1
|
Eldridge DS, Khalil A, Moulton JK, Russo L. Do local and landscape context affect the attractiveness of flower gardens to bees? PLoS One 2024; 19:e0309000. [PMID: 39231092 PMCID: PMC11373812 DOI: 10.1371/journal.pone.0309000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 08/02/2024] [Indexed: 09/06/2024] Open
Abstract
Planting floral resources is a common strategy for increasing the abundance and diversity of beneficial flower-visiting insects in human-modified systems. However, the context of the local area and surrounding landscape may affect the attractiveness of these floral resource provisioning plots. We compared the relative effects of local floral resources and surrounding urban land-use on the abundance of bees on flowering plants in common gardens in eastern Tennessee, USA. We planted four types of common garden plots at each of five different landscapes representing a variety of surrounding land use: 1) Urban Garden, 2) Forage Grassland, 3) Mixed Agriculture, 4) Forest, and 5) Organic Farm. Each common garden plot type had a fixed plant community representing one of three plant families (Asteraceae, Fabaceae, Lamiaceae) or a mix of all three, and all four common gardens were replicated at all the sites. We concurrently sampled bees in the garden plots and in a 50 m radius (local area) around the garden plots. We found that the size of the floral display (i.e. the visual display size of flowers) and diversity of flowers in the local area did not affect bee abundance or species richness in the garden plots. Although there was a significant positive association between developed land use in a 2 km radius and bee abundance in the gardens, the effect was small, and there was no relationship between land use and bee abundance or species richness in the local area. There were significant differences in the composition of the bee community between the local area and garden plots, but the largest determinants of bee community composition and species richness in the gardens were floral display size and variation in the garden plant species in bloom. This finding is promising for anyone wishing to promote pollinator populations by providing more floral resources.
Collapse
Affiliation(s)
- Devon S Eldridge
- Department of Ecology & Evolutionary Biology, University of Tennessee, Knoxville, TN, United States of America
| | - Amani Khalil
- Department of Ecology & Evolutionary Biology, University of Tennessee, Knoxville, TN, United States of America
| | - John K Moulton
- Department of Entomology & Plant Pathology, University of Tennessee, Knoxville, TN, United States of America
| | - Laura Russo
- Department of Ecology & Evolutionary Biology, University of Tennessee, Knoxville, TN, United States of America
| |
Collapse
|
2
|
Gaber H, Ruland F, Jeschke JM, Bernard‐Verdier M. Behavioural changes in the city: The common black garden ant defends aphids more aggressively in urban environments. Ecol Evol 2024; 14:e11639. [PMID: 38962026 PMCID: PMC11221068 DOI: 10.1002/ece3.11639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/30/2024] [Accepted: 06/12/2024] [Indexed: 07/05/2024] Open
Abstract
Urbanisation alters biodiversity patterns and threatens to disrupt mutualistic interactions. Aside from pollination, however, little is known about how mutualisms change in cities. Our study aimed to assess how urbanisation affects the protective mutualism between ants and aphids, investigating potential behavioural changes in mutualistic ants and their implications for aphids in urban environments. To do so, we studied the protective mutualism between the pink tansy aphid (Metopeurum fuscoviride) and the black garden ant (Lasius niger) along an urbanisation gradient in Berlin, Germany. In nine locations along this gradient, we measured aphid colony dynamics and proxies for parasitism, quantified the investment of ants in tending aphids and conducted behavioural assays to test the aggressiveness of ant responses to a simulated attack on the aphids. We found that aphid colonies flourished and were equally tended by ants across the urbanisation gradient, with a consistent positive density dependence between aphid and ant numbers. However, ants from more urbanised sites responded more aggressively to the simulated attack. Our findings suggest that this protective mutualism is not only maintained in the city, but that ants might even rely more on it and defend it more aggressively, as other food resources may become scarce and more unpredictable with urbanisation. We thereby provide unique insights into this type of mutualism in the city, further diversifying the growing body of work on mutualisms across urbanisation gradients.
Collapse
Affiliation(s)
- Hannah Gaber
- Department of BiologyGhent University (Ugent)GhentBelgium
- Institute of Biology, Freie Universität Berlin (FUB)BerlinGermany
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB)BerlinGermany
- Berlin‐Brandenburg Institute of Advanced Biodiversity Research (BBIB)BerlinGermany
| | - Florian Ruland
- Institute of Biology, Freie Universität Berlin (FUB)BerlinGermany
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB)BerlinGermany
- Berlin‐Brandenburg Institute of Advanced Biodiversity Research (BBIB)BerlinGermany
- West Iceland Nature Research CentreStykkisholmurIceland
| | - Jonathan M. Jeschke
- Institute of Biology, Freie Universität Berlin (FUB)BerlinGermany
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB)BerlinGermany
- Berlin‐Brandenburg Institute of Advanced Biodiversity Research (BBIB)BerlinGermany
| | - Maud Bernard‐Verdier
- Institute of Biology, Freie Universität Berlin (FUB)BerlinGermany
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB)BerlinGermany
- Berlin‐Brandenburg Institute of Advanced Biodiversity Research (BBIB)BerlinGermany
| |
Collapse
|
3
|
Christman ME, Spears LR, Burchfield EK, Pearse WD, Strange JP, Ramirez RA. Bumble bee responses to climate and landscapes: Investigating habitat associations and species assemblages across geographic regions in the United States of America. GLOBAL CHANGE BIOLOGY 2024; 30:e17380. [PMID: 38925582 DOI: 10.1111/gcb.17380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 05/19/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024]
Abstract
Bumble bees are integral pollinators of native and cultivated plant communities, but species are undergoing significant changes in range and abundance on a global scale. Climate change and land cover alteration are key drivers in pollinator declines; however, limited research has evaluated the cumulative effects of these factors on bumble bee assemblages. This study tests bumble bee assemblage (calculated as richness and abundance) responses to climate and land use by modeling species-specific habitat requirements, and assemblage-level responses across geographic regions. We integrated species richness, abundance, and distribution data for 18 bumble bee species with site-specific bioclimatic, landscape composition, and landscape configuration data to evaluate the effects of multiple environmental stressors on bumble bee assemblages throughout 433 agricultural fields in Florida, Indiana, Kansas, Kentucky, Maryland, South Carolina, Utah, Virginia, and West Virginia from 2018 to 2020. Distinct east versus west groupings emerged when evaluating species-specific habitat associations, prompting a detailed evaluation of bumble bee assemblages by geographic region. Maximum temperature of warmest month and precipitation of driest month had a positive impact on bumble bee assemblages in the Corn Belt/Appalachian/northeast, southeast, and northern plains regions, but a negative impact on the mountain region. Further, forest land cover surrounding agricultural fields was highlighted as supporting more rich and abundant bumble bee assemblages. Overall, climate and land use combine to drive bumble bee assemblages, but how those processes operate is idiosyncratic and spatially contingent across regions. From these findings, we suggested regionally specific management practices to best support rich and abundant bumble bee assemblages in agroecosystems. Results from this study contribute to a better understanding of climate and landscape factors affecting bumble bees and their habitats throughout the United States.
Collapse
Affiliation(s)
- Morgan E Christman
- Department of Biology, Utah State University, Logan, Utah, USA
- Ecology Center, Utah State University, Logan, Utah, USA
- Department of Entomology, The Ohio State University, Columbus, Ohio, USA
| | | | - Emily K Burchfield
- Department of Environmental Sciences, Emory University, Atlanta, Georgia, USA
| | - William D Pearse
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire, UK
| | - James P Strange
- Department of Entomology, The Ohio State University, Columbus, Ohio, USA
| | - Ricardo A Ramirez
- Department of Biology, Utah State University, Logan, Utah, USA
- Ecology Center, Utah State University, Logan, Utah, USA
- Department of Entomology, Plant Pathology and Weed Science, New Mexico State University, Las Cruces, New Mexico, USA
| |
Collapse
|
4
|
Belitz MW, Sawyer A, Hendrick LK, Kawahara AY, Guralnick RP. Substantial urbanization-driven declines of larval and adult moths in a subtropical environment. GLOBAL CHANGE BIOLOGY 2024; 30:e17241. [PMID: 38525809 DOI: 10.1111/gcb.17241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/26/2024]
Abstract
Recent work has shown the decline of insect abundance, diversity and biomass, with potential implications for ecosystem services. These declines are especially pronounced in regions with high human activity, and urbanization is emerging as a significant contributing factor. However, the scale of these declines and the traits that determine variation in species-specific responses remain less well understood, especially in subtropical and tropical regions, where insect diversity is high and urban footprints are rapidly expanding. Here, we surveyed moths across an entire year in protected forested sites across an urbanization gradient to test how caterpillar and adult life stages of subtropical moths (Lepidoptera) are impacted by urbanization. Specifically, we assess how urban development affects the total biomass of caterpillars, abundance of adult moths and quantify how richness and phylogenetic diversity of macro-moths are impacted by urban development. Additionally, we explore how life-history traits condition species' responses to urban development. At the community level, we find that urban development decreases caterpillar biomass and adult moth abundance. We also find sharp declines of adult macro-moths in response to urban development across the phylogeny, leading to a decrease in species richness and phylogenetic diversity in more urban sites. Finally, our study found that smaller macro-moths are less impacted by urban development than larger macro-moths in subtropical environments, perhaps highlighting the tradeoffs of metabolic costs of urban heat favoring smaller moths over the relative benefits of dispersal for larger moths. In summary, our research underscores the far-reaching consequences of urbanization on moths and provides compelling evidence that urban forests alone may not be sufficient to safeguard biodiversity in cities.
Collapse
Affiliation(s)
- Michael W Belitz
- Florida Museum of Natural History, University of Florida, Gainesville, Florida, USA
- Biodiversity Institute, University of Florida, Gainesville, Florida, USA
- Ecology, Evolution, and Behavior Program, Department of Integrative Biology, Michigan State University, East Lansing, Michigan, USA
| | - Asia Sawyer
- Florida Museum of Natural History, University of Florida, Gainesville, Florida, USA
| | - Lillian K Hendrick
- Florida Museum of Natural History, University of Florida, Gainesville, Florida, USA
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, Florida, USA
| | - Akito Y Kawahara
- Florida Museum of Natural History, University of Florida, Gainesville, Florida, USA
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, Florida, USA
| | - Robert P Guralnick
- Florida Museum of Natural History, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
5
|
Krahner A, Dietzsch AC, Jütte T, Pistorius J, Everaars J. Standardising bee sampling: A systematic review of pan trapping and associated floral surveys. Ecol Evol 2024; 14:e11157. [PMID: 38500849 PMCID: PMC10944983 DOI: 10.1002/ece3.11157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/19/2024] [Accepted: 03/01/2024] [Indexed: 03/20/2024] Open
Abstract
The use of coloured pan traps (bee bowls, Moericke traps) for sampling bees (and other pollinators) has continuously increased over the last two decades. Although a number of methodological studies and conceptual frameworks offer guidance on standardised sampling, pan trap setups vary widely in characteristics even when optimised for capturing bees. Moreover, some uncertainty persists as to how local flower abundance and diversity influence sampling. We systematically reviewed peer-reviewed studies that used pan traps for bee collection and that were listed in the Web of Science core collection. To gauge methodological variation, we identified a set of relevant methodological criteria and assessed the studies accordingly. For obtaining evidence that pan trap samples and floral environment around traps are correlated, we screened the relevant studies for such correlations. While some aspects of pan trapping (e.g., trap coloration and elevation) were similar in the majority of studies, other aspects varied considerably (e.g., trap volume/diameter and sampling duration). Few studies used floral abundance and/or diversity as an explanatory variable in their analyses of bee samples. Among these studies, we found a considerable variation in key aspects of floral survey methods, such as time and space between vegetation surveys and pan trap sampling, abundance measures (quantitative, semi-quantitative and presence-absence), and processing of raw data prior to analysis. Often studies did not find any correlation between the floral environment and bee samples. Reported correlations varied markedly across studies, even within groups of studies applying a similar method or analysing a similar group of bees. Our synthesis helps to identify key issues of further standardisation of pan trap methodology and of associated floral surveys. In addition to the few aspects that have been standardised over the past decades, we suggest methodological direction for future research using pan traps as a better standardised method for the collection of wild bees. We encourage further studies to illuminate if and how varying floral resources around traps bias bee samples from pan traps. More generally, our synthesis shows that trapping methodologies should be reviewed regularly when their use increases to ensure standardisation.
Collapse
Affiliation(s)
- André Krahner
- Julius Kühn Institute (JKI) – Federal Research Centre for Cultivated Plants, Institute for Bee ProtectionBraunschweigGermany
| | - Anke C. Dietzsch
- Julius Kühn Institute (JKI) – Federal Research Centre for Cultivated Plants, Institute for Bee ProtectionBraunschweigGermany
| | - Tobias Jütte
- Julius Kühn Institute (JKI) – Federal Research Centre for Cultivated Plants, Institute for Bee ProtectionBraunschweigGermany
| | - Jens Pistorius
- Julius Kühn Institute (JKI) – Federal Research Centre for Cultivated Plants, Institute for Bee ProtectionBraunschweigGermany
| | - Jeroen Everaars
- Julius Kühn Institute (JKI) – Federal Research Centre for Cultivated Plants, Institute for Bee ProtectionBraunschweigGermany
| |
Collapse
|
6
|
Marcacci G, Westphal C, Rao VS, Kumar S S, Tharini KB, Belavadi VV, Nölke N, Tscharntke T, Grass I. Urbanization alters the spatiotemporal dynamics of plant-pollinator networks in a tropical megacity. Ecol Lett 2023; 26:1951-1962. [PMID: 37858984 DOI: 10.1111/ele.14324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 09/01/2023] [Indexed: 10/21/2023]
Abstract
Urbanization is a major driver of biodiversity change but how it interacts with spatial and temporal gradients to influence the dynamics of plant-pollinator networks is poorly understood, especially in tropical urbanization hotspots. Here, we analysed the drivers of environmental, spatial and temporal turnover of plant-pollinator interactions (interaction β-diversity) along an urbanization gradient in Bengaluru, a South Indian megacity. The compositional turnover of plant-pollinator interactions differed more between seasons and with local urbanization intensity than with spatial distance, suggesting that seasonality and environmental filtering were more important than dispersal limitation for explaining plant-pollinator interaction β-diversity. Furthermore, urbanization amplified the seasonal dynamics of plant-pollinator interactions, with stronger temporal turnover in urban compared to rural sites, driven by greater turnover of native non-crop plant species (not managed by people). Our study demonstrates that environmental, spatial and temporal gradients interact to shape the dynamics of plant-pollinator networks and urbanization can strongly amplify these dynamics.
Collapse
Affiliation(s)
- Gabriel Marcacci
- Functional Agrobiodiversity, University of Göttingen, Göttingen, Germany
- Swiss Ornithological Institute, Sempach, Switzerland
| | - Catrin Westphal
- Functional Agrobiodiversity, University of Göttingen, Göttingen, Germany
- Centre of Biodiversity and Sustainable Land Use (CBL), University of Göttingen, Göttingen, Germany
| | - Vikas S Rao
- Agricultural Entomology, University of Agricultural Sciences, GKVK, Bangalore, India
| | - Shabarish Kumar S
- Department of Apiculture, University of Agricultural Sciences, GKVK, Bangalore, India
| | - K B Tharini
- Agricultural Entomology, University of Agricultural Sciences, GKVK, Bangalore, India
| | - Vasuki V Belavadi
- Agricultural Entomology, University of Agricultural Sciences, GKVK, Bangalore, India
| | - Nils Nölke
- Forest Inventory and Remote Sensing, Faculty of Forest Sciences and Forest Ecology, University of Göttingen, Göttingen, Germany
| | - Teja Tscharntke
- Centre of Biodiversity and Sustainable Land Use (CBL), University of Göttingen, Göttingen, Germany
- Agroecology, University of Göttingen, Göttingen, Germany
| | - Ingo Grass
- Ecology of Tropical Agricultural Systems, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
7
|
Liang H, He YD, Theodorou P, Yang CF. The effects of urbanization on pollinators and pollination: A meta-analysis. Ecol Lett 2023; 26:1629-1642. [PMID: 37345567 DOI: 10.1111/ele.14277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 05/26/2023] [Accepted: 05/26/2023] [Indexed: 06/23/2023]
Abstract
Urbanization is increasing worldwide, with major impacts on biodiversity, species interactions and ecosystem functioning. Pollination is an ecosystem function vital for terrestrial ecosystems and food security; however, the processes underlying the patterns of pollinator diversity and the ecosystem services they provide in cities have seldom been quantified. Here, we perform a comprehensive meta-analysis of 133 studies examining the effects of urbanization on pollinators and pollination. Our results confirm the widespread negative impacts of urbanization on pollinator richness and abundance, with Lepidoptera being the most affected group. Furthermore, pollinator responses were found to be trait-specific, with below-ground nesting and solitary Hymenoptera, and spring flyers more severely affected by urbanization. Meanwhile, cities promote non-native pollinators, which may exacerbate conservation risks to native species. Surprisingly, despite the negative effects of urbanization on pollinator diversity, pollination service measured as seed set is enhanced in non-tropical cities likely due to abundant generalists and managed pollinators therein. We emphasize that the richness of local flowering plants could mitigate the negative impacts of urbanization on pollinator diversity. Overall, the results demonstrate the varying magnitudes of multiple moderators on urban pollinators and pollination services and could help guide conservation actions for biodiversity and ecosystem function for a sustainable future.
Collapse
Affiliation(s)
- Huan Liang
- Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Yong-Deng He
- Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Panagiotis Theodorou
- General Zoology, Institute of Biology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Chun-Feng Yang
- Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
8
|
ZANINOTTO V, FAUVIAU A, DAJOZ I. Diversity of greenspace design and management impacts pollinator communities in a densely urbanized landscape: the city of Paris, France. Urban Ecosyst 2023. [DOI: 10.1007/s11252-023-01351-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
AbstractThe response of insect pollinator communities to increasing urbanization is shaped by landscape and local factors. But what about habitats that are already highly artificial? We investigated the drivers of pollinator diversity in a dense urban matrix, the city of Paris. We monitored insect pollinator communities monthly (March-October) for two consecutive years in 12 green spaces that differed in their management practices, focusing on four insect orders (Hymenoptera, Diptera, Lepidoptera, Coleoptera). Pollinator abundance and species richness were both positively tied to green space size and flowering plant species richness, but negatively linked to surrounding impervious surfaces. In addition, environmental features at both the local and landscape scales influenced the composition and functional diversity of wild bee communities. Indeed, small and large bees responded differently, with the occurrence of large-bodied species being impaired by the proportion of impervious surfaces but strongly enhanced by plant species richness. Also, sites with a majority of spontaneous plant species had more functionally diverse bee communities, with oligolectic species more likely to be found.These results, consistent with the literature, can guide the design and management practices of urban green spaces to promote pollinator diversity and pollination function, even in dense urban environments.
Collapse
|
9
|
Tavares Brancher KP, Graf LV, Heringer G, Zenni RD. Urbanization and abundance of floral resources affect bee communities in medium‐sized neotropical cities. AUSTRAL ECOL 2023. [DOI: 10.1111/aec.13299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Affiliation(s)
- Karla Palmieri Tavares Brancher
- Programa de Pós‐Graduação em Ecologia Aplicada Instituto de Ciências Naturais, Universidade Federal de Lavras Lavras Minas Gerais Brazil
- Federal Institute of Southern Minas Gerais ‐ Machado Campus Machado Minas Gerais Brazil
| | - Letícia Vanessa Graf
- Graduate Program in Biological Sciences (Entomology) Federal University of Paraná Curitiba Paraná Brazil
| | - Gustavo Heringer
- Programa de Pós‐Graduação em Ecologia Aplicada Instituto de Ciências Naturais, Universidade Federal de Lavras Lavras Minas Gerais Brazil
| | - Rafael Dudeque Zenni
- Programa de Pós‐Graduação em Ecologia Aplicada Instituto de Ciências Naturais, Universidade Federal de Lavras Lavras Minas Gerais Brazil
| |
Collapse
|
10
|
Herrmann J, Buchholz S, Theodorou P. The degree of urbanisation reduces wild bee and butterfly diversity and alters the patterns of flower-visitation in urban dry grasslands. Sci Rep 2023; 13:2702. [PMID: 36792660 PMCID: PMC9932066 DOI: 10.1038/s41598-023-29275-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/01/2023] [Indexed: 02/17/2023] Open
Abstract
Insect-provided pollination services are increasingly threatened due to alarming declines in insect pollinator populations. One of the main threats to insect pollinators and consequently pollination is urbanisation. Here, we investigate the effects of local habitat quality (patch size, flowering plant richness, bare soil cover, vegetation structure), degree of urbanisation (impervious surfaces) and 3D connectivity on bee, hoverfly and butterfly flower visitors and plant-flower visitor networks in flower-rich urban dry grasslands. Overall, the degree of urbanisation and the quality of the local habitat influenced the flowering plant and pollinator communities. Although flowering plant abundance increased with urbanisation, bee species richness and butterfly species richness decreased with increasing impervious surfaces. Flowering plant richness and ground nesting resource availability were positively related to bee richness and local vegetation structure boosted hoverfly and butterfly visitation rates. In terms of plant-pollinator interactions, insect pollinators visited a lower proportion of the available flowering plants in more urbanised areas and network modularity and specialisation increased with patch size. Our findings show that urban dry grasslands are valuable habitats for species-rich pollinator communities and further highlight the importance of minimizing the intensity of urbanisation and the potential of local management practices to support insect biodiversity in cities.
Collapse
Affiliation(s)
- Johann Herrmann
- Department of Ecology, TU Berlin, Rothenburgstraße 12, 12165, Berlin, Germany.
- Institute for Bee Protection, Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Messeweg 11/12, 38104, Braunschweig, Germany.
| | - Sascha Buchholz
- Department of Ecology, TU Berlin, Rothenburgstraße 12, 12165, Berlin, Germany
- Institute of Landscape Ecology, University of Münster, Heisenbergstraße 2, 48149, Münster, Germany
| | - Panagiotis Theodorou
- General Zoology, Institute for Biology, Martin-Luther University Halle-Wittenberg, Hoher Weg 8, 06120, Halle (Saale), Germany.
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103, Leipzig, Germany.
| |
Collapse
|
11
|
Marcacci G, Grass I, Rao VS, Kumar S S, Tharini KB, Belavadi VV, Nölke N, Tscharntke T, Westphal C. Functional diversity of farmland bees across rural-urban landscapes in a tropical megacity. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e2699. [PMID: 35751512 DOI: 10.1002/eap.2699] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 04/18/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
Urbanization poses a major threat to biodiversity and food security, as expanding cities, especially in the Global South, increasingly compete with natural and agricultural lands. However, the impact of urban expansion on agricultural biodiversity in tropical regions is overlooked. Here we assess how urbanization affects the functional response of farmland bees, the most important pollinators for crop production. We sampled bees across three seasons in 36 conventional vegetable-producing farms spread along an urbanization gradient in Bengaluru, an Indian megacity. We investigated how landscape and local environmental drivers affected different functional traits (sociality, nesting behavior, body size, and specialization) and functional diversity (functional dispersion) of bee communities. We found that the functional responses to urbanization were trait specific with more positive than negative effects of gray area (sealed surfaces and buildings) on species richness, functional diversity, and abundance of most functional groups. As expected, larger, solitary, cavity-nesting, and, surprisingly, specialist bees benefited from urbanization. In contrast to temperate cities, the abundance of ground nesters increased in urban areas, presumably because larger patches of bare soil were still available beside roads and buildings. However, overall bee abundance and the abundance of social bees (85% of all bees) decreased with urbanization, threatening crop pollination. Crop diversity promotes taxonomic and functional diversity of bee communities. Locally, flower resources promote the abundance of all functional groups, and natural vegetation can maintain diverse pollinator communities throughout the year, especially during the noncropping season. However, exotic plants decrease functional diversity and bee specialization. To safeguard bees and their pollination services in urban farms, we recommend (1) preserving seminatural vegetation (hedges) around cropping fields to provide nesting opportunities for aboveground nesters, (2) promoting farm-level crop diversification of beneficial crops (e.g., pulses, vegetables, and spices), (3) maintaining native natural vegetation along field margins, and (4) controlling and removing invasive exotic plants that disrupt native plant-pollinator interactions. Overall, our results suggest that urban agriculture can maintain functionally diverse bee communities and, if managed in a sustainable manner, be used to develop win-win solutions for biodiversity conservation of pollinators and food security in and around cities.
Collapse
Affiliation(s)
- Gabriel Marcacci
- Functional Agrobiodiversity, Department of Crop Sciences, University of Göttingen, Göttingen, Germany
| | - Ingo Grass
- Ecology of Tropical Agricultural Systems, University of Hohenheim, Stuttgart, Germany
| | - Vikas S Rao
- Agricultural Entomology, University of Agricultural Sciences, Bangalore, India
| | - Shabarish Kumar S
- Department of Apiculture, University of Agricultural Sciences, Bangalore, India
| | - K B Tharini
- Agricultural Entomology, University of Agricultural Sciences, Bangalore, India
| | - Vasuki V Belavadi
- Agricultural Entomology, University of Agricultural Sciences, Bangalore, India
| | - Nils Nölke
- Forest Inventory and Remote Sensing, Faculty of Forest Sciences and Forest Ecology, University of Göttingen, Göttingen, Germany
| | - Teja Tscharntke
- Agroecology, Department of Crop Sciences, University of Göttingen, Göttingen, Germany
- Centre of Biodiversity and Sustainable Land Use (CBL), University of Göttingen, Göttingen, Germany
| | - Catrin Westphal
- Functional Agrobiodiversity, Department of Crop Sciences, University of Göttingen, Göttingen, Germany
- Centre of Biodiversity and Sustainable Land Use (CBL), University of Göttingen, Göttingen, Germany
| |
Collapse
|
12
|
A large-scale dataset reveals taxonomic and functional specificities of wild bee communities in urban habitats of Western Europe. Sci Rep 2022; 12:18866. [PMID: 36344518 PMCID: PMC9640672 DOI: 10.1038/s41598-022-21512-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/28/2022] [Indexed: 11/09/2022] Open
Abstract
Wild bees are declining, mainly due to the expansion of urban habitats that have led to land-use changes. Effects of urbanization on wild bee communities are still unclear, as shown by contrasting reports on their species and functional diversities in urban habitats. To address this current controversy, we built a large dataset, merging 16 surveys carried out in 3 countries of Western Europe during the past decades, and tested whether urbanization influences local wild bee taxonomic and functional community composition. These surveys encompassed a range of urbanization levels, that were quantified using two complementary metrics: the proportion of impervious surfaces and the human population density. Urban expansion, when measured as a proportion of impervious surfaces, but not as human population density, was significantly and negatively correlated with wild bee community species richness. Taxonomic dissimilarity of the bee community was independent of both urbanization metrics. However, occurrence rates of functional traits revealed significant differences between lightly and highly urbanized communities, for both urbanization metrics. With higher human population density, probabilities of occurrence of above-ground nesters, generalist and small species increased. With higher soil sealing, probabilities of occurrence of above-ground nesters, generalists and social bees increased as well. Overall, these results, based on a large European dataset, suggest that urbanization can have negative impacts on wild bee diversity. They further identify some traits favored in urban environments, showing that several wild bee species can thrive in cities.
Collapse
|
13
|
Persson AS, Westman A, Smith TJ, Mayfield MM, Olsson P, Smith HG, Fuller R. Backyard buzz: human population density modifies the value of vegetation cover for insect pollinators in a subtropical city. Urban Ecosyst 2022. [DOI: 10.1007/s11252-022-01277-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AbstractUrbanisation drives overall declines in insect pollinators. Although urban green spaces can provide suitable habitat for pollinators much remains to be learned about how urban landscapes either promote or negatively impact pollinators. We investigated how backyard design, local (100 m) and landscape (500 m) scale vegetation cover and human population density were associated with non-eusocial native bee species, eusocial bees (Apis mellifera and Tetragonula spp.), and hoverflies, in residential green spaces of the subtropical city Brisbane, Australia. We found that associations between bee abundance and vegetation cover were moderated by human density, but the direction of this effect differed for non-eusocial and eusocial species. Non-eusocial bee abundance was positively associated with tree cover at local and landscape scales when human densities were low, but negatively so at high human population densities. We suggest this may be because the quality of vegetation for non-eusocial bees deteriorates as human density increases. In contrast, abundance of eusocial bees was negatively associated with increasing local cover of grass and shrubs at low levels of human density, but positively associated at high densities. This affinity to humans could partly be explained by domesticated “kept” hives. We found no effect of urban gradients on bee species richness. Hoverfly abundance was negatively related to human density and positively related to vegetation cover at local and landscape scales. At the backyard scale, both bee species richness and bee and hoverfly abundances were positively associated to flower abundance. Backyards with more vegetation cover had higher densities of non-eusocial bees. Our results thus support the idea that urban greening in densely populated areas at multiple spatial scales can benefit a range of insect pollinators.
Collapse
|
14
|
Villalta I, Bouget C, Lopez-Vaamonde C, Baude M. Phylogenetic, functional and taxonomic responses of wild bee communities along urbanisation gradients. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 832:154926. [PMID: 35364149 DOI: 10.1016/j.scitotenv.2022.154926] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/26/2022] [Accepted: 03/26/2022] [Indexed: 06/14/2023]
Abstract
Increasing urbanisation is one of the primary drivers of land-use change that threaten biodiversity. Wild bee communities have been reported with contrasting responses to urbanisation, with varying effects on abundance and taxonomical diversity. The suite of functional traits exhibited by wild bee species might determine their persistence in urban areas. Urbanisation thus can impose an environmental filter with potential consequences on the functional and phylogenetical diversity of wild bee communities. Here, we sampled 2944 wild bee specimens from 156 species in 29 sites located along an urbanisation gradient using a replicated design in three mid-sized cities in the Loire valley (France). We show that urban landscape cover has a negative effect on overall species richness and taxonomical diversity indices, while total abundance remains constant. Species loss was taxon dependent, mainly driven by Andrenidae and Halictidae. Only a few species, especially of the genus Lasioglossum, were positively affected by the urban landscape cover. Urban and peri-urban areas differed in their composition of bee assemblages. Species turnover was the main component of beta diversity, driving community dissimilarities through the urban gradient. Urbanisation favours bees with small body sizes, social structure and extended flight periods but did not affect the phylogenetic or the functional diversity of communities. Our findings have implications for understanding the factors involved in the environmental filter exerted through the urban gradient on bee communities helping to implement conservation measures and managing urban spaces for bees.
Collapse
Affiliation(s)
| | | | - Carlos Lopez-Vaamonde
- IRBI, UMR 7261, Université de Tours, Tours, France; INRAE, UR0633 Zoologie Forestière, Orléans, France
| | - Mathilde Baude
- Université d'Orléans, INRAE USC 1328, LBLGC EA 1207, Orléans, France
| |
Collapse
|
15
|
Gathof AK, Grossmann AJ, Herrmann J, Buchholz S. Who can pass the urban filter? A multi-taxon approach to disentangle pollinator trait-environmental relationships. Oecologia 2022; 199:165-179. [PMID: 35505250 PMCID: PMC9120122 DOI: 10.1007/s00442-022-05174-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 04/19/2022] [Indexed: 11/30/2022]
Abstract
Cities are considered important refuges for insect pollinators. This has been shown repeatedly for wild bees, but may also be true for other diverse taxa such as hoverflies. However, our understanding of how urban environmental filters shape pollinator species communities and their traits is still limited. Here, we used wild bee and hoverfly species, communities and their functional traits to illustrate how environmental filters on the landscape and local scale shape urban species pools. The multi-taxon approach revealed that environmental filtering predominantly occurred at the landscape scale as urbanisation and 3D connectivity significantly structured the taxonomic and functional composition of wild bee (sociality, nesting, diet, body size) and hoverfly (larval food type, migratory status) communities. We identified urban winners and losers attributed to taxon-specific responses to urban filters. Our results suggest that insect pollinator conservation needs to take place primarily at the landscape level while considering species traits, especially by increasing habitat connectivity.
Collapse
Affiliation(s)
| | | | | | - Sascha Buchholz
- Institute of Landscape Ecology, University of Münster, 48149, Münster, Germany.
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), 14195, Berlin, Germany.
| |
Collapse
|
16
|
Zaninotto V, Dajoz I. Keeping Up with Insect Pollinators in Paris. Animals (Basel) 2022; 12:ani12070923. [PMID: 35405911 PMCID: PMC8996892 DOI: 10.3390/ani12070923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 03/31/2022] [Accepted: 04/02/2022] [Indexed: 01/15/2023] Open
Abstract
There is growing interest in urban pollinator communities, although they may be subject to biotic homogenization in densely artificial landscapes. Paris (France) is one of the densest cities in the world, yet over the years many insect pollinator species have been reported there. We conducted in-depth surveys of Parisian green spaces for two years, in order to improve our knowledge of these assemblages. We explored several types of green spaces, monitoring pollinators throughout their activity season. We listed 118 species of wild bees and 37 species of hoverflies, updating pre-existing lists with 32 additional species. Bee assemblages showed functional diversity with 18.5% parasitic species and 17.7% oligolectic species. We also found several bee and hoverfly species under special conservation status. Over the study period, we observed seasonal succession of species, with diversified phenological niches. The greatest taxonomic and functional diversity was found in green spaces combining several habitats with ecological management. Despite its very dense urbanism, Paris is home to diverse pollinator communities. As a result, nearly half of the wild bee species of the wider Ile-de-France administrative region can be found within the city. This highlights the need to also consider dense urban environments in insect pollinator conservation strategies.
Collapse
Affiliation(s)
- Vincent Zaninotto
- Institute of Ecology and Environmental Sciences-Paris (iEES-Paris), Sorbonne Université, CNRS, IRD, INRAE, Université Paris Cité, UPEC, 4 Place Jussieu, 75005 Paris, France;
- Direction des Espaces Verts et de l’Environnement, Mairie de Paris, 103 Avenue de France, 75013 Paris, France
- Correspondence:
| | - Isabelle Dajoz
- Institute of Ecology and Environmental Sciences-Paris (iEES-Paris), Sorbonne Université, CNRS, IRD, INRAE, Université Paris Cité, UPEC, 4 Place Jussieu, 75005 Paris, France;
| |
Collapse
|
17
|
Conflitti IM, Arshad Imrit M, Morrison B, Sharma S, Colla SR, Zayed A. Bees in the six: Determinants of bumblebee habitat quality in urban landscapes. Ecol Evol 2022; 12:e8667. [PMID: 35356573 PMCID: PMC8935973 DOI: 10.1002/ece3.8667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/03/2022] [Accepted: 02/07/2022] [Indexed: 12/02/2022] Open
Abstract
With growing urbanization, it is becoming increasingly important to design cities in a manner that sustains and enhances biodiversity and ecosystem services. Native bees are critical pollinators that have experienced substantive declines over the past several decades. These declines have captured the attention of the public, particularly urbanites, prompting a large interest in protecting pollinators and their habitats in cities across North America and Europe. Unfortunately, we currently lack research about specific features of urban environments that can enhance the fitness of pollinators. We carried out an intensive study of Bombus impatiens, the Common Eastern Bumblebee, in the city of Toronto (Canada's largest city), to better understand landscape parameters that provide high-quality habitat for this species and likely other generalist bees. We divided the city into 270 grid cells and sampled a large number of worker bees, which were then genotyped at twelve hypervariable microsatellite loci. The genetic data allowed us to quantify the effective number of colonies and foraging distance for bumblebees in our study area. We then asked how the city's landscape and human population demography and income are associated with the availability of high-quality habitat for B. impatiens. Several aspects of Toronto's landscape influenced colony density and foraging range. Urbanization had a clear effect on both colony density and foraging distance of workers. On the other hand, functional (i.e., not cosmetic) green space was often associated with higher quality habitats for bumblebees. Our study suggests several planning strategies to enhance habitat quality for bumblebees and other pollinators in cities.
Collapse
Affiliation(s)
| | | | | | - Sapna Sharma
- Department of BiologyYork UniversityTorontoOntarioCanada
| | - Sheila R. Colla
- Faculty of Environmental & Urban ChangeYork UniversityTorontoOntarioCanada
| | - Amro Zayed
- Department of BiologyYork UniversityTorontoOntarioCanada
| |
Collapse
|
18
|
Cecala JM, Wilson Rankin EE. Diversity and turnover of wild bee and ornamental plant assemblages in commercial plant nurseries. Oecologia 2022; 198:773-783. [PMID: 35201380 DOI: 10.1007/s00442-022-05135-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 02/08/2022] [Indexed: 01/30/2023]
Abstract
In human-modified landscapes, understanding how habitat characteristics influence the diversity and composition of beneficial organisms is critical to conservation efforts and modeling ecosystem services. Assessing turnover, or the magnitude of change in species composition across sites or through time, is crucial to said efforts, yet is often overlooked. For pollinators such as wild bees, variables influencing temporal turnover, particularly across seasons within a year, remain poorly understood. To investigate how local and landscape characteristics correlate with bee diversity and turnover across seasons, we recorded wild bee and flowering ornamental plant assemblages at 13 plant nurseries in California between spring and autumn over 2 years. Nurseries cultivate a broad diversity of flowering plant species that differ widely across sites and seasons, providing an opportunity to test for correlations between turnover and diversity of plants and bees. As expected, we documented strong seasonal trends in wild bee diversity and composition. We found that local habitat factors, such as increased cultivation of native plants, were positively associated with bee diversity in sweep netting collections, whereas we detected moderate influences of landscape level factors such as proportion of surrounding natural area in passive trap collections. We also detected a moderate positive correlation between the magnitude of turnover in plant species and that of bee species (as number of taxa gained) across consecutive seasons. Our results have implications for the conservation of wild bees in ornamental plant landscapes, and highlight the utility of plant nurseries for investigating hypotheses related to diversity and turnover in plant-pollinator systems.
Collapse
Affiliation(s)
- Jacob M Cecala
- Department of Entomology, University of California, Riverside, CA, 92521, USA.
| | | |
Collapse
|
19
|
Insect “Bee&Bees” and pollinator penthouses: teaching students about pollinators and their services in an urban environment. Urban Ecosyst 2022. [DOI: 10.1007/s11252-021-01186-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
AbstractPollination services are a frequently overlooked component of urban ecosystems. As cities look to become more sustainable and incorporate more urban green spaces, these pollinator services are coming to the forefront, and educating the public about the habitat and foraging needs of urban pollinators is becoming more important. Increasingly popular features in urban gardens are “bug hotels”, which are artificial structures that humans can install to create habitat or shelter for urban insect pollinators. In a college-level Urban Ecology class, we use a structured classroom activity to teach students about pollinator needs, but also place the activity in a larger context of a discussion about the value of urban landscapes, as well as the importance of evaluating sources of information. Here we describe the steps of a research activity that students undertake to design a “bug hotel”, as well as suggestions for how to extend the activity beyond the classroom.
Collapse
|
20
|
Local plant richness predicts bee abundance and diversity in a study of urban residential yards. Basic Appl Ecol 2022. [DOI: 10.1016/j.baae.2021.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
21
|
Seitz B, Buchholz S, Kowarik I, Herrmann J, Neuerburg L, Wendler J, Winker L, Egerer M. Land sharing between cultivated and wild plants: urban gardens as hotspots for plant diversity in cities. Urban Ecosyst 2022. [DOI: 10.1007/s11252-021-01198-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
AbstractPlant communities in urban gardens consist of cultivated species, including ornamentals and food crops, and wild growing species. Yet it remains unclear what significance urban gardens have for the plant diversity in cities and how the diversity of cultivated and wild plants depends on the level of urbanization. We sampled plants growing within 18 community gardens in Berlin, Germany to investigate the species diversity of cultivated and wild plants. We tested species diversity in relation to local and landscape-scale imperviousness as a measure of urbanity, and we investigated the relationship between cultivated and wild plant species within the gardens. We found that numbers of wild and cultivated plant species in gardens are high – especially of wild plant species – independent of landscape-scale imperviousness. This suggests that all community gardens, regardless of their urban contexts, can be important habitats for plant diversity along with their role in urban food provision. However, the number of all species was negatively predicted by local garden scale imperviousness, suggesting an opportunity to reduce imperviousness and create more habitats for plants at the garden scale. Finally, we found a positive relationship between the number of cultivated and wild growing species, which emphasizes that community gardens present a unique urban ecosystem where land sharing between cultivated and wild flora can transpire. As the urban agriculture movement is flourishing worldwide with gardens continuously and spontaneously arising and dissipating due to urban densification, such botanical investigations can support the argument that gardens are places for the reconciliation of plant conservation and food production.
Collapse
|
22
|
Bila Dubaić J, Simonović S, Plećaš M, Stanisavljević L, Davidović S, Tanasković M, Ćetković A. Unprecedented Density and Persistence of Feral Honey Bees in Urban Environments of a Large SE-European City (Belgrade, Serbia). INSECTS 2021; 12:1127. [PMID: 34940215 PMCID: PMC8706874 DOI: 10.3390/insects12121127] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 11/16/2022]
Abstract
It is assumed that wild honey bees have become largely extinct across Europe since the 1980s, following the introduction of exotic ectoparasitic mite (Varroa) and the associated spillover of various pathogens. However, several recent studies reported on unmanaged colonies that survived the Varroa mite infestation. Herewith, we present another case of unmanaged, free-living population of honey bees in SE Europe, a rare case of feral bees inhabiting a large and highly populated urban area: Belgrade, the capital of Serbia. We compiled a massive data-set derived from opportunistic citizen science (>1300 records) during the 2011-2017 period and investigated whether these honey bee colonies and the high incidence of swarms could be a result of a stable, self-sustaining feral population (i.e., not of regular inflow of swarms escaping from local managed apiaries), and discussed various explanations for its existence. We also present the possibilities and challenges associated with the detection and effective monitoring of feral/wild honey bees in urban settings, and the role of citizen science in such endeavors. Our results will underpin ongoing initiatives to better understand and support naturally selected resistance mechanisms against the Varroa mite, which should contribute to alleviating current threats and risks to global apiculture and food production security.
Collapse
Affiliation(s)
- Jovana Bila Dubaić
- Faculty of Biology, University of Belgrade, Studentski Trg 16, 11000 Belgrade, Serbia; (J.B.D.); (M.P.); (A.Ć.)
| | - Slađan Simonović
- SOS Mobile Team for Rescue and Removal of Honey Bee Swarms and Colonies, Koste Glavinića 12, 11000 Belgrade, Serbia;
| | - Milan Plećaš
- Faculty of Biology, University of Belgrade, Studentski Trg 16, 11000 Belgrade, Serbia; (J.B.D.); (M.P.); (A.Ć.)
| | - Ljubiša Stanisavljević
- Faculty of Biology, University of Belgrade, Studentski Trg 16, 11000 Belgrade, Serbia; (J.B.D.); (M.P.); (A.Ć.)
| | - Slobodan Davidović
- Department of Genetics of Populations and Ecogenotoxicology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (S.D.); (M.T.)
| | - Marija Tanasković
- Department of Genetics of Populations and Ecogenotoxicology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (S.D.); (M.T.)
| | - Aleksandar Ćetković
- Faculty of Biology, University of Belgrade, Studentski Trg 16, 11000 Belgrade, Serbia; (J.B.D.); (M.P.); (A.Ć.)
| |
Collapse
|
23
|
Body Size Variation in a Social Sweat Bee, Halictus ligatus ( Halictidae, Apoidea), across Urban Environments. INSECTS 2021; 12:insects12121086. [PMID: 34940174 PMCID: PMC8709183 DOI: 10.3390/insects12121086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 11/24/2022]
Abstract
Simple Summary Many animal species that dwell in cities have altered aspects of their behavior, morphology, and physiology in order to survive in human-dominated environments. One way in which animals can adapt to survive in novel habitats is by shifting their body size. Body size is an important and flexible trait for insects because the ability to vary body size is linked to better survival and reproduction. In this study, we quantified body size variation in a species of sweat bee and compared the variation between bees residing in three different urban cities. Though studies have assessed urban bee body size previously, this is the first to compare bees from different cities. Similar to the human experience, no two cities are alike for bees. Therefore, we predicted that bees would show differences in the spread of body size in order to adapt to each unique city. We found that bees in three different environments all showed high variation in body size, but that the variation differed depending on location. This study is one of the first multi-city studies, and this is a trend we hope continues as urban research advances. Abstract High morphological variation is often associated with species longevity, and it is hypothesized that urban-dwelling species may require more plasticity in functional traits such as body size in order to maximize fitness in heterogeneous environments. There has been published research regarding the functional trait diversity of urban bee pollinators. However, no two cities are identical, so the implementation of multi-city studies is vital. Therefore, we compared body size variation in female Halicus ligatus sweat bees from May–October 2016 from three distinct Midwestern United States cities: Chicago, Detroit, and Saint Louis. Additionally, to elucidate potentially influential environmental factors, we assessed the relationship between temperature and measured body size. We collected bees in community gardens and urban farms and measured their head width and intertegular distance as a proxy for overall body size. We utilized an ANCOVA to determine whether body size variation differed significantly across the three surveyed cities. Results indicated that H. ligatus females in Chicago, Detroit, and Saint Louis had significantly different body size ranges. These findings highlight the importance of intraspecific body size variation and support our prediction that bees from different urban environments will have distinct ranges in body size due to local ecological factors affecting their populations. Additionally, we found a significant influence of temperature, though this is probably not the only important ecological characteristic impacting bee body size. Therefore, we also provided a list of predictions for the future study of specific variables that are likely to impact functional trait diversity in urban bees.
Collapse
|
24
|
Pinto J, Magni PA, O’Brien RC, Dadour IR. Domestic Filth Flies in New Haven, Connecticut: A Case Study on the Effects of Urbanization and Climate Change by Comparing Fly Populations after 78 Years. INSECTS 2021; 12:insects12110972. [PMID: 34821773 PMCID: PMC8623608 DOI: 10.3390/insects12110972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 12/04/2022]
Abstract
Simple Summary Domestic filth fly population data were collected in the summers of 1942–1944 in the urban city of New Haven, Connecticut, during a polio epidemic. The current survey was completed 78 years later by setting out a weekly trap in the same region during June–September over a two-year period. Results indicate that the fly population has changed in the city, with 16 fewer species trapped overall, and there have been changes in the fly species trapped. Some species have increased in abundance, notably Lucilia coeruleiviridis, while numbers of the common Lucilia sericata have decreased, and Lucilia illustris was absent. Changes in land cover and climate were also assessed to show that the trap site has experienced significant habitat change, together with an increase in the average temperature and rainfall. Fly numbers were significantly affected by temperature and rainfall in both the 1940s and the current survey. The results of this study suggest the prolonged period of urbanization of the region is influencing the domestic filth fly population. Abstract Changes in common and widespread insect populations such as the domestic filth fly in urban cities are useful and relevant bioindicators for overall changes in the insect biomass. The current study surveyed necrophagous flies by placing a weekly trap from June–September over a two-year period in the city of New Haven, Connecticut, to compare data on fly abundance and diversity with data collected 78 years earlier. Climate and land cover changes were also assessed in combination with the fly population for each period. The survey results suggest the domestic filth fly population is now less diverse with decreased species richness and changes in the relative abundance of species. In both surveys, 95–96% of the population was composed of only three species. The current survey data indicate the numerical dominance of Lucilia sericata has decreased, the abundance of several species, notably Lucilia coeruleiviridis, has increased, and Lucilia illustris is absent. Species that showed a significant interaction with temperature in the 1940s survey have now increased in abundance, with several of the trapped species continuing to show an interaction with temperature and rainfall. Analysis of the land cover and climate data characterizes the trap site as a region exposed to a prolonged period of industrialization and urbanization, with only 7% of the land cover remaining undeveloped and over 50% impervious, coupled with an increase in temperature and rainfall. This study serves as a model for changes in domestic filth fly populations and other insects in similarly highly urbanized established cities.
Collapse
Affiliation(s)
- Julie Pinto
- Discipline of Medical, Molecular & Forensic Sciences, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia;
- Correspondence:
| | - Paola A. Magni
- Discipline of Medical, Molecular & Forensic Sciences, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia;
- Murdoch University Singapore, King’s Centre, 390 Havelock Road, Singapore 169662, Singapore
| | - R. Christopher O’Brien
- Criminal Justice and Forensic Sciences Department, Henry C. Lee College of Criminal Justice and Forensic Sciences, University of New Haven, West Haven, CT 06516, USA;
| | - Ian R. Dadour
- Source Certain International Pty Ltd., P.O. Box 1570, Wangara DC, WA 6947, Australia;
| |
Collapse
|
25
|
Maebe K, Hart AF, Marshall L, Vandamme P, Vereecken NJ, Michez D, Smagghe G. Bumblebee resilience to climate change, through plastic and adaptive responses. GLOBAL CHANGE BIOLOGY 2021; 27:4223-4237. [PMID: 34118096 DOI: 10.1111/gcb.15751] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/19/2021] [Indexed: 06/12/2023]
Abstract
Bumblebees are ubiquitous, cold-adapted eusocial bees found worldwide from subarctic to tropical regions of the world. They are key pollinators in most temperate and boreal ecosystems, and both wild and managed populations are significant contributors to agricultural pollination services. Despite their broad ecological niche at the genus level, bumblebee species are threatened by climate change, particularly by rising average temperatures, intensifying seasonality and the increasing frequency of extreme weather events. While some temperature extremes may be offset at the individual or colony level through temperature regulation, most bumblebees are expected to exhibit specific plastic responses, selection in various key traits, and/or range contractions under even the mildest climate change. In this review, we provide an in-depth and up-to-date review on the various ways by which bumblebees overcome the threats associated with current and future global change. We use examples relevant to the fields of bumblebee physiology, morphology, behaviour, phenology, and dispersal to illustrate and discuss the contours of this new theoretical framework. Furthermore, we speculate on the extent to which adaptive responses to climate change may be influenced by bumblebees' capacity to disperse and track suitable climate conditions. Closing the knowledge gap and improving our understanding of bumblebees' adaptability or avoidance behaviour to different climatic circumstances will be necessary to improve current species climate response models. These models are essential to make correct predictions of species vulnerability in the face of future climate change and human-induced environmental changes to unfold appropriate future conservation strategies.
Collapse
Affiliation(s)
- Kevin Maebe
- Laboratory of Agrozoology, Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Alex F Hart
- Laboratory of Agrozoology, Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Leon Marshall
- Agroecology Lab, Université libre de Bruxelles (ULB), Brussels, Belgium
- Naturalis Biodiversity Center, Leiden, The Netherlands
| | - Peter Vandamme
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | | | - Denis Michez
- Laboratory of Zoology, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Guy Smagghe
- Laboratory of Agrozoology, Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
26
|
Banaszak-Cibicka W, Dylewski Ł. Species and functional diversity - A better understanding of the impact of urbanization on bee communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 774:145729. [PMID: 33611011 DOI: 10.1016/j.scitotenv.2021.145729] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 02/01/2021] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
We examined site patterns in bee species for diversity and functional diversity in urban, suburban and rural areas. We sampled bees from all three habitat types and compiled a database of functional traits for each species. While species diversity decreased with urbanization, as expected, components of functional diversity showed differences between urban and suburban habitats. Functional dispersion (FDis) increased significantly in suburban areas as compared to urban sites, while functional divergence (FDiv) and functional redundancy (Fred) were higher in urban areas. Functional richness (FRic) and evenness (FEven) were not affected by urbanization. Moreover, assemblages in highly urbanized environments have a substantially different functional composition. Solitary species, cleptoparasites, soil nesters, bees with trophic specialization, and those with a short flight period turned out to be more sensitive to urbanization changes. This study highlights the importance of examining functional diversity in assessing human-induced biodiversity loss and its impacts on ecosystem functioning in urbanized areas. These results have significant implications for improving our understanding of the mechanisms of suburban community ecology and conserving bees in urban habitats.
Collapse
Affiliation(s)
- Weronika Banaszak-Cibicka
- Department of Zoology, Poznań University of Life Sciences, Wojska Polskiego 71C, 60-625 Poznań, Poland.
| | - Łukasz Dylewski
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland.
| |
Collapse
|
27
|
Pollination in Agroecosystems: A Review of the Conceptual Framework with a View to Sound Monitoring. LAND 2021. [DOI: 10.3390/land10050540] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The pollination ecology in agroecosystems tackles a landscape in which plants and pollinators need to adjust, or be adjusted, to human intervention. A valid, widely applied approach is to regard pollination as a link between specific plants and their pollinators. However, recent evidence has added landscape features for a wider ecological perspective. Are we going in the right direction? Are existing methods providing pollinator monitoring tools suitable for understanding agroecosystems? In Italy, we needed to address these questions to respond to government pressure to implement pollinator monitoring in agroecosystems. We therefore surveyed the literature, grouped methods and findings, and evaluated approaches. We selected studies that may contain directions and tools directly linked to pollinators and agroecosystems. Our analysis revealed four main paths that must come together at some point: (i) the research question perspective, (ii) the advances of landscape analysis, (iii) the role of vegetation, and (iv) the gaps in our knowledge of pollinators taxonomy and behavior. An important conclusion is that the pollinator scale is alarmingly disregarded. Debate continues about what features to include in pollinator monitoring and the appropriate level of detail: we suggest that the pollinator scale should be the main driver.
Collapse
|
28
|
Prendergast KS, Ollerton J. Impacts of the introduced European honeybee on Australian bee‐flower network properties in urban bushland remnants and residential gardens. AUSTRAL ECOL 2021. [DOI: 10.1111/aec.13040] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Kit S. Prendergast
- School of Molecular and Life Sciences Curtin University Perth, Bentley Western Australia 6845 Australia
| | - Jeff Ollerton
- Faculty of Arts, Science and Technology University of Northampton Northampton UK
| |
Collapse
|
29
|
Hamilton B, Coops NC, Lokman K. Time series monitoring of impervious surfaces and runoff impacts in Metro Vancouver. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 760:143873. [PMID: 33348159 DOI: 10.1016/j.scitotenv.2020.143873] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 06/12/2023]
Abstract
Urban areas are increasing rapidly worldwide, leading to widespread changes in land surfaces over time. Urbanized land cover is heterogeneous, and is characterized by a large areal proportion of manufactured impervious surfaces which are linked to ecological degradation, habitat loss, and increase in precipitation runoff leading to pollution and safety risks. Data from the Landsat series of satellites present an opportunity to characterize urban land cover and impervious surfaces, over a large spatial and temporal scale. In this study, land cover changes from 1990 to 2015 are characterized in the large metropolitan area of Metro Vancouver, Western Canada. An ordinal regression is used to link Landsat spectral data with a detailed land classification containing classes of impervious surface used by municipal planners in the region (Spearman's Rho = 0.76). The regression is then used to classify a time series of imagery where static land classifications are not available, providing a 25-year time-series of change in impervious surface area. A trend in increasing impervious surface was detected across the municipalities in the region, with an overall areal increase of 31.96%. Precipitation events were then simulated at each time step, using precipitation rates adjusted for expected changes in climate by 2050. Both runoff depths and inundated area increased over time, with a 51% increase in area inundated by at least 5 cm. Runoff depths were evaluated for each municipality in the region, and compared to projected populations for 2050 to highlight communities that may face elevated levels of runoff risk. Results show a steady increase in impervious surfaces in the region. Impacts of future extreme precipitation events vary across the region, with flat and low-lying topographies appearing to be more severely affected, along with areas containing extensive impervious development.
Collapse
Affiliation(s)
- Ben Hamilton
- Integrated Remote Sensing Studio, Department of Forest Resources Management, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada.
| | - Nicholas C Coops
- Integrated Remote Sensing Studio, Department of Forest Resources Management, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada.
| | - Kees Lokman
- Centre for Interactive Research on Sustainability, School of Architecture + Landscape Architecture, University of British Columbia, 2260 West Mall, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
30
|
Zaninotto V, Perrard A, Babiar O, Hansart A, Hignard C, Dajoz I. Seasonal Variations of Pollinator Assemblages among Urban and Rural Habitats: A Comparative Approach Using a Standardized Plant Community. INSECTS 2021; 12:insects12030199. [PMID: 33673434 PMCID: PMC7996759 DOI: 10.3390/insects12030199] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 01/30/2023]
Abstract
Simple Summary Urbanization modifies the composition of all biological communities, including insect pollinator communities, but what is filtered out? To answer this question, we compared the pollinators and their morphological and behavioral characteristics between Paris green spaces and nearby rural grasslands. We monitored the pollinators foraging on identical plant plots in these two environments for two years, and from spring to fall. Pollinators in the city were relatively less diverse than their rural counterparts. They comprised fewer bees belonging to solitary or ground-nesting species, but the bees had a larger body size overall. These data add to the body of evidence of a filtering of pollinator communities by the urban environment, partly because the abundance and distribution of nesting and feeding resources are modified. Since the diversity of pollinators is important for plant pollination, such effects must be considered in order to preserve the insect pollinator community and maintain the pollination function despite the increasing urbanization of our landscapes. Abstract Even though urban green spaces may host a relatively high diversity of wild bees, urban environments impact the pollinator taxonomic and functional diversity in a way that is still misunderstood. Here, we provide an assessment of the taxonomic and functional composition of pollinator assemblages and their response to urbanization in the Paris region (France). We performed a spring-to-fall survey of insect pollinators in green spaces embedded in a dense urban matrix and in rural grasslands, using a plant setup standardized across sites and throughout the seasons. We compared pollinator species composition and the occurrence of bee functional traits over the two habitats. There was no difference in species richness between habitats, though urban assemblages were dominated by very abundant generalist species and displayed a lower evenness. They also included fewer brood parasitic, solitary or ground-nesting bees. Overall, bees tended to be larger in the city than in the semi-natural grasslands, and this trait exhibited seasonal variations. The urban environment filters out some life history traits of insect pollinators and alters their seasonal patterns, likely as a result of the fragmentation and scarcity of feeding and nesting resources. This could have repercussions on pollination networks and the efficiency of the pollination function.
Collapse
Affiliation(s)
- Vincent Zaninotto
- Institute of Ecology and Environmental Sciences-Paris (iEES-Paris), Sorbonne Université, CNRS, IRD, INRAE, Université de Paris, UPEC, 4 Place Jussieu, 75005 Paris, France; (A.P.); (I.D.)
- Direction des Espaces verts et de l’Environnement, Mairie de Paris, 103 Avenue de France, 75013 Paris, France
- Correspondence:
| | - Adrien Perrard
- Institute of Ecology and Environmental Sciences-Paris (iEES-Paris), Sorbonne Université, CNRS, IRD, INRAE, Université de Paris, UPEC, 4 Place Jussieu, 75005 Paris, France; (A.P.); (I.D.)
| | - Olivier Babiar
- Station d’Écologie Forestière, Université de Paris, Route de la tour Dénécourt, 77300 Fontainebleau, France; (O.B.); (C.H.)
| | - Amandine Hansart
- Centre de Recherche en Écologie Expérimentale et Prédictive (CEREEP-Ecotron IleDeFrance), Département de biologie, École Normale Supérieure, PSL University, CNRS, UMS 3194, 11 Chemin de Busseau, 77140 Saint-Pierre-lès-Nemours, France;
| | - Cécile Hignard
- Station d’Écologie Forestière, Université de Paris, Route de la tour Dénécourt, 77300 Fontainebleau, France; (O.B.); (C.H.)
| | - Isabelle Dajoz
- Institute of Ecology and Environmental Sciences-Paris (iEES-Paris), Sorbonne Université, CNRS, IRD, INRAE, Université de Paris, UPEC, 4 Place Jussieu, 75005 Paris, France; (A.P.); (I.D.)
| |
Collapse
|
31
|
Villalta I, Ledet R, Baude M, Genoud D, Bouget C, Cornillon M, Moreau S, Courtial B, Lopez-Vaamonde C. A DNA barcode-based survey of wild urban bees in the Loire Valley, France. Sci Rep 2021; 11:4770. [PMID: 33637824 PMCID: PMC7910470 DOI: 10.1038/s41598-021-83631-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/08/2021] [Indexed: 11/11/2022] Open
Abstract
The current decline of wild bees puts important ecosystem services such as pollination at risk. Both inventory and monitoring programs are needed to understand the causes of wild bee decline. Effective insect monitoring relies on both mass-trapping methods coupled with rapid and accurate identifications. Identifying wild bees using only morphology can be challenging, in particular, specimens from mass-trapped samples which are often in poor condition. We generated DNA barcodes for 2931 specimens representing 157 species (156 named and one unnamed species) and 28 genera. Automated cluster delineation reveals 172 BINs (Barcodes Index Numbers). A total of 36 species (22.93%) were found in highly urbanized areas. The majority of specimens, representing 96.17% of the species barcoded form reciprocally exclusive groups, allowing their unambiguous identification. This includes several closely related species notoriously difficult to identify. A total of 137 species (87.26%) show a "one-to-one" match between a named species and the BIN assignment. Fourteen species (8.92%) show deep conspecific lineages with no apparent morphological differentiation. Only two species pairs shared the same BIN making their identification with DNA barcodes alone uncertain. Therefore, our DNA barcoding reference library allows reliable identification by non-experts for the vast majority of wild bee species in the Loire Valley.
Collapse
Affiliation(s)
- Irene Villalta
- IRBI, UMR 7261, CNRS, Université de Tours, Tours, France.
| | - Romain Ledet
- INRAE USC 1328, LBLGC EA 1207, Université d'Orléans, Orléans, France
| | - Mathilde Baude
- INRAE USC 1328, LBLGC EA 1207, Université d'Orléans, Orléans, France
| | | | | | | | | | | | - Carlos Lopez-Vaamonde
- IRBI, UMR 7261, CNRS, Université de Tours, Tours, France
- INRAE, URZF, Orléans, France
| |
Collapse
|
32
|
Prendergast KS. Natural history note: Urban domestic gardens support nesting populations of the native bee
Leioproctus (Leioproctus) plumosus. AUSTRAL ECOL 2021. [DOI: 10.1111/aec.13016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kit S. Prendergast
- School of Molecular and Life Sciences Curtin University Perth, Bentley Western Australia6845Australia
| |
Collapse
|
33
|
Ayers AC, Rehan SM. Supporting Bees in Cities: How Bees Are Influenced by Local and Landscape Features. INSECTS 2021; 12:insects12020128. [PMID: 33540577 PMCID: PMC7912800 DOI: 10.3390/insects12020128] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/20/2021] [Accepted: 01/23/2021] [Indexed: 12/20/2022]
Abstract
Simple Summary Cities are complex ecosystems that, while generally contributing to an overall reduction in biodiversity, can support surprisingly unique communities of organisms including bees. Bees are both ecologically and economically essential, therefore preserving and conserving these insects represents a significant challenge as cities continue to expand and diminish surrounding landscapes. Some attempts to support bees in cities have included establishing and improving urban green spaces. Exactly how bees and, to a lesser extent, other pollinators respond to these green spaces in addition to other urban landscape and local features, however, remains incompletely understood. Therefore, this review summarizes the current literature and generalizable trends in pollinator response to urban landscape and local features. While some functional traits or characteristics of bees such as dietary breadth and nesting strategy are more conclusively understood and supported, other characteristics such as sociality remain less generalizable. Lack of knowledge on bee responses to city features is in part due to the individual variation exhibited across different groups and species. To promote greater biodiversity in urban spaces, research should focus on specific responses to urban local and landscape features and how green spaces can be optimized for sustainable bee conservation. Abstract Urbanization is a major anthropogenic driver of decline for ecologically and economically important taxa including bees. Despite their generally negative impact on pollinators, cities can display a surprising degree of biodiversity compared to other landscapes. The pollinating communities found within these environments, however, tend to be filtered by interacting local and landscape features that comprise the urban matrix. Landscape and local features exert variable influence on pollinators within and across taxa, which ultimately affects community composition in such a way that contributes to functional trait homogenization and reduced phylogenetic diversity. Although previous results are not easily generalizable, bees and pollinators displaying functional trait characteristics such as polylectic diet, cavity-nesting behavior, and later emergence appear most abundant across different examined cities. To preserve particularly vulnerable species, most notably specialists that have become underrepresented within city communities, green spaces like parks and urban gardens have been examined as potential refuges. Such spaces are scattered across the urban matrix and vary in pollinator resource availability. Therefore, ensuring such spaces are optimized for pollinators is imperative. This review examines how urban features affect pollinators in addition to ways these green spaces can be manipulated to promote greater pollinator abundance and diversity.
Collapse
|
34
|
Dalmon A, Diévart V, Thomasson M, Fouque R, Vaissière BE, Guilbaud L, Le Conte Y, Henry M. Possible Spillover of Pathogens between Bee Communities Foraging on the Same Floral Resource. INSECTS 2021; 12:insects12020122. [PMID: 33573084 PMCID: PMC7911050 DOI: 10.3390/insects12020122] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/14/2021] [Accepted: 01/25/2021] [Indexed: 01/02/2023]
Abstract
Simple Summary Floral resource availability is one of the keys to preserving the health of bee communities. However, flowers also present a risk of pathogen transmission, as infected pollinators could deposit pathogens while foraging, exposing other pollinators to infection via the consumption of contaminated nectar or pollen. Here, we studied, over time, the prevalence of seven viruses in bee communities that share the same small surface of floral resource in order to assess the risk of virus spillover. In total, 2057 bee specimens from 30 species were caught, identified and checked for the presence of viruses. Specimens from the Halictidae family were the dominant wild bees. The prevalence of viruses was quite high: at least one virus was detected in 78% of the samples, and co-infections were frequent. The genetic diversity of the viruses was also investigated to look for the possible association of geographic origin or host with shared ancestry. Abstract Viruses are known to contribute to bee population decline. Possible spillover is suspected from the co-occurrence of viruses in wild bees and honey bees. In order to study the risk of virus transmission between wild and managed bee species sharing the same floral resource, we tried to maximize the possible cross-infections using Phacelia tanacetifolia, which is highly attractive to honey bees and a broad range of wild bee species. Virus prevalence was compared over two years in Southern France. A total of 1137 wild bees from 29 wild bee species (based on COI barcoding) and 920 honey bees (Apis mellifera) were checked for the seven most common honey bee RNA viruses. Halictid bees were the most abundant. Co-infections were frequent, and Sacbrood virus (SBV), Black queen cell virus (BQCV), Acute bee paralysis virus (ABPV) and Israeli acute paralysis virus (IAPV) were widespread in the hymenopteran pollinator community. Conversely, Deformed wing virus (DWV) was detected at low levels in wild bees, whereas it was highly prevalent in honey bees (78.3% of the samples). Both wild bee and honey bee virus isolates were sequenced to look for possible host-specificity or geographical structuring. ABPV phylogeny suggested a specific cluster for Eucera bees, while isolates of DWV from bumble bees (Bombus spp.) clustered together with honey bee isolates, suggesting a possible spillover.
Collapse
|
35
|
Evaluation of the importance of ornamental plants for pollinators in urban and suburban areas in Stuttgart, Germany. Urban Ecosyst 2020. [DOI: 10.1007/s11252-020-01085-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
AbstractUrban landscapes are often characterized by a wide range of diverse flowering plants consisting of native and exotic plants. These flower-rich habitats have proven to be particularly valuable for urban pollinating insects. However, the ability of ornamental plants in supporting urban pollinator communities is still not well documented. For this study, we established flower beds at 13 different urban testing sites, which were planted with identical sets of ornamental garden plants. The pollinator visitation patterns were then observed throughout the summer seasons. Over a two-year period, a total of 10,565 pollinators were recorded with wild bees (> 50%, excluding bumblebees) being the most abundant pollinator group. Our results revealed that (I) the assortment of ornamental plants was visited by a high number of urban pollinators for collecting pollen and nectar, and (II) the pollinator abundance and composition varied significantly within the tested ornamental plants. These differences occurred not only among plant species but to the same extent among cultivars, whereby the number of pollinators was positively correlated with number of flowering units per plant. By using a generalized linear mixed model (GLMM) and redundancy analysis (RDA) we identified further significant impacts of the two variables year and location on the insect pollinator abundance and richness. Despite of the local and yearly variations, our approach provided a good and field-applicable method to evaluate the pollinator friendliness in ornamental plants. Such tools are urgently required to validate labels like ‘bee friendly’ or ‘pollinator friendly’ used by plant breeding companies.
Collapse
|
36
|
Local and Landscape Compositions Influence Stingless Bee Communities and Pollination Networks in Tropical Mixed Fruit Orchards, Thailand. DIVERSITY 2020. [DOI: 10.3390/d12120482] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Stingless bees are vital pollinators for both wild and crop plants, yet their communities have been affected and altered by anthropogenic land-use change. Additionally, few studies have directly addressed the consequences of land-use change for meliponines, and knowledge on how their communities change across gradients in surrounding landscape cover remains scarce. Here, we examine both how local and landscape-level compositions as well as forest proximity affect both meliponine species richness and abundance together with pollination networks across 30 mixed fruit orchards in Southern Thailand. The results reveal that most landscape-level factors significantly influenced both stingless bee richness and abundance. Surrounding forest cover has a strong positive direct effect on both factors, while agricultural and urbanized cover generally reduced both bee abundance and diversity. In the local habitat, there is a significant interaction between orchard size and floral richness with stingless bee richness. We also found that pollinator specialization in pollination networks decreased when the distance to the forest patch increased. Both local and landscape factors thus influenced meliponine assemblages, particularly the forest patches surrounding an orchard, which potentially act as a key reservoir for stingless bees and other pollinator taxa. Preservation of forest patches can protect the permanent nesting and foraging habitat of various pollinator taxa, resulting in high visitation for crop and wild plants.
Collapse
|
37
|
Zakardjian M, Geslin B, Mitran V, Franquet E, Jourdan H. Effects of Urbanization on Plant-Pollinator Interactions in the Tropics: An Experimental Approach Using Exotic Plants. INSECTS 2020; 11:insects11110773. [PMID: 33182264 PMCID: PMC7695313 DOI: 10.3390/insects11110773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/26/2020] [Accepted: 11/04/2020] [Indexed: 11/16/2022]
Abstract
Simple Summary Island environments of the Southwest Pacific, like New Caledonia, generally present poorly diversified bee fauna. Thus, they are particularly prone to the establishment of introduced bee species. These exotic species may compete with native bees for plant resources, disrupt pollination of native plants, and enhance the reproduction of exotic ones. To conserve local plant–pollinator interactions, it is essential to assess the factors favoring the presence and the activity of exotic bees. Here, we focused on the effects of urbanization on plant–pollinator interactions. We set up experimental plant communities composed of four exotic species in two contrasted habitats—a natural environment vs. an urban environment—and observed plant–pollinator interactions. We showed that the urban environment was largely dominated by exotic bees. We also showed that some exotic bee species can interact preferentially with a single exotic ornamental plant species. Overall, our results indicate that Nouméa is an entry point for exotic bees, which should encourage local authorities to maintain biosecurity measures to effectively limit the arrival of exogenous bees. Lastly, the use of exotic horticultural plants in green public spaces should be questioned regarding their potential attractiveness to exotic bees. Abstract Land-use changes through urbanization and biological invasions both threaten plant-pollinator networks. Urban areas host modified bee communities and are characterized by high proportions of exotic plants. Exotic species, either animals or plants, may compete with native species and disrupt plant–pollinator interactions. These threats are heightened in insular systems of the Southwest Pacific, where the bee fauna is generally poor and ecological networks are simplified. However, the impacts of these factors have seldom been studied in tropical contexts. To explore those questions, we installed experimental exotic plant communities in urban and natural contexts in New Caledonia, a plant diversity hotspot. For four weeks, we observed plant–pollinator interactions between local pollinators and our experimental exotic plant communities. We found a significantly higher foraging activity of exotic wild bees within the city, together with a strong plant–pollinator association between two exotic species. However, contrary to our expectations, the landscape context (urban vs. natural) had no effect on the activity of native bees. These results raise issues concerning how species introduced in plant–pollinator networks will impact the reproductive success of both native and exotic plants. Furthermore, the urban system could act as a springboard for alien species to disperse in natural systems and even invade them, leading to conservation concerns.
Collapse
Affiliation(s)
- Marie Zakardjian
- IMBE, Aix Marseille Univ, Avignon Université, CNRS, IRD, 13000 Marseille, France; (B.G.); (V.M.); (E.F.)
- IMBE, Aix Marseille Univ, Avignon Université, CNRS, IRD, Nouméa 98800, New Caledonia;
- Correspondence: ; Tel.: +33-(0)4-91-28-85-34
| | - Benoît Geslin
- IMBE, Aix Marseille Univ, Avignon Université, CNRS, IRD, 13000 Marseille, France; (B.G.); (V.M.); (E.F.)
| | - Valentin Mitran
- IMBE, Aix Marseille Univ, Avignon Université, CNRS, IRD, 13000 Marseille, France; (B.G.); (V.M.); (E.F.)
| | - Evelyne Franquet
- IMBE, Aix Marseille Univ, Avignon Université, CNRS, IRD, 13000 Marseille, France; (B.G.); (V.M.); (E.F.)
| | - Hervé Jourdan
- IMBE, Aix Marseille Univ, Avignon Université, CNRS, IRD, Nouméa 98800, New Caledonia;
| |
Collapse
|
38
|
Zaninotto V, Raynaud X, Gendreau E, Kraepiel Y, Motard E, Babiar O, Hansart A, Hignard C, Dajoz I. Broader phenology of pollinator activity and higher plant reproductive success in an urban habitat compared to a rural one. Ecol Evol 2020; 10:11607-11621. [PMID: 33144987 PMCID: PMC7593137 DOI: 10.1002/ece3.6794] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/05/2020] [Accepted: 08/18/2020] [Indexed: 01/04/2023] Open
Abstract
Urban habitat characteristics create environmental filtering of pollinator communities. They also impact pollinating insect phenology through the presence of an urban heat island and the year-round availability of floral resources provided by ornamental plants.Here, we monitored the phenology and composition of pollinating insect communities visiting replicates of an experimental plant assemblage comprising two species, with contrasting floral traits: Sinapis alba and Lotus corniculatus, whose flowering periods were artificially extended. Plant assemblage replicates were set up over two consecutive years in two different habitats: rural and densely urbanized, within the same biogeographical region (Ile-de-France region, France).The phenology of pollination activity, recorded from the beginning (early March) to the end (early November) of the season, differed between these two habitats. Several pollinator morphogroups (small wild bees, bumblebees, honeybees) were significantly more active on our plant sets in the urban habitat compared to the rural one, especially in early spring and autumn. This resulted in different overall reproductive success of the plant assemblage between the two habitats. Over the course of the season, reproductive success of S. alba was always significantly higher in the urban habitat, while reproductive success of L. corniculatus was significantly higher in the urban habitat only during early flowering.These findings suggest different phenological adaptations to the urban habitat for different groups of pollinators. Overall, results indicate that the broadened activity period of pollinating insects recorded in the urban environment could enhance the pollination function and the reproductive success of plant communities in cities.
Collapse
Affiliation(s)
- Vincent Zaninotto
- Sorbonne Université, CNRS, IRD, INRAE, Université de Paris, UPECInstitute of Ecology and Environmental Sciences‐Paris (iEES‐Paris)ParisFrance
- Paris Green Space and Environmental Department (DEVE)ParisFrance
| | - Xavier Raynaud
- Sorbonne Université, CNRS, IRD, INRAE, Université de Paris, UPECInstitute of Ecology and Environmental Sciences‐Paris (iEES‐Paris)ParisFrance
| | - Emmanuel Gendreau
- Sorbonne Université, CNRS, IRD, INRAE, Université de Paris, UPECInstitute of Ecology and Environmental Sciences‐Paris (iEES‐Paris)ParisFrance
| | - Yvan Kraepiel
- Sorbonne Université, CNRS, IRD, INRAE, Université de Paris, UPECInstitute of Ecology and Environmental Sciences‐Paris (iEES‐Paris)ParisFrance
| | - Eric Motard
- Sorbonne Université, CNRS, IRD, INRAE, Université de Paris, UPECInstitute of Ecology and Environmental Sciences‐Paris (iEES‐Paris)ParisFrance
| | - Olivier Babiar
- Station d'Écologie ForestièreUniversité de ParisFontainebleauFrance
| | - Amandine Hansart
- Centre de recherche en écologie expérimentale et prédictive (CEREEP‐Ecotron IleDeFrance)Département de biologie, École normale supérieure, CNRS , PSL UniversitySt‐Pierre‐les‐NemoursFrance
| | - Cécile Hignard
- Station d'Écologie ForestièreUniversité de ParisFontainebleauFrance
| | - Isabelle Dajoz
- Sorbonne Université, CNRS, IRD, INRAE, Université de Paris, UPECInstitute of Ecology and Environmental Sciences‐Paris (iEES‐Paris)ParisFrance
| |
Collapse
|
39
|
Butterfly species’ responses to urbanization: differing effects of human population density and built-up area. Urban Ecosyst 2020. [DOI: 10.1007/s11252-020-01055-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AbstractGood knowledge on how increasing urbanization affects biodiversity is essential in order to preserve biodiversity in urban green spaces. We examined how urban development affects species richness and total abundance of butterflies as well as the occurrence and abundance of individual species within the Helsinki metropolitan area in Northern Europe. Repeated butterfly counts in 167 separate 1-km-long transects within Helsinki covered the entire urbanization gradient, quantified by human population density and the proportion of built-up area (within a 50-m buffer surrounding each butterfly transect). We found consistently negative effects of both human population density and built-up area on all studied butterfly variables, though butterflies responded markedly more negatively to increasing human population density than to built-up area. Responses in butterfly species richness and total abundance showed higher variability in relation to proportion of built-up area than to human density, especially in areas of high human density. Increasing human density negatively affected both the abundance and the occurrence of 47% of the 19 most abundant species, whereas, for the proportion of built-up area, the corresponding percentages were 32% and 32%, respectively. Species with high habitat specificity and low mobility showed higher sensitivity to urbanization (especially high human population density) than habitat generalists and mobile species that dominated the urban butterfly communities. Our results suggest that human population density provides a better indicator of urbanization effects on butterflies compared to the proportion of built-up area. The generality of this finding should be verified in other contexts and taxonomic groups.
Collapse
|
40
|
Urban bumble bees are unaffected by the proportion of intensely developed land within urban environments of the industrial Midwestern USA. Urban Ecosyst 2020. [DOI: 10.1007/s11252-020-00965-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
41
|
Dusza Y, Kraepiel Y, Abbadie L, Barot S, Carmignac D, Dajoz I, Gendreau E, Lata JC, Meriguet J, Motard E, Raynaud X. Plant-pollinator interactions on green roofs are mediated by substrate characteristics and plant community composition. ACTA OECOLOGICA 2020. [DOI: 10.1016/j.actao.2020.103559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
42
|
Rankovic A, Geslin B, Perrard A, Barbillon A, Vaury V, Abbadie L, Dajoz I. Urbanization effects on wild bee carbon and nitrogen stable isotope ratios in the Paris region. ACTA OECOLOGICA-INTERNATIONAL JOURNAL OF ECOLOGY 2020. [DOI: 10.1016/j.actao.2020.103545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
43
|
Baldock KC. Opportunities and threats for pollinator conservation in global towns and cities. CURRENT OPINION IN INSECT SCIENCE 2020; 38:63-71. [PMID: 32126514 DOI: 10.1016/j.cois.2020.01.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/01/2020] [Accepted: 01/17/2020] [Indexed: 05/23/2023]
Abstract
Urban expansion is considered to be one of the main threats to global biodiversity yet some pollinator groups, particularly bees, can do well in urban areas. Recent studies indicate that both local and landscape-level drivers can influence urban pollinator communities, with local floral resources and the amount of impervious cover in the landscape affecting pollinator abundance, richness and community composition. Urban intensification, chemicals, climate change and increased honey bee colony densities all negatively affect urban pollinators. Maintaining good areas of habitat for pollinators, such as those found in allotments (community gardens) and domestic gardens, and improving management approaches in urban greenspace and highly urbanised areas (e.g. by increasing floral resources and nesting sites) will benefit pollinator conservation. Opportunities for pollinator conservation exist via multiple stakeholders including policymakers, urban residents, urban planners and landscape architects.
Collapse
Affiliation(s)
- Katherine Cr Baldock
- School of Biological Sciences, University of Bristol, Tyndall Avenue, Bristol, BS8 1TQ, UK; Cabot Institute, University of Bristol, Royal Fort House, University of Bristol, BS8 1UH, UK.
| |
Collapse
|
44
|
Birdshire KR, Carper AL, Briles CE. Bee community response to local and landscape factors along an urban-rural gradient. Urban Ecosyst 2020. [DOI: 10.1007/s11252-020-00956-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AbstractOver a third of the world’s crops require insect pollination, and reliance on pollination services for food continues to rise as human populations increase. Furthermore, as interest in urban agriculture has grown, so has a need for studies of urban pollinator ecology and pollination. Analyzing pollinator assemblages along a rural-urban gradient provides powerful mechanistic insight into how urbanization impacts pollinators. Yet, studies examining pollinators along urban-rural gradients are limited and results vary. Since pollinators vary tremendously in life history characteristics and respond to urbanization differently, studies from different regions would improve our understanding of pollinator response to urbanization. This study documents different bee assemblages along a high-plains semi-arid urban-rural gradient in Denver, Colorado, USA. Percent impervious surface was used to define the extent of urbanization at 12 sites and local and landscape characteristics were estimated using field assessments and geospatial analysis. Wild bees were collected and the relationships between urbanization and bee communities were explored using linear modeling. Overall, bee abundance and diversity decreased with increasing urbanization, suggesting that urban areas negatively impact bee communities. However, all bee guilds responded positively to local floral richness and negatively to the degree of landscape urbanization, suggesting that different types of bees responded similarly to urbanization. These findings suggest that providing a greater diversity of floral resources is key to mitigating the negative impacts of urbanization on pollinator communities.
Collapse
|
45
|
Wild Bee Conservation within Urban Gardens and Nurseries: Effects of Local and Landscape Management. SUSTAINABILITY 2019. [DOI: 10.3390/su12010293] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Across urban environments, vegetated habitats provide refuge for biodiversity. Gardens (designed for food crop production) and nurseries (designed for ornamental plant production) are both urban agricultural habitats characterized by high plant species richness but may vary in their ability to support wild pollinators, particularly bees. In gardens, pollinators are valued for crop production. In nurseries, ornamental plants rarely require pollination; thus, the potential of nurseries to support pollinators has not been examined. We asked how these habitats vary in their ability to support wild bees, and what habitat features relate to this variability. In 19 gardens and 11 nurseries in California, USA, we compared how local habitat and landscape features affected wild bee species abundance and richness. To assess local features, we estimated floral richness and measured ground cover as proxies for food and nesting resources, respectively. To assess landscape features, we measured impervious land cover surrounding each site. Our analyses showed that differences in floral richness, local habitat size, and the amount of urban land cover impacted garden wild bee species richness. In nurseries, floral richness and the proportion of native plant species impacted wild bee abundance and richness. We suggest management guidelines for supporting wild pollinators in both habitats.
Collapse
|
46
|
The effects of urbanization on bee communities depends on floral resource availability and bee functional traits. PLoS One 2019; 14:e0225852. [PMID: 31790482 PMCID: PMC6886752 DOI: 10.1371/journal.pone.0225852] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 11/13/2019] [Indexed: 11/24/2022] Open
Abstract
Wild bees are important pollinators in many ecosystems threatened by anthropogenic disturbance. Urban development can reduce and degrade natural habitat for bees and other pollinators. However, some researchers suggest that cities could also provide refuge for bees, given that agricultural intensification may pose a greater risk. In this study, we surveyed bee communities at 15 farms and gardens across an urban-rural gradient in southeastern Michigan, USA to evaluate the effect of urbanization on bees. We examined how floral resources, bee functional traits, temperature, farm size, and the spatial scale of analysis influence bee response to urbanization. We found that urbanization positively affected bee diversity and evenness but had no effect on total abundance or species richness. Additionally, urbanization altered bee community composition via differential effects on bee species and functional groups. More urbanized sites supported a greater number of exotic, above-ground nesting, and solitary bees, but fewer eusocial bees. Blooming plant species richness positively influenced bee species diversity and richness. Furthermore, the amount of available floral resources was positively associated with exotic and eusocial bee abundances. Across sites, nearly 70% of floral resources were provided by exotic plants, most of which are characterized as weedy but not invasive. Our study demonstrates that urbanization can benefit some bee species and negatively impact others. Notably, Bombus and Lasioglossum (Dialictus), were two important pollinator groups negatively affected by urbanization. Our study supports the idea that urban environments can provide valuable habitat for diverse bee communities, but demonstrates that some bees are vulnerable to urbanization. Finally, while our results indicate that increasing the abundance and richness of floral resources could partially compensate for negative effects of urbanization on bees, the effectiveness of such measures may be limited by other factors, such as urban warming.
Collapse
|
47
|
|
48
|
Desaegher J, Nadot S, Machon N, Colas B. How does urbanization affect the reproductive characteristics and ecological affinities of street plant communities? Ecol Evol 2019; 9:9977-9989. [PMID: 31534708 PMCID: PMC6745663 DOI: 10.1002/ece3.5539] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 07/17/2019] [Accepted: 07/19/2019] [Indexed: 11/08/2022] Open
Abstract
Anthropogenic activities in urban ecosystems induce a myriad of environmental changes compared with adjacent rural areas. These environmental changes can be seen as series of abiotic and biotic selection filters affecting the distribution of plant species. What are the attributes of plant species that compose urban communities, compared with rural communities, as related to their ecological affinities (e.g., to temperature, humidity), and reproductive traits (e.g., entomophily, autogamy, floral morphology)? Using a floristic dataset from a citizen science project recording plant species growing spontaneously in the streets, we analyzed the distribution of species according to their ecological requirements and reproductive traits along an urbanization gradient in the Parisian region. We developed an original floral and pollinator typology composed of five floral and four pollinator morphotypes. The proportion of impervious areas, used as a proxy of urbanization, was measured at different spatial scales, to reveal at which spatial scales urbanization is selecting plant traits. We found significant differences in plant communities along the urbanization gradient. As expected with the warmer and drier conditions of urban areas, species with higher affinities to higher temperature, light and nutrient soil content, and lower atmospheric moisture were over-represented in urban plant communities. Interestingly, all of the significant changes in plant abiotical affinities were the most pronounced at the largest scale of analysis (1,000 m buffer radius), probably because the specific urban conditions are more pronounced when they occur on a large surface. The proportion of autogamous, self-compatible, and nonentomophilous species was significantly higher in urban plant communities, strongly suggesting a lower abundance or efficiency of the pollinating fauna in urban environments. Last, among insect-pollinated species, those with relatively long and narrow tubular corollas were disadvantaged in urban areas, possibly resulting from a reduction in pollinator abundance particularly affecting specialized plant-pollinator interactions.
Collapse
Affiliation(s)
- James Desaegher
- Ecologie Systématique EvolutionUniv. Paris‐Sud, CNRS, AgroParisTechUniversité Paris‐SaclayOrsayFrance
- Dynafor, INRA, INPT, INP‐EI PurpanUniversité de ToulouseCastanet TolosanFrance
| | - Sophie Nadot
- Ecologie Systématique EvolutionUniv. Paris‐Sud, CNRS, AgroParisTechUniversité Paris‐SaclayOrsayFrance
| | - Nathalie Machon
- Centre d'Ecologie et des Sciences de la Conservation, UMR7204 (CNRS, MNHN, UPMC)Museum National d'Histoire NaturelleParisFrance
| | - Bruno Colas
- Ecologie Systématique EvolutionUniv. Paris‐Sud, CNRS, AgroParisTechUniversité Paris‐SaclayOrsayFrance
| |
Collapse
|
49
|
Jamieson MA, Carper AL, Wilson CJ, Scott VL, Gibbs J. Geographic Biases in Bee Research Limits Understanding of Species Distribution and Response to Anthropogenic Disturbance. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00194] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
50
|
Corcos D, Cerretti P, Caruso V, Mei M, Falco M, Marini L. Impact of urbanization on predator and parasitoid insects at multiple spatial scales. PLoS One 2019; 14:e0214068. [PMID: 30943220 PMCID: PMC6447152 DOI: 10.1371/journal.pone.0214068] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 03/06/2019] [Indexed: 11/18/2022] Open
Abstract
Landscapes are becoming increasingly urbanized, causing loss and fragmentation of natural habitats, with potentially negative effects on biodiversity. Insects are among the organisms with the largest diversity in urbanized environments. Here, we sampled predator (Ampulicidae, Sphecidae and Crabronidae) and parasitoid (Tachinidae) flower-visiting insects in 36 sites in the city of Rome (Italy). Although the diversity of herbivorous insects in urban areas mostly depends on the availability of flowering plants and nesting sites, predators and parasitoids generally require a larger number of resources during their life cycle, and are expected to be particularly influenced by urbanization. As flower-visitors can easily move between habitat patches, the effect of urbanization was tested at multiple spatial scales (local, landscape and sub-regional). We found that urbanization influenced predator and parasitoid flower-visitors at all three spatial scales. At the local scale, streets and buildings negatively influenced evenness of predators and species richness and abundance of parasitoids probably acting as dispersal barrier. At the landscape scale, higher percentage of urban decreased predator abundance, while increasing their evenness, suggesting an increase in generalist and highly mobile species. Area and compactness (i.e. Contiguity index) of urban green interactively influenced predator communities, whereas evenness of parasitoids increased with increasing Contiguity index. At the sub-regional scale, species richness and abundance of predators increased with increasing distance from the city center. Compared to previous studies testing the effect of urbanization, we found little variation in species richness, abundance and evenness along our urbanization gradient. The current insect fauna has been probably selected for its tolerance to habitat loss and fragmentation, being the result of the intensive anthropogenic alteration occurred in the area in the last centuries. Conservation strategies aimed at predator and parasitoid flying insects have to take in account variables at multiple spatial-scales, as well as the complementarity of resources across the landscape.
Collapse
Affiliation(s)
- Daria Corcos
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, Rome, Italy
- Department of Agronomy, Food, Natural Resources, Animals and the Environment (DAFNAE), University of Padova, Legnaro (Padua), Italy
- * E-mail:
| | - Pierfilippo Cerretti
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, Rome, Italy
| | - Valerio Caruso
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, Rome, Italy
| | - Maurizio Mei
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, Rome, Italy
| | - Matteo Falco
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, Rome, Italy
| | - Lorenzo Marini
- Department of Agronomy, Food, Natural Resources, Animals and the Environment (DAFNAE), University of Padova, Legnaro (Padua), Italy
| |
Collapse
|