect invasions, the establishment and spread of nonnative insects in new regions, can have extensive economic and environmental consequences. Increased global connectivity accelerates rates of introductions, while climate change may decrease the barriers to invader species' spread. We follow an individual-level insect- and arachnid-centered perspective to assess how the process of invasion is influenced by phenotypic heterogeneity associated with dispersal and stress resistance, and their coupling, across the multiple steps of the invasion process. We also provide an overview and synthesis on the importance of environmental filters during the entire invasion process for the facilitation or inhibition of invasive insect population spread. Finally, we highlight important research gaps and the relevance and applicability of ongoing natural range expansions in the context of climate change to gain essential mechanistic insights into insect invasions.
Collapse
Affiliation(s)
- David Renault
- University of Rennes 1, UMR CNRS 6553 EcoBio, 35042 Rennes Cedex, France;
- Institut Universitaire de France, 75231 Paris Cedex 05, France
| | - Mathieu Laparie
- URZF, INRA, Forest Zoology Research Unit (0633), 45075 Orléans, France;
| | - Shannon J McCauley
- Department of Biology, University of Toronto, Mississauga, Ontario L5L 1C6, Canada;
| | - Dries Bonte
- Terrestrial Ecology Unit, Department of Biology, Ghent University, B-9090 Ghent, Belgium;
| |
Collapse
|
5
|
Van Petegem K, Moerman F, Dahirel M, Fronhofer EA, Vandegehuchte ML, Van Leeuwen T, Wybouw N, Stoks R, Bonte D. Kin competition accelerates experimental range expansion in an arthropod herbivore. Ecol Lett 2017; 21:225-234. [DOI: 10.1111/ele.12887] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 08/13/2017] [Accepted: 10/27/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Katrien Van Petegem
- Department of Biology Ghent University K.L. Ledeganckstraat 35 9000 Ghent Belgium
| | - Felix Moerman
- Department of Aquatic Ecology Eawag: Swiss Federal Institute of Aquatic Science and Technology Überlanderstrasse 133 CH‐8600 Dübendorf Switzerland
- Department of Evolutionary Biology and Environmental Studies University of Zürich Winterthurerstrasse 190 CH‐8057 Zürich Switzerland
| | - Maxime Dahirel
- Université de Rennes 1 UMR CNRS EcoBio 263 avenue du Général Leclerc 35042 Rennes France
| | - Emanuel A. Fronhofer
- Department of Aquatic Ecology Eawag: Swiss Federal Institute of Aquatic Science and Technology Überlanderstrasse 133 CH‐8600 Dübendorf Switzerland
- Department of Evolutionary Biology and Environmental Studies University of Zürich Winterthurerstrasse 190 CH‐8057 Zürich Switzerland
| | | | - Thomas Van Leeuwen
- Department of Crop Protection Ghent University Faculty of Bioscience Engineering B‐9000 Ghent Belgium
- Evolutionary Biology, IBED University of Amsterdam Science Park 904 – 1098 XH Amsterdam The Netherlands
| | - Nicky Wybouw
- Department of Crop Protection Ghent University Faculty of Bioscience Engineering B‐9000 Ghent Belgium
- Evolutionary Biology, IBED University of Amsterdam Science Park 904 – 1098 XH Amsterdam The Netherlands
| | - Robby Stoks
- Department of Biology University of Leuven Deberiotstraat 32 3000 Leuven Belgium
| | - Dries Bonte
- Department of Biology Ghent University K.L. Ledeganckstraat 35 9000 Ghent Belgium
| |
Collapse
|