1
|
Ding R, Yu D, Yang K, Wu X, Liu H. Chromosome-Level Genome Assembly and Whole-Genome Resequencing Revealed Contrasting Population Genetic Differentiation of Black Bream ( Megalobrama skolkovii) (Teleostei: Cyprinidae) Allopatric and Sympatric to Its Kin Species. Ecol Evol 2025; 15:e70874. [PMID: 39844788 PMCID: PMC11751286 DOI: 10.1002/ece3.70874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 12/21/2024] [Accepted: 01/06/2025] [Indexed: 01/24/2025] Open
Abstract
The black bream (Megalobrama skolkovii) is an economically important species widely distributed in China, with its geographic populations potentially having undergone differentiations and local adaptations. In this study, we presented a chromosome-level genome assembly of this species and investigated genetic differentiations of its populations that are allopatric (the northern one) and sympatric (the Poyang Lake) to its kin species, the blunt-snout bream (M. amblycephala), using whole genome resequencing analysis. The results showed that the genome size of black bream was 1.13 Gb, very similar to its kin species but larger than its close relatives, the four Chinese major carps. By resequencing individuals from the northern and Poyang Lake populations, we found that the northern population showed lower genetic diversity, larger genetic differentiation, and two sharp historical declines in population size through demographic analysis, indicating the possible bottlenecks after the allopatric isolation. In contrast, the Poyang Lake population, with its higher genetic diversity, higher Tajima's D value, and lower levels of linkage disequilibrium, reflects the ancestral state of black bream. In addition, we also found that the northern population shared more alleles with its kin species, indicating it may retain more ancestral variations. This was further analyzed to be caused by incomplete lineage sorting and ancient introgression. Some key genes related to reproductive processes, body size development, and muscle metabolism were found under selection in the northern population, possibly responsible for its local adaptation. Our findings that the black bream allopatric population had a loss of genetic diversity but retained more ancestral variations can expand our knowledge on population genetic differentiation and give us hints for future genetic conservation.
Collapse
Affiliation(s)
- Ruijin Ding
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of HydrobiologyChinese Academy of SciencesWuhanChina
- College of Advanced Agricultural SciencesUniversity of Chinese Academy of SciencesBeijingChina
- Research Center for Yangtze River Ecological and Environmental EngineeringChina Three Gorges CorporationBeijingChina
| | - Dan Yu
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of HydrobiologyChinese Academy of SciencesWuhanChina
| | - Ke Yang
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of HydrobiologyChinese Academy of SciencesWuhanChina
- College of Advanced Agricultural SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Xinghua Wu
- Research Center for Yangtze River Ecological and Environmental EngineeringChina Three Gorges CorporationBeijingChina
| | - Huanzhang Liu
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of HydrobiologyChinese Academy of SciencesWuhanChina
- Research Center for Yangtze River Ecological and Environmental EngineeringChina Three Gorges CorporationBeijingChina
| |
Collapse
|
2
|
Fang B, Edwards SV. Fitness consequences of structural variation inferred from a House Finch pangenome. Proc Natl Acad Sci U S A 2024; 121:e2409943121. [PMID: 39531493 PMCID: PMC11588099 DOI: 10.1073/pnas.2409943121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024] Open
Abstract
Genomic structural variants (SVs) play a crucial role in adaptive evolution, yet their average fitness effects and characterization with pangenome tools are understudied in wild animal populations. We constructed a pangenome for House Finches (Haemorhous mexicanus), a model for studies of host-pathogen coevolution, using long-read sequence data on 16 individuals (32 de novo-assembled haplotypes) and one outgroup. We identified 887,118 SVs larger than 50 base pairs, mostly (60%) involving repetitive elements, with reduced SV diversity in the eastern US as a result of its introduction by humans. The distribution of fitness effects of genome-wide SVs was estimated using maximum likelihood approaches and revealed that SVs in both coding and noncoding regions were on average more deleterious than smaller indels or single nucleotide polymorphisms. The reference-free pangenome facilitated identification of a > 10-My-old, 11-megabase-long pericentric inversion on chromosome 1. We found that the genotype frequencies of the inversion, estimated from 135 birds widely sampled temporally and geographically, increased steadily over the 25 y since House Finches were first exposed to the bacterial pathogen Mycoplasma gallisepticum and showed signatures of balancing selection, capturing genes related to immunity and telomerase activity. We also observed shorter telomeres in populations with a greater number of years exposure to Mycoplasma. Our study illustrates the utility of long-read sequencing and pangenome methods for understanding wild animal populations, estimating fitness effects of genome-wide SVs, and advancing our understanding of adaptive evolution through structural variation.
Collapse
Affiliation(s)
- Bohao Fang
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA02138
- Museum of Comparative Zoology, Harvard University, Cambridge, MA02138
| | - Scott V. Edwards
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA02138
- Museum of Comparative Zoology, Harvard University, Cambridge, MA02138
| |
Collapse
|
3
|
Judson JM, Hoekstra LA, Janzen FJ. Demographic history and genomic signatures of selection in a widespread vertebrate ectotherm. Mol Ecol 2024; 33:e17269. [PMID: 38234254 PMCID: PMC10922411 DOI: 10.1111/mec.17269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/20/2023] [Accepted: 01/08/2024] [Indexed: 01/19/2024]
Abstract
Environmental conditions vary greatly across large geographic ranges, and yet certain species inhabit entire continents. In such species, genomic sequencing can inform our understanding of colonization history and the impact of selection on the genome as populations experience diverse local environments. As ectothermic vertebrates are among the most vulnerable to environmental change, it is critical to understand the contributions of local adaptation to population survival. Widespread ectotherms offer an opportunity to explore how species can successfully inhabit such differing environments and how future climatic shifts will impact species' survival. In this study, we investigated the widespread painted turtle (Chrysemys picta) to assess population genomic structure, demographic history, and genomic signatures of selection in the western extent of the range. We found support for a substantial role of serial founder effects in shaping population genomic structure: demographic analysis and runs of homozygosity were consistent with bottlenecks of increasing severity from eastern to western populations during and following the Last Glacial Maximum, and edge populations were more strongly diverged and had less genetic diversity than those from the centre of the range. We also detected outlier loci, but allelic patterns in many loci could be explained by either genetic surfing or selection. While range expansion complicates the identification of loci under selection, we provide candidates for future study of local adaptation in a long-lived, widespread ectotherm that faces an uncertain future as the global climate continues to rapidly change.
Collapse
Affiliation(s)
- Jessica M. Judson
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
- Current Address: W. K. Kellogg Biological Station, Departments of Fisheries and Wildlife & Integrative Biology, Michigan State University, Hickory Corners, MI 49060, USA
| | - Luke A. Hoekstra
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
- Current Address: Department of Integrative Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Fredric J. Janzen
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
- Current Address: W. K. Kellogg Biological Station, Departments of Fisheries and Wildlife & Integrative Biology, Michigan State University, Hickory Corners, MI 49060, USA
| |
Collapse
|
4
|
Sherpa S, Paris JR, Silva‐Rocha I, Di Canio V, Carretero MA, Ficetola GF, Salvi D. Genetic depletion does not prevent rapid evolution in island-introduced lizards. Ecol Evol 2023; 13:e10721. [PMID: 38034325 PMCID: PMC10682264 DOI: 10.1002/ece3.10721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/02/2023] [Accepted: 10/23/2023] [Indexed: 12/02/2023] Open
Abstract
Experimental introductions of species have provided some of the most tractable examples of rapid phenotypic changes, which may reflect plasticity, the impact of stochastic processes, or the action of natural selection. Yet to date, very few studies have investigated the neutral and potentially adaptive genetic impacts of experimental introductions. We dissect the role of these processes in shaping the population differentiation of wall lizards in three Croatian islands (Sušac, Pod Kopište, and Pod Mrčaru), including the islet of Pod Mrčaru, where experimentally introduced lizards underwent rapid (~30 generations) phenotypic changes associated with a shift from an insectivorous to a plant-based diet. Using a genomic approach (~82,000 ddRAD loci), we confirmed a founder effect during introduction and very low neutral genetic differentiation between the introduced population and its source. However, genetic depletion did not prevent rapid population growth, as the introduced lizards exhibited population genetic signals of expansion and are known to have reached a high density. Our genome-scan analysis identified just a handful of loci showing large allelic shifts between ecologically divergent populations. This low overall signal of selection suggests that the extreme phenotypic differences observed among populations are determined by a small number of large-effect loci and/or that phenotypic plasticity plays a major role in phenotypic changes. Nonetheless, functional annotation of the outlier loci revealed some candidate genes relevant to diet-induced adaptation, in agreement with the hypothesis of directional selection. Our study provides important insights on the evolutionary potential of bottlenecked populations in response to new selective pressures on short ecological timescales.
Collapse
Affiliation(s)
- Stéphanie Sherpa
- Dipartimento di Scienze e Politiche AmbientaliUniversità degli Studi di MilanoMilanoItaly
| | - Josephine R. Paris
- Dipartimento di Medicina Clinica, Sanità Pubblica, Scienze della Vita e dell'AmbienteUniversità degli Studi dell'AquilaL'Aquila‐CoppitoItaly
| | - Iolanda Silva‐Rocha
- Centro de Investigação em Biodiversidade e Recursos Genéticos (CIBIO), InBIO Laboratório AssociadoUniversidade do PortoVairãoPortugal
- BIOPOLIS Program in Genomics, Biodiversity and Land PlanningCIBIOVairãoPortugal
| | - Viola Di Canio
- Dipartimento di Scienze e Politiche AmbientaliUniversità degli Studi di MilanoMilanoItaly
| | - Miguel Angel Carretero
- Centro de Investigação em Biodiversidade e Recursos Genéticos (CIBIO), InBIO Laboratório AssociadoUniversidade do PortoVairãoPortugal
- BIOPOLIS Program in Genomics, Biodiversity and Land PlanningCIBIOVairãoPortugal
- Departamento de Biologia, Faculdade de CiênciasUniversidade do PortoPortoPortugal
| | | | - Daniele Salvi
- Dipartimento di Medicina Clinica, Sanità Pubblica, Scienze della Vita e dell'AmbienteUniversità degli Studi dell'AquilaL'Aquila‐CoppitoItaly
| |
Collapse
|
5
|
Horreo JL, Ucero A, Palacín C, López‐Solano A, Abril‐Colón I, Alonso JC. Human decimation caused bottleneck effect, genetic drift, and inbreeding in the Canarian houbara bustard. J Wildl Manage 2022. [DOI: 10.1002/jwmg.22342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jose L. Horreo
- Department of Genetics, Physiology and Microbiology Universidad Complutense Madrid Spain
| | - Alberto Ucero
- Department of Evolutionary Ecology Museo Nacional de Ciencias Naturales (CSIC) Madrid Spain
| | - Carlos Palacín
- Department of Evolutionary Ecology Museo Nacional de Ciencias Naturales (CSIC) Madrid Spain
| | - Alfonso López‐Solano
- Department of Biodiversity and Evolutionary Biology Museo Nacional de Ciencias Naturales (CSIC) Madrid Spain
| | - Inmaculada Abril‐Colón
- Department of Evolutionary Ecology Museo Nacional de Ciencias Naturales (CSIC) Madrid Spain
| | - Juan C. Alonso
- Department of Evolutionary Ecology Museo Nacional de Ciencias Naturales (CSIC) Madrid Spain
| |
Collapse
|
6
|
Piñeros VJ, Del R Pedraza-Marrón C, Betancourt-Resendes I, Calderón-Cortés N, Betancur-R R, Domínguez-Domínguez O. Genome-wide species delimitation analyses of a silverside fish species complex in central Mexico indicate taxonomic over-splitting. BMC Ecol Evol 2022; 22:108. [PMID: 36104671 PMCID: PMC9472351 DOI: 10.1186/s12862-022-02063-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 09/06/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Delimiting species across a speciation continuum is a complex task, as the process of species origin is not generally instantaneous. The use of genome-wide data provides unprecedented resolution to address convoluted species delimitation cases, often unraveling cryptic diversity. However, because genome-wide approaches based on the multispecies coalescent model are known to confound population structure with species boundaries, often resulting in taxonomic over-splitting, it has become increasingly evident that species delimitation research must consider multiple lines of evidence. In this study, we used phylogenomic, population genomic, and coalescent-based species delimitation approaches, and examined those in light of morphological and ecological information, to investigate species numbers and boundaries comprising the Chirostoma "humboltianum group" (family Atherinidae). The humboltianum group is a taxonomically controversial species complex where previous morphological and mitochondrial studies produced conflicting species delimitation outcomes. We generated ddRADseq data for 77 individuals representing the nine nominal species in the group, spanning their distribution range in the central Mexican plateau. RESULTS Our results conflict with the morphospecies and ecological delimitation hypotheses, identifying four independently evolving lineages organized in three geographically cohesive clades: (i) chapalae and sphyraena groups in Lake Chapala, (ii) estor group in Lakes Pátzcuaro and Zirahuén, and (iii) humboltianum sensu stricto group in Lake Zacapu and Lerma river system. CONCLUSIONS Overall, our study provides an atypical example where genome-wide analyses delineate fewer species than previously recognized on the basis of morphology. It also highlights the influence of the geological history of the Chapala-Lerma hydrological system in driving allopatric speciation in the humboltianum group.
Collapse
Affiliation(s)
- Victor Julio Piñeros
- Laboratorio de Ecología Molecular, Escuela Nacional de Estudios Superiores Unidad Morelia, Universidad Nacional Autónoma de México, Antigua Carretera a Pátzcuaro 8701, Ex-Hacienda de San José de La Huerta, 58190, Morelia, Michoacán, Mexico
| | | | - Isaí Betancourt-Resendes
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Avenida de Las Ciencias S/N Juriquilla, Delegación Santa Rosa Jáuregui, 76230, Querétaro, Mexico
| | - Nancy Calderón-Cortés
- Laboratorio de Ecología Molecular, Escuela Nacional de Estudios Superiores Unidad Morelia, Universidad Nacional Autónoma de México, Antigua Carretera a Pátzcuaro 8701, Ex-Hacienda de San José de La Huerta, 58190, Morelia, Michoacán, Mexico.
| | - Ricardo Betancur-R
- Department of Biology, The University of Oklahoma, 730 Van Vleet Oval, Norman, OK, 73019, USA
| | - Omar Domínguez-Domínguez
- Laboratorio de Biología Acuática, Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo, Edificio "R" Planta Baja, Ciudad Universitaria, 58030, Morelia, Michoacán, Mexico.
- Laboratorio Nacional de Análisis y Síntesis Ecológica Para la Conservación de Recursos Genéticos de México, Escuela Nacional de Estudios Superiores, Unidad Morelia, Universidad Nacional Autónoma de México, Apartado Postal 27-3 (Xangari), 58089, Michoacán, Morelia, Mexico.
| |
Collapse
|
7
|
Abstract
Natural history collections are invaluable repositories of biological information that provide an unrivaled record of Earth's biodiversity. Museum genomics-genomics research using traditional museum and cryogenic collections and the infrastructure supporting these investigations-has particularly enhanced research in ecology and evolutionary biology, the study of extinct organisms, and the impact of anthropogenic activity on biodiversity. However, leveraging genomics in biological collections has exposed challenges, such as digitizing, integrating, and sharing collections data; updating practices to ensure broadly optimal data extraction from existing and new collections; and modernizing collections practices, infrastructure, and policies to ensure fair, sustainable, and genomically manifold uses of museum collections by increasingly diverse stakeholders. Museum genomics collections are poised to address these challenges and, with increasingly sensitive genomics approaches, will catalyze a future era of reproducibility, innovation, and insight made possible through integrating museum and genome sciences.
Collapse
Affiliation(s)
- Daren C Card
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA; .,Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Beth Shapiro
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, California 95064, USA.,Howard Hughes Medical Institute, University of California, Santa Cruz, California 95064, USA
| | - Gonzalo Giribet
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA; .,Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Craig Moritz
- Centre for Biodiversity Analysis and Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 0200, Australia
| | - Scott V Edwards
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA; .,Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
8
|
Leigh DM, Lischer HEL, Guillaume F, Grossen C, Günther T. Disentangling adaptation from drift in bottlenecked and reintroduced populations of Alpine ibex. Mol Ecol Resour 2021; 21:2350-2363. [PMID: 34097819 PMCID: PMC8518545 DOI: 10.1111/1755-0998.13442] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/27/2021] [Accepted: 06/01/2021] [Indexed: 01/25/2023]
Abstract
Identifying local adaptation in bottlenecked species is essential for conservation management. Selection detection methods have an important role in species management plans, assessments of adaptive capacity, and looking for responses to climate change. Yet, the allele frequency changes exploited in selection detection methods are similar to those caused by the strong neutral genetic drift expected during a bottleneck. Consequently, it is often unclear what accuracy selection detection methods have across bottlenecked populations. In this study, simulations were used to explore if signals of selection could be confidently distinguished from genetic drift across 23 bottlenecked and reintroduced populations of Alpine ibex (Capra ibex). The meticulously recorded demographic history of the Alpine ibex was used to generate comprehensive simulated SNP data. The simulated SNPs were then used to benchmark the confidence we could place in outliers identified in empirical Alpine ibex RADseq derived SNP data. Within the simulated data set, the false positive rates were high for all selection detection methods (FST outlier scans and Genetic‐Environment Association analyses) but fell substantially when two or more methods were combined. True positive rates were consistently low and became negligible with increased stringency. Despite finding many outlier loci in the empirical Alpine ibex SNPs, none could be distinguished from genetic drift‐driven false positives. Unfortunately, the low true positive rate also prevents the exclusion of recent local adaptation within the Alpine ibex. The baselines and stringent approach outlined here should be applied to other bottlenecked species to ensure the risk of false positive, or negative, signals of selection are accounted for in conservation management plans.
Collapse
Affiliation(s)
- Deborah M Leigh
- WSL Swiss Federal Research Institute, Birmensdorf, Switzerland
| | - Heidi E L Lischer
- Interfaculty Bioinformatics Unit, University of Bern, Bern, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Frédéric Guillaume
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Christine Grossen
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Torsten Günther
- Human Evolution, Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| |
Collapse
|
9
|
de Jong MJ, Lovatt F, Hoelzel AR. Detecting genetic signals of selection in heavily bottlenecked reindeer populations by comparing parallel founder events. Mol Ecol 2021; 30:1642-1658. [PMID: 33565631 DOI: 10.1111/mec.15837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 01/11/2021] [Accepted: 01/28/2021] [Indexed: 11/28/2022]
Abstract
Founder populations are of special interest to both evolutionary and conservation biologists, but the detection of genetic signals of selection in these populations is challenging due to their demographic history. Geographically separated founder populations likely to have been subjected to similar selection pressures provide an ideal but rare opportunity to overcome these challenges. Here we take advantage of such a situation generated when small, isolated founder populations of reindeer were established on the island of South Georgia, and using this system we look for empirical evidence of selection overcoming strong genetic drift. We generated a 70 k ddRADseq single nucleotide polymorphism database for the two parallel reindeer founder populations and screened for signatures of soft sweeps. We find evidence for a genomic region under selection shared among the two populations, and support our findings with Wright-Fisher model simulations to assess the power and specificity of interpopulation selection scans-namely Bayescan, OutFLANK, PCadapt and a newly developed scan called Genome Wide Differentiation Scan (GWDS)-in the context of pairwise source-founder comparisons. Our simulations indicate that loci under selection in small founder populations are most probably detected by GWDS, and strengthen the hypothesis that the outlier region represents a true locus under selection. We explore possible, relevant functional roles for genes in linkage with the detected outlier loci.
Collapse
Affiliation(s)
| | - Fiona Lovatt
- Department of Biosciences, Durham University, Durham, UK
| | - A Rus Hoelzel
- Department of Biosciences, Durham University, Durham, UK
| |
Collapse
|
10
|
Shultz AJ, Adams BJ, Bell KC, Ludt WB, Pauly GB, Vendetti JE. Natural history collections are critical resources for contemporary and future studies of urban evolution. Evol Appl 2021; 14:233-247. [PMID: 33519967 PMCID: PMC7819571 DOI: 10.1111/eva.13045] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 06/04/2020] [Accepted: 06/09/2020] [Indexed: 12/30/2022] Open
Abstract
Urban environments are among the fastest changing habitats on the planet, and this change has evolutionary implications for the organisms inhabiting them. Herein, we demonstrate that natural history collections are critical resources for urban evolution studies. The specimens housed in these collections provide great potential for diverse types of urban evolution research, and strategic deposition of specimens and other materials from contemporary studies will determine the resources and research questions available to future urban evolutionary biologists. As natural history collections are windows into the past, they provide a crucial historical timescale for urban evolution research. While the importance of museum collections for research is generally appreciated, their utility in the study of urban evolution has not been explicitly evaluated. Here, we: (a) demonstrate that museum collections can greatly enhance urban evolution studies, (b) review patterns of specimen use and deposition in the urban evolution literature, (c) analyze how urban versus rural and native versus nonnative vertebrate species are being deposited in museum collections, and (d) make recommendations to researchers, museum professionals, scientific journal editors, funding agencies, permitting agencies, and professional societies to improve archiving policies. Our analyses of recent urban evolution studies reveal that museum specimens can be used for diverse research questions, but they are used infrequently. Further, although nearly all studies we analyzed generated resources that could be deposited in natural history collections (e.g., collected specimens), a minority (12%) of studies actually did so. Depositing such resources in collections is crucial to allow the scientific community to verify, replicate, and/or re-visit prior research. Therefore, to ensure that adequate museum resources are available for future urban evolutionary biology research, the research community-from practicing biologists to funding agencies and professional societies-must make adjustments that prioritize the collection and deposition of urban specimens.
Collapse
Affiliation(s)
- Allison J. Shultz
- Urban Nature Research CenterNatural History Museum of Los Angeles CountyLos AngelesCAUSA
- Ornithology DepartmentNatural History Museum of Los Angeles CountyLos AngelesCAUSA
| | - Benjamin J. Adams
- Urban Nature Research CenterNatural History Museum of Los Angeles CountyLos AngelesCAUSA
- Entomology DepartmentNatural History Museum of Los Angeles CountyLos AngelesCAUSA
- Department of Biological SciencesGeorge Washington UniversityWashingtonDCUSA
| | - Kayce C. Bell
- Urban Nature Research CenterNatural History Museum of Los Angeles CountyLos AngelesCAUSA
- Mammalogy DepartmentNatural History Museum of Los Angeles CountyLos AngelesCAUSA
| | - William B. Ludt
- Ichthyology DepartmentNatural History Museum of Los Angeles CountyLos AngelesCAUSA
| | - Gregory B. Pauly
- Urban Nature Research CenterNatural History Museum of Los Angeles CountyLos AngelesCAUSA
- Herpetology DepartmentNatural History Museum of Los Angeles CountyLos AngelesCAUSA
| | - Jann E. Vendetti
- Urban Nature Research CenterNatural History Museum of Los Angeles CountyLos AngelesCAUSA
- Malacology DepartmentNatural History Museum of Los Angeles CountyLos AngelesCAUSA
| |
Collapse
|
11
|
López-Cortés XA, Matamala F, Maldonado C, Mora-Poblete F, Scapim CA. A Deep Learning Approach to Population Structure Inference in Inbred Lines of Maize. Front Genet 2020; 11:543459. [PMID: 33329691 PMCID: PMC7732446 DOI: 10.3389/fgene.2020.543459] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 10/19/2020] [Indexed: 11/16/2022] Open
Abstract
Analysis of population genetic variation and structure is a common practice for genome-wide studies, including association mapping, ecology, and evolution studies in several crop species. In this study, machine learning (ML) clustering methods, K-means (KM), and hierarchical clustering (HC), in combination with non-linear and linear dimensionality reduction techniques, deep autoencoder (DeepAE) and principal component analysis (PCA), were used to infer population structure and individual assignment of maize inbred lines, i.e., dent field corn (n = 97) and popcorn (n = 86). The results revealed that the HC method in combination with DeepAE-based data preprocessing (DeepAE-HC) was the most effective method to assign individuals to clusters (with 96% of correct individual assignments), whereas DeepAE-KM, PCA-HC, and PCA-KM were assigned correctly 92, 89, and 81% of the lines, respectively. These findings were consistent with both Silhouette Coefficient (SC) and Davies-Bouldin validation indexes. Notably, DeepAE-HC also had better accuracy than the Bayesian clustering method implemented in InStruct. The results of this study showed that deep learning (DL)-based dimensional reduction combined with ML clustering methods is a useful tool to determine genetically differentiated groups and to assign individuals into subpopulations in genome-wide studies without having to consider previous genetic assumptions.
Collapse
Affiliation(s)
| | - Felipe Matamala
- Department of Computer Sciences and Industries, Catholic University of the Maule, Talca, Chile
| | - Carlos Maldonado
- Instituto de Ciencias Agroalimentarias, Animales y Ambientales, Universidad de O’Higgins, San Fernando, Chile
| | | | | |
Collapse
|
12
|
Taylor AT, Bangs MR, Long JM. Sibship reconstruction with SNPs illuminates the scope of a cryptic invasion of Asian Swamp Eels (Monopterus albus) in Georgia, USA. Biol Invasions 2020. [DOI: 10.1007/s10530-020-02384-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Pinzari CA, Kang L, Michalak P, Jermiin LS, Price DK, Bonaccorso FJ. Analysis of Genomic Sequence Data Reveals the Origin and Evolutionary Separation of Hawaiian Hoary Bat Populations. Genome Biol Evol 2020; 12:1504-1514. [PMID: 32853363 PMCID: PMC7543519 DOI: 10.1093/gbe/evaa137] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We examine the genetic history and population status of Hawaiian hoary bats (Lasiurus semotus), the most isolated bats on Earth, and their relationship to northern hoary bats (Lasiurus cinereus), through whole-genome analysis of single-nucleotide polymorphisms mapped to a de novo-assembled reference genome. Profiles of genomic diversity and divergence indicate that Hawaiian hoary bats are distinct from northern hoary bats, and form a monophyletic group, indicating a single ancestral colonization event 1.34 Ma, followed by substantial divergence between islands beginning 0.51 Ma. Phylogenetic analysis indicates Maui is central to the radiation across the archipelago, with the southward expansion to Hawai'i and westward to O'ahu and Kaua'i. Because this endangered species is of conservation concern, a clearer understanding of the population genetic structure of this bat in the Hawaiian Islands is of timely importance.
Collapse
Affiliation(s)
| | - Lin Kang
- Edward Via College of Osteopathic Medicine, Blacksburg, Virginia
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, Virginia
| | - Pawel Michalak
- Edward Via College of Osteopathic Medicine, Blacksburg, Virginia
- Center for One Health Research, Virginia-Maryland College of Veterinary Medicine, Blacksburg, Virginia
- Institute of Evolution, University of Haifa, Israel
| | - Lars S Jermiin
- Research School of Biology, Australian National University, Acton, Australian Capital Territory, Australia
- School of Biology & Environmental Science, University College Dublin, Ireland
- Earth Institute, University College Dublin, Ireland
| | - Donald K Price
- School of Life Sciences, University of Nevada, Las Vegas
| | - Frank J Bonaccorso
- U.S. Geological Survey, Pacific Island Ecosystems Research Center, Hawai‘i National Park, HI
| |
Collapse
|
14
|
Wu Y, Bogdanowicz SM, Andres JA, Vieira KA, Wang B, Cossé A, Pfister SE. Tracking invasions of a destructive defoliator, the gypsy moth (Erebidae: Lymantria dispar): Population structure, origin of intercepted specimens, and Asian introgression into North America. Evol Appl 2020; 13:2056-2070. [PMID: 32908604 PMCID: PMC7463338 DOI: 10.1111/eva.12962] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/03/2020] [Accepted: 03/04/2020] [Indexed: 12/30/2022] Open
Abstract
Genetic data can help elucidate the dynamics of biological invasions, which are fueled by the constant expansion of international trade. The introduction of European gypsy moth (Lymantria dispar dispar) into North America is a classic example of human-aided invasion that has caused tremendous damage to North American temperate forests. Recently, the even more destructive Asian gypsy moth (mainly L. d. asiatica and L. d. japonica) has been intercepted in North America, mostly transported by cargo ships. To track invasion pathways, we developed a diagnostic panel of 60 DNA loci (55 nuclear and 5 mitochondrial) to characterize worldwide genetic differentiation within L. dispar and its sister species L. umbrosa. Hierarchical analyses supported strong differentiation and recovered five geographic groups that correspond to (1) North America, (2) Europe plus North Africa and Middle East, (3) the Urals, Central Asia, and Russian Siberia, (4) continental East Asia, and (5) the Japanese islands. Interestingly, L. umbrosa was grouped with L. d. japonica, and the introduced North American population exhibits remarkable distinctiveness from contemporary European counterparts. Each geographic group, except for North America, shows additional lower-level structures when analyzed individually, which provided the basis for inference of the origin of invasive specimens. Two assignment approaches consistently identified a coastal area of continental East Asia as the major source for Asian invasion during 2014-2015, with Japan being another source. By analyzing simulation and laboratory crosses, we further provided evidence for the occurrence of natural Asian-North American hybrids in the Pacific Northwest, raising concerns for introgression of Asian alleles that may accelerate range expansion of gypsy moth in North America. Our study demonstrates how genetic data contribute to bio-surveillance of invasive species with results that can inform regulatory management and reduce the frequency of trade-associated invasions.
Collapse
Affiliation(s)
- Yunke Wu
- Department of Ecology and Evolutionary BiologyCornell UniversityIthacaNYUSA
- United States Department of AgricultureAPHIS, PPQ, S&T, Otis LaboratoryBuzzards BayMAUSA
| | | | - Jose A. Andres
- Department of Ecology and Evolutionary BiologyCornell UniversityIthacaNYUSA
| | - Kendra A. Vieira
- United States Department of AgricultureAPHIS, PPQ, S&T, Otis LaboratoryBuzzards BayMAUSA
| | - Baode Wang
- United States Department of AgricultureAPHIS, PPQ, S&T, Otis LaboratoryBuzzards BayMAUSA
| | - Allard Cossé
- United States Department of AgricultureAPHIS, PPQ, S&T, Otis LaboratoryBuzzards BayMAUSA
| | - Scott E. Pfister
- United States Department of AgricultureAPHIS, PPQ, S&T, Otis LaboratoryBuzzards BayMAUSA
| |
Collapse
|
15
|
Godwin BL, LaCava MEF, Mendelsohn B, Gagne RB, Gustafson KD, Love Stowell SM, Engilis A, Tell LA, Ernest HB. Novel hybrid finds a peri-urban niche: Allen’s Hummingbirds in southern California. CONSERV GENET 2020. [DOI: 10.1007/s10592-020-01303-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Einfeldt AL, Jesson LK, Addison JA. Historical human activities reshape evolutionary trajectories across both native and introduced ranges. Ecol Evol 2020; 10:6579-6592. [PMID: 32724534 PMCID: PMC7381589 DOI: 10.1002/ece3.6391] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/21/2020] [Accepted: 04/28/2020] [Indexed: 12/30/2022] Open
Abstract
The same vectors that introduce species to new ranges could move them among native populations, but how human-mediated dispersal impacts native ranges has been difficult to address because human-mediated dispersal and natural dispersal can simultaneously shape patterns of gene flow. Here, we disentangle human-mediated dispersal from natural dispersal by exploiting a system where the primary vector was once extensive but has since ceased. From 10th to 19th Centuries, ships in the North Atlantic exchanged sediments dredged from the intertidal for ballast, which ended when seawater ballast tanks were adopted. We investigate genetic patterns from RADseq-derived SNPs in the amphipod Corophium volutator (n = 121; 4,870 SNPs) and the annelid Hediste diversicolor (n = 78; 3,820 SNPs), which were introduced from Europe to North America, have limited natural dispersal capabilities, are abundant in intertidal sediments, but not commonly found in modern water ballast tanks. We detect similar levels of genetic subdivision among introduced North American populations and among native European populations. Phylogenetic networks and clustering analyses reveal population structure between sites, a high degree of phylogenetic reticulation within ranges, and phylogenetic splits between European and North American populations. These patterns are inconsistent with phylogeographic structure expected to arise from natural dispersal alone, suggesting human activity eroded ancestral phylogeographic structure between native populations, but was insufficient to overcome divergent processes between naturalized populations and their sources. Our results suggest human activity may alter species' evolutionary trajectories on a broad geographic scale via regional homogenization and global diversification, in some cases precluding historical inference from genetic data.
Collapse
Affiliation(s)
- Anthony L. Einfeldt
- Department of BiologyUniversity of New BrunswickFrederictonNBCanada
- Department of BiologyDalhousie UniversityHalifaxNSCanada
| | - Linley K. Jesson
- Department of BiologyUniversity of New BrunswickFrederictonNBCanada
- New Zealand Institute for Plant & Food Research LimitedAucklandNew Zealand
| | - Jason A. Addison
- Department of BiologyUniversity of New BrunswickFrederictonNBCanada
| |
Collapse
|
17
|
Population genomic diversity and structure at the discontinuous southern range of the Great Gray Owl in North America. CONSERV GENET 2020. [DOI: 10.1007/s10592-020-01280-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Martin Cerezo ML, Kucka M, Zub K, Chan YF, Bryk J. Population structure of Apodemus flavicollis and comparison to Apodemus sylvaticus in northern Poland based on RAD-seq. BMC Genomics 2020; 21:241. [PMID: 32183700 PMCID: PMC7079423 DOI: 10.1186/s12864-020-6603-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 02/21/2020] [Indexed: 02/08/2023] Open
Abstract
Background Mice of the genus Apodemus are one the most common mammals in the Palaearctic region. Despite their broad range and long history of ecological observations, there are no whole-genome data available for Apodemus, hindering our ability to further exploit the genus in evolutionary and ecological genomics context. Results Here we present results from the double-digest restriction site-associated DNA sequencing (ddRAD-seq) on 72 individuals of A. flavicollis and 10 A. sylvaticus from four populations, sampled across 500 km distance in northern Poland. Our data present clear genetic divergence of the two species, with average p-distance, based on 21377 common loci, of 1.51% and a mutation rate of 0.0011 - 0.0019 substitutions per site per million years. We provide a catalogue of 117 highly divergent loci that enable genetic differentiation of the two species in Poland and to a large degree of 20 unrelated samples from several European countries and Tunisia. We also show evidence of admixture between the three A. flavicollis populations but demonstrate that they have negligible average population structure, with largest pairwise FST<0.086. Conclusion Our study demonstrates the feasibility of ddRAD-seq in Apodemus and provides the first insights into the population genomics of the species.
Collapse
Affiliation(s)
- Maria Luisa Martin Cerezo
- School of Applied Sciences, University of Huddersfield, Quennsgate, Huddersfield, UK.,AVIAN Behavioural Genomics and Physiology Group, IFM Biology, Department of Zoology, Linköping University, Linköping, Sweden
| | - Marek Kucka
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany
| | - Karol Zub
- The Mammal Research Institute, Polish Academy of Sciences, Białowieża, Poland
| | | | - Jarosław Bryk
- School of Applied Sciences, University of Huddersfield, Quennsgate, Huddersfield, UK.
| |
Collapse
|
19
|
Dierickx EG, Sin SYW, van Veelen HPJ, Brooke MDL, Liu Y, Edwards SV, Martin SH. Genetic diversity, demographic history and neo-sex chromosomes in the Critically Endangered Raso lark. Proc Biol Sci 2020; 287:20192613. [PMID: 32126957 PMCID: PMC7126062 DOI: 10.1098/rspb.2019.2613] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Small effective population sizes could expose island species to inbreeding and loss of genetic variation. Here, we investigate factors shaping genetic diversity in the Raso lark, which has been restricted to a single islet for approximately 500 years, with a population size of a few hundred. We assembled a reference genome for the related Eurasian skylark and then assessed diversity and demographic history using RAD-seq data (75 samples from Raso larks and two related mainland species). We first identify broad tracts of suppressed recombination in females, indicating enlarged neo-sex chromosomes. We then show that genetic diversity across autosomes in the Raso lark is lower than in its mainland relatives, but inconsistent with long-term persistence at its current population size. Finally, we find that genetic signatures of the recent population contraction are overshadowed by an ancient expansion and persistence of a very large population until the human settlement of Cape Verde. Our findings show how genome-wide approaches to study endangered species can help avoid confounding effects of genome architecture on diversity estimates, and how present-day diversity can be shaped by ancient demographic events.
Collapse
Affiliation(s)
- Elisa G Dierickx
- Department of Zoology, University of Cambridge, Cambridge, UK.,Fauna and Flora International, Cambridge, UK
| | - Simon Yung Wa Sin
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA.,School of Biological Sciences, University of Hong Kong, Hong Kong, People's Republic of China
| | - H Pieter J van Veelen
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Leeuwarden, The Netherlands.,Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - M de L Brooke
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Yang Liu
- Department of Ecology, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Scott V Edwards
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| | - Simon H Martin
- Department of Zoology, University of Cambridge, Cambridge, UK.,Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
20
|
Bakker FT, Antonelli A, Clarke JA, Cook JA, Edwards SV, Ericson PGP, Faurby S, Ferrand N, Gelang M, Gillespie RG, Irestedt M, Lundin K, Larsson E, Matos-Maraví P, Müller J, von Proschwitz T, Roderick GK, Schliep A, Wahlberg N, Wiedenhoeft J, Källersjö M. The Global Museum: natural history collections and the future of evolutionary science and public education. PeerJ 2020; 8:e8225. [PMID: 32025365 PMCID: PMC6993751 DOI: 10.7717/peerj.8225] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 11/15/2019] [Indexed: 12/27/2022] Open
Abstract
Natural history museums are unique spaces for interdisciplinary research and educational innovation. Through extensive exhibits and public programming and by hosting rich communities of amateurs, students, and researchers at all stages of their careers, they can provide a place-based window to focus on integration of science and discovery, as well as a locus for community engagement. At the same time, like a synthesis radio telescope, when joined together through emerging digital resources, the global community of museums (the ‘Global Museum’) is more than the sum of its parts, allowing insights and answers to diverse biological, environmental, and societal questions at the global scale, across eons of time, and spanning vast diversity across the Tree of Life. We argue that, whereas natural history collections and museums began with a focus on describing the diversity and peculiarities of species on Earth, they are now increasingly leveraged in new ways that significantly expand their impact and relevance. These new directions include the possibility to ask new, often interdisciplinary questions in basic and applied science, such as in biomimetic design, and by contributing to solutions to climate change, global health and food security challenges. As institutions, they have long been incubators for cutting-edge research in biology while simultaneously providing core infrastructure for research on present and future societal needs. Here we explore how the intersection between pressing issues in environmental and human health and rapid technological innovation have reinforced the relevance of museum collections. We do this by providing examples as food for thought for both the broader academic community and museum scientists on the evolving role of museums. We also identify challenges to the realization of the full potential of natural history collections and the Global Museum to science and society and discuss the critical need to grow these collections. We then focus on mapping and modelling of museum data (including place-based approaches and discovery), and explore the main projects, platforms and databases enabling this growth. Finally, we aim to improve relevant protocols for the long-term storage of specimens and tissues, ensuring proper connection with tomorrow’s technologies and hence further increasing the relevance of natural history museums.
Collapse
Affiliation(s)
- Freek T Bakker
- Biosystematics Group, Wageningen University & Research, Wageningen, The Netherlands
| | | | - Julia A Clarke
- Jackson School of Geosciences, University of Texas at Austin, Austin, TX, United States of America
| | - Joseph A Cook
- Museum of Southwestern Biology, Department of Biology, University of New Mexico, Albuquerque, NM, United States of America
| | - Scott V Edwards
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, United States of America.,Gothenburg Centre for Advanced Studies in Science and Technology, Chalmers University of Technology and University of Gothenburg, Göteborg, Sweden
| | - Per G P Ericson
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| | - Søren Faurby
- Department of Biological and Environmental Sciences, Gothenburg Global Biodiversity Centre, University of Gothenburg, Göteborg, Sweden
| | - Nuno Ferrand
- Museu de História Natural e da Ciência, Universidade do Porto, Porto, Portugal
| | - Magnus Gelang
- Department of Zoology, Gothenburg Natural History Museum, Göteborg, Sweden.,Gothenburg Global Biodiversity Centre, University of Gothenburg, Göteborg, Sweden
| | - Rosemary G Gillespie
- Essig Museum of Entomology, Department of Environmental Science, Policy and Management, University of California, Berkeley, Berkeley, CA, United States of America
| | - Martin Irestedt
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| | - Kennet Lundin
- Department of Zoology, Gothenburg Natural History Museum, Göteborg, Sweden.,Gothenburg Global Biodiversity Centre, University of Gothenburg, Göteborg, Sweden
| | - Ellen Larsson
- Department of Biological and Environmental Sciences, Gothenburg Global Biodiversity Centre, University of Gothenburg, Göteborg, Sweden.,Gothenburg Global Biodiversity Centre, University of Gothenburg, Göteborg, Sweden
| | - Pável Matos-Maraví
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, České Budějovice, Czechia
| | - Johannes Müller
- Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Museum für Naturkunde, Berlin, Germany
| | - Ted von Proschwitz
- Department of Zoology, Gothenburg Natural History Museum, Göteborg, Sweden.,Gothenburg Global Biodiversity Centre, University of Gothenburg, Göteborg, Sweden
| | - George K Roderick
- Essig Museum of Entomology, Department of Environmental Science, Policy and Management, University of California, Berkeley, Berkeley, CA, United States of America
| | - Alexander Schliep
- Department of Computer Science and Engineering, University of Gothenburg, Göteborg, Sweden
| | | | - John Wiedenhoeft
- Department of Computer Science and Engineering, University of Gothenburg, Göteborg, Sweden
| | - Mari Källersjö
- Gothenburg Global Biodiversity Centre, University of Gothenburg, Göteborg, Sweden.,Gothenburg Botanical Garden, Göteborg, Sweden
| |
Collapse
|
21
|
Minias P, Dunn PO, Whittingham LA, Johnson JA, Oyler-McCance SJ. Evaluation of a Chicken 600K SNP genotyping array in non-model species of grouse. Sci Rep 2019; 9:6407. [PMID: 31015535 PMCID: PMC6478925 DOI: 10.1038/s41598-019-42885-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 04/11/2019] [Indexed: 12/30/2022] Open
Abstract
The use of single nucleotide polymorphism (SNP) arrays to generate large SNP datasets for comparison purposes have recently become an attractive alternative to other genotyping methods. Although most SNP arrays were originally developed for domestic organisms, they can be effectively applied to wild relatives to obtain large panels of SNPs. In this study, we tested the cross-species application of the Affymetrix 600K Chicken SNP array in five species of North American prairie grouse (Centrocercus and Tympanuchus genera). Two individuals were genotyped per species for a total of ten samples. A high proportion (91%) of the total 580 961 SNPs were genotyped in at least one individual (73–76% SNPs genotyped per species). Principal component analysis with autosomal SNPs separated the two genera, but failed to clearly distinguish species within genera. Gene ontology analysis identified a set of genes related to morphogenesis and development (including genes involved in feather development), which may be primarily responsible for large phenotypic differences between Centrocercus and Tympanuchus grouse. Our study provided evidence for successful cross-species application of the chicken SNP array in grouse which diverged ca. 37 mya from the chicken lineage. As far as we are aware, this is the first reported application of a SNP array in non-passerine birds, and it demonstrates the feasibility of using commercial SNP arrays in research on non-model bird species.
Collapse
Affiliation(s)
- Piotr Minias
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 1/3, 90-237, Łódź, Poland.
| | - Peter O Dunn
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 1/3, 90-237, Łódź, Poland.,Behavioral and Molecular Ecology Group, Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Linda A Whittingham
- Behavioral and Molecular Ecology Group, Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Jeff A Johnson
- Department of Biological Sciences, Institute of Applied Sciences, University of North Texas, Denton, Texas, USA
| | | |
Collapse
|
22
|
de Villemereuil P, Rutschmann A, Lee KD, Ewen JG, Brekke P, Santure AW. Little Adaptive Potential in a Threatened Passerine Bird. Curr Biol 2019; 29:889-894.e3. [DOI: 10.1016/j.cub.2019.01.072] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/18/2018] [Accepted: 01/28/2019] [Indexed: 11/29/2022]
|
23
|
Andrew SC, Taylor MP, Lundregan S, Lien S, Jensen H, Griffith SC. Signs of adaptation to trace metal contamination in a common urban bird. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 650:679-686. [PMID: 30212697 DOI: 10.1016/j.scitotenv.2018.09.052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/03/2018] [Accepted: 09/04/2018] [Indexed: 06/08/2023]
Abstract
Metals and metalloids at elevated concentrations can be toxic to both humans and wildlife. In particular, lead exposure can act as a stressor to wildlife and cause negative effects on fitness. Any ability to adapt to stress caused by the negative effects of trace metal exposure would be beneficial for species living in contaminated environments. However, mechanisms for responding adaptively to metal contamination are not fully understood in free-living organisms. The Australian populations of the house sparrow (Passer domesticus) provides an excellent opportunity to study potential adaptation to environmental lead contamination because they have a commensal relationship with humans and are distributed broadly across Australian settlements including many long-term mining and smelting communities. To examine the potential for an evolutionary response to long-term lead exposure, we collected genomic SNP data using the house sparrow 200 K SNP array, from 11 localities across the Australian distribution including two mining sites (Broken Hill and Mount Isa, which are two genetically independent populations) that have well-established elevated levels of lead contamination as well as trace metals and metalloids. We contrast these known contaminated locations to other lesser-contaminated environments. Using an ecological association genome scan method to identify genomic differentiation associated with estimates of lead contamination we identified 60 outlier loci across three tests. A total of 39 genes were found to be physically linked (within 20 kbps) of all outliers in the house sparrow reference genome. The linked candidate genes included 12 genes relevant to lead exposure, such as two metal transporters that can transport metals including lead and zinc across cell membranes. These candidate genes provide targets for follow up experiments comparing resilience to lead exposure between populations exposed to varied levels of lead contamination.
Collapse
Affiliation(s)
- Samuel C Andrew
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| | - Mark Patrick Taylor
- Department of Environmental Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Sarah Lundregan
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Sigbjørn Lien
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, NO-1432 Ås, Norway
| | - Henrik Jensen
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Simon C Griffith
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
24
|
Andrew SC, Jensen H, Hagen IJ, Lundregan S, Griffith SC. Signatures of genetic adaptation to extremely varied Australian environments in introduced European house sparrows. Mol Ecol 2018; 27:4542-4555. [DOI: 10.1111/mec.14897] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 09/24/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Samuel C. Andrew
- Department of Biological Sciences; Macquarie University; Sydney New South Wales Australia
| | - Henrik Jensen
- Centre for Biodiversity Dynamics; Department of Biology; Norwegian University of Science and Technology; Trondheim Norway
| | - Ingerid J. Hagen
- Centre for Biodiversity Dynamics; Department of Biology; Norwegian University of Science and Technology; Trondheim Norway
- Norwegian Institute for Nature Research; Trondheim Norway
| | - Sarah Lundregan
- Centre for Biodiversity Dynamics; Department of Biology; Norwegian University of Science and Technology; Trondheim Norway
| | - Simon C. Griffith
- Department of Biological Sciences; Macquarie University; Sydney New South Wales Australia
| |
Collapse
|
25
|
Rapid Antagonistic Coevolution in an Emerging Pathogen and Its Vertebrate Host. Curr Biol 2018; 28:2978-2983.e5. [PMID: 30197084 DOI: 10.1016/j.cub.2018.07.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 04/24/2018] [Accepted: 07/02/2018] [Indexed: 02/02/2023]
Abstract
Host-pathogen coevolution is assumed to play a key role in eco-evolutionary processes, including epidemiological dynamics and the evolution of sexual reproduction [1-4]. Despite this, direct evidence for host-pathogen coevolution is exceptional [5-7], particularly in vertebrate hosts. Indeed, although vertebrate hosts have been shown to evolve in response to pathogens or vice versa [8-12], there is little evidence for the necessary reciprocal changes in the success of both antagonists over time [13]. Here, we generate a time-shift experiment to demonstrate adaptive, reciprocal changes in North American house finches (Haemorhous mexicanus) and their emerging bacterial pathogen, Mycoplasma gallisepticum [14-16]. Our experimental design is made possible by the existence of disease-exposed and unexposed finch populations, which were known to exhibit equivalent responses to experimental inoculation until the recent spread of genetic resistance in the former [14, 17]. Whereas inoculations with pathogen isolates from epidemic outbreak caused comparable sub-lethal eye swelling in hosts from exposed (hereafter adapted) and unexposed (hereafter ancestral) populations, inoculations with isolates sampled after the spread of resistance were threefold more likely to cause lethal symptoms in hosts from ancestral populations. Similarly, the probability that pathogens successfully established an infection in the primary host and, before inducing death, transmitted to an uninfected sentinel was highest when recent isolates were inoculated in hosts from ancestral populations and lowest when early isolates were inoculated in hosts from adapted populations. Our results demonstrate antagonistic host-pathogen coevolution, with hosts and pathogens displaying increased resistance and virulence in response to each other over time.
Collapse
|
26
|
Weigand H, Leese F. Detecting signatures of positive selection in non-model species using genomic data. Zool J Linn Soc 2018. [DOI: 10.1093/zoolinnean/zly007] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Hannah Weigand
- Aquatic Ecosystem Research, University of Duisburg-Essen, Universitätsstraße, Essen, Germany
| | - Florian Leese
- Aquatic Ecosystem Research, University of Duisburg-Essen, Universitätsstraße, Essen, Germany
- Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Universitätsstraße, Essen, Germany
| |
Collapse
|
27
|
Liang HY, Feng ZP, Pei B, Li Y, Yang XT. Demographic expansion of two Tamarix species along the Yellow River caused by geological events and climate change in the Pleistocene. Sci Rep 2018; 8:60. [PMID: 29311687 PMCID: PMC5758526 DOI: 10.1038/s41598-017-19034-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 12/20/2017] [Indexed: 11/13/2022] Open
Abstract
The geological events and climatic fluctuations during the Pleistocene played important roles in shaping patterns of species distribution. However, few studies have evaluated the patterns of species distribution that were influenced by the Yellow River. The present work analyzed the demography of two endemic tree species that are widely distributed along the Yellow River, Tamarix austromongolica and Tamarix chinensis, to understand the role of the Yellow River and Pleistocene climate in shaping their distribution patterns. The most common chlorotype, chlorotype 1, was found in all populations, and its divergence time could be dated back to 0.19 million years ago (Ma). This dating coincides well with the formation of the modern Yellow River and the timing of Marine Isotope Stages 5e-6 (MIS 5e-6). Bayesian reconstructions along with models of paleodistribution revealed that these two species experienced a demographic expansion in population size during the Quaternary period. Approximate Bayesian computation analyses supported a scenario of expansion approximately from the upper to lower reaches of the Yellow River. Our results provide support for the roles of the Yellow River and the Pleistocene climate in driving demographic expansion of the populations of T. austromongolica and T. chinensis. These findings are useful for understanding the effects of geological events and past climatic fluctuations on species distribution patterns.
Collapse
Affiliation(s)
- Hong-Yan Liang
- College of Forestry, Henan Agricultural University, Zhengzhou, 450002, China.,Sanmenxia Polytechnic, Sanmenxia, 472000, China
| | - Zhi-Pei Feng
- College of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Bing Pei
- College of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yong Li
- College of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xi-Tian Yang
- College of Forestry, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
28
|
Schmidt TL, Rašić G, Zhang D, Zheng X, Xi Z, Hoffmann AA. Genome-wide SNPs reveal the drivers of gene flow in an urban population of the Asian Tiger Mosquito, Aedes albopictus. PLoS Negl Trop Dis 2017; 11:e0006009. [PMID: 29045401 PMCID: PMC5662242 DOI: 10.1371/journal.pntd.0006009] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/30/2017] [Accepted: 10/04/2017] [Indexed: 11/24/2022] Open
Abstract
Aedes albopictus is a highly invasive disease vector with an expanding worldwide distribution. Genetic assays using low to medium resolution markers have found little evidence of spatial genetic structure even at broad geographic scales, suggesting frequent passive movement along human transportation networks. Here we analysed genetic structure of Aedes albopictus collected from 12 sample sites in Guangzhou, China, using thousands of genome-wide single nucleotide polymorphisms (SNPs). We found evidence for passive gene flow, with distance from shipping terminals being the strongest predictor of genetic distance among mosquitoes. As further evidence of passive dispersal, we found multiple pairs of full-siblings distributed between two sample sites 3.7 km apart. After accounting for geographical variability, we also found evidence for isolation by distance, previously undetectable in Ae. albopictus. These findings demonstrate how large SNP datasets and spatially-explicit hypothesis testing can be used to decipher processes at finer geographic scales than formerly possible. Our approach can be used to help predict new invasion pathways of Ae. albopictus and to refine strategies for vector control that involve the transformation or suppression of mosquito populations. Aedes albopictus, the Asian Tiger Mosquito, is a highly invasive disease vector with a growing global distribution. Designing strategies to prevent invasion and to control Ae. albopictus populations in invaded regions requires knowledge of how Ae. albopictus disperses. Studies comparing Ae. albopictus populations have found little evidence of genetic structure even between distant populations, suggesting that dispersal along human transportation networks is common. However, a more specific understanding of dispersal processes has been unavailable due to an absence of studies using high-resolution genetic markers. Here we present a study using high-resolution markers, which investigates genetic structure among 152 Ae. albopictus from Guangzhou, China. We found that human transportation networks, particularly shipping terminals, had an influence on genetic structure. We also found genetic distance was correlated with geographical distance, the first such observation in this species. This study demonstrates how high-resolution markers can be used to investigate ecological processes that may otherwise escape detection. We conclude that strategies for controlling Ae. albopictus will have to consider both passive reinvasion along human transportation networks and active reinvasion from neighbouring regions.
Collapse
Affiliation(s)
- Thomas L Schmidt
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia
| | - Gordana Rašić
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia
| | - Dongjing Zhang
- Department of Parasitology, Zhongshan School of Medicine, Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong, China.,Sun Yat-sen University-Michigan State University Joint Center of Vector Control for Tropical Diseases, Guangzhou, Guangdong, China
| | - Xiaoying Zheng
- Department of Parasitology, Zhongshan School of Medicine, Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong, China.,Sun Yat-sen University-Michigan State University Joint Center of Vector Control for Tropical Diseases, Guangzhou, Guangdong, China
| | - Zhiyong Xi
- Sun Yat-sen University-Michigan State University Joint Center of Vector Control for Tropical Diseases, Guangzhou, Guangdong, China.,Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Ary A Hoffmann
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
29
|
Termignoni-García F, Jaramillo-Correa JP, Chablé-Santos J, Liu M, Shultz AJ, Edwards SV, Escalante-Pliego P. Genomic footprints of adaptation in a cooperatively breeding tropical bird across a vegetation gradient. Mol Ecol 2017; 26:4483-4496. [DOI: 10.1111/mec.14224] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 05/06/2017] [Accepted: 06/12/2017] [Indexed: 12/30/2022]
Affiliation(s)
- Flavia Termignoni-García
- Department of Zoology; National Collection of Birds (CNAV); Institute of Biology; Universidad Nacional Autónoma de México; CdMx México
| | - Juan P. Jaramillo-Correa
- Department of Evolutionary Ecology; Institute of Ecology; Universidad Nacional Autónoma de México; CdMx México
| | - Juan Chablé-Santos
- Department of Zoology; Facultad de Medicina Veterinaria y Zootecnia; Universidad Autónoma de Yucatán; Yucatán México
| | - Mark Liu
- Biodiversity Research Center; Academia Sinica; Taipei Nankang Taiwan
| | - Allison J. Shultz
- Department of Organismic and Evolutionary Biology (OEB); Harvard University; Cambridge MA USA
| | - Scott V. Edwards
- Department of Organismic and Evolutionary Biology (OEB); Harvard University; Cambridge MA USA
| | - Patricia Escalante-Pliego
- Department of Zoology; National Collection of Birds (CNAV); Institute of Biology; Universidad Nacional Autónoma de México; CdMx México
| |
Collapse
|
30
|
Linck EB, Hanna ZR, Sellas A, Dumbacher JP. Evaluating hybridization capture with RAD probes as a tool for museum genomics with historical bird specimens. Ecol Evol 2017; 7:4755-4767. [PMID: 28690805 PMCID: PMC5496524 DOI: 10.1002/ece3.3065] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 04/17/2017] [Accepted: 04/19/2017] [Indexed: 12/30/2022] Open
Abstract
Laboratory techniques for high-throughput sequencing have enhanced our ability to generate DNA sequence data from millions of natural history specimens collected prior to the molecular era, but remain poorly tested at shallower evolutionary time scales. Hybridization capture using restriction site-associated DNA probes (hyRAD) is a recently developed method for population genomics with museum specimens. The hyRAD method employs fragments produced in a restriction site-associated double digestion as the basis for probes that capture orthologous loci in samples of interest. While promising in that it does not require a reference genome, hyRAD has yet to be applied across study systems in independent laboratories. Here, we provide an independent assessment of the effectiveness of hyRAD on both fresh avian tissue and dried tissue from museum specimens up to 140 years old and investigate how variable quantities of input DNA affect sequencing, assembly, and population genetic inference. We present a modified bench protocol and bioinformatics pipeline, including three steps for detection and removal of microbial and mitochondrial DNA contaminants. We confirm that hyRAD is an effective tool for sampling thousands of orthologous SNPs from historic museum specimens to describe phylogeographic patterns. We find that modern DNA performs significantly better than historical DNA better during sequencing but that assembly performance is largely equivalent. We also find that the quantity of input DNA predicts %GC content of assembled contiguous sequences, suggesting PCR bias. We caution against sampling schemes that include taxonomic or geographic autocorrelation across modern and historic samples.
Collapse
Affiliation(s)
- Ethan B. Linck
- Department of BiologyBurke Museum of Natural History & CultureUniversity of WashingtonSeattleWAUSA
| | - Zachary R. Hanna
- Museum of Vertebrate ZoologyUniversity of California, BerkeleyBerkeleyCAUSA
- Department of Integrative BiologyUniversity of California, BerkeleyBerkeleyCAUSA
- Ornithology & MammologyCalifornia Academy of SciencesSan FranciscoCAUSA
| | - Anna Sellas
- Center for Comparative GenomicsCalifornia Academy of SciencesSan FranciscoCAUSA
| | - John P. Dumbacher
- Ornithology & MammologyCalifornia Academy of SciencesSan FranciscoCAUSA
- Center for Comparative GenomicsCalifornia Academy of SciencesSan FranciscoCAUSA
| |
Collapse
|
31
|
McKnight DT, Schwarzkopf L, Alford RA, Bower DS, Zenger KR. Effects of emerging infectious diseases on host population genetics: a review. CONSERV GENET 2017. [DOI: 10.1007/s10592-017-0974-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
32
|
Tigano A, Shultz AJ, Edwards SV, Robertson GJ, Friesen VL. Outlier analyses to test for local adaptation to breeding grounds in a migratory arctic seabird. Ecol Evol 2017; 7:2370-2381. [PMID: 28405300 PMCID: PMC5383466 DOI: 10.1002/ece3.2819] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 01/11/2017] [Accepted: 01/29/2017] [Indexed: 12/29/2022] Open
Abstract
Investigating the extent (or the existence) of local adaptation is crucial to understanding how populations adapt. When experiments or fitness measurements are difficult or impossible to perform in natural populations, genomic techniques allow us to investigate local adaptation through the comparison of allele frequencies and outlier loci along environmental clines. The thick‐billed murre (Uria lomvia) is a highly philopatric colonial arctic seabird that occupies a significant environmental gradient, shows marked phenotypic differences among colonies, and has large effective population sizes. To test whether thick‐billed murres from five colonies along the eastern Canadian Arctic coast show genomic signatures of local adaptation to their breeding grounds, we analyzed geographic variation in genome‐wide markers mapped to a newly assembled thick‐billed murre reference genome. We used outlier analyses to detect loci putatively under selection, and clustering analyses to investigate patterns of differentiation based on 2220 genomewide single nucleotide polymorphisms (SNPs) and 137 outlier SNPs. We found no evidence of population structure among colonies using all loci but found population structure based on outliers only, where birds from the two northernmost colonies (Minarets and Prince Leopold) grouped with birds from the southernmost colony (Gannet), and birds from Coats and Akpatok were distinct from all other colonies. Although results from our analyses did not support local adaptation along the latitudinal cline of breeding colonies, outlier loci grouped birds from different colonies according to their non‐breeding distributions, suggesting that outliers may be informative about adaptation and/or demographic connectivity associated with their migration patterns or nonbreeding grounds.
Collapse
Affiliation(s)
- Anna Tigano
- Department of Biology Queen's University Kingston ON Canada
| | - Allison J Shultz
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology Harvard University Cambridge MA USA
| | - Scott V Edwards
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology Harvard University Cambridge MA USA
| | | | | |
Collapse
|