1
|
Felton AM, Wam HK, Borowski Z, Granhus A, Juvany L, Matala J, Melin M, Wallgren M, Mårell A. Climate change and deer in boreal and temperate regions: From physiology to population dynamics and species distributions. GLOBAL CHANGE BIOLOGY 2024; 30:e17505. [PMID: 39319472 DOI: 10.1111/gcb.17505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/16/2024] [Accepted: 08/24/2024] [Indexed: 09/26/2024]
Abstract
Climate change causes far-reaching disruption in nature, where tolerance thresholds already have been exceeded for some plants and animals. In the short term, deer may respond to climate through individual physiological and behavioral responses. Over time, individual responses can aggregate to the population level and ultimately lead to evolutionary adaptations. We systematically reviewed the literature (published 2000-2022) to summarize the effect of temperature, rainfall, snow, combined measures (e.g., the North Atlantic Oscillation), and extreme events, on deer species inhabiting boreal and temperate forests in terms of their physiology, spatial use, and population dynamics. We targeted deer species that inhabit relevant biomes in North America, Europe, and Asia: moose, roe deer, wapiti, red deer, sika deer, fallow deer, white-tailed deer, mule deer, caribou, and reindeer. Our review (218 papers) shows that many deer populations will likely benefit in part from warmer winters, but hotter and drier summers may exceed their physiological tolerances. We found support for deer expressing both morphological, physiological, and behavioral plasticity in response to climate variability. For example, some deer species can limit the effects of harsh weather conditions by modifying habitat use and daily activity patterns, while the physiological responses of female deer can lead to long-lasting effects on population dynamics. We identified 20 patterns, among which some illustrate antagonistic pathways, suggesting that detrimental effects will cancel out some of the benefits of climate change. Our findings highlight the influence of local variables (e.g., population density and predation) on how deer will respond to climatic conditions. We identified several knowledge gaps, such as studies regarding the potential impact on these animals of extreme weather events, snow type, and wetter autumns. The patterns we have identified in this literature review should help managers understand how populations of deer may be affected by regionally projected futures regarding temperature, rainfall, and snow.
Collapse
Affiliation(s)
- Annika M Felton
- Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences (SLU), Lomma, Sweden
| | - Hilde Karine Wam
- Department of Wildlife and Rangelands, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
| | | | - Aksel Granhus
- Department of Forest Management, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
| | - Laura Juvany
- Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences (SLU), Lomma, Sweden
| | - Juho Matala
- Natural Resources Unit, Natural Resources Institute Finland (Luke), Joensuu, Finland
| | - Markus Melin
- Natural Resources Unit, Natural Resources Institute Finland (Luke), Joensuu, Finland
| | - Märtha Wallgren
- Skogforsk (Forestry Research Institute of Sweden), Uppsala, Sweden
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences (SLU), Umeå, Sweden
| | | |
Collapse
|
2
|
Frans VF, Liu J. Gaps and opportunities in modelling human influence on species distributions in the Anthropocene. Nat Ecol Evol 2024; 8:1365-1377. [PMID: 38867092 PMCID: PMC11239511 DOI: 10.1038/s41559-024-02435-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 04/25/2024] [Indexed: 06/14/2024]
Abstract
Understanding species distributions is a global priority for mitigating environmental pressures from human activities. Ample studies have identified key environmental (climate and habitat) predictors and the spatial scales at which they influence species distributions. However, regarding human influence, such understandings are largely lacking. Here, to advance knowledge concerning human influence on species distributions, we systematically reviewed species distribution modelling (SDM) articles and assessed current modelling efforts. We searched 12,854 articles and found only 1,429 articles using human predictors within SDMs. Collectively, these studies of >58,000 species used 2,307 unique human predictors, suggesting that in contrast to environmental predictors, there is no 'rule of thumb' for human predictor selection in SDMs. The number of human predictors used across studies also varied (usually one to four per study). Moreover, nearly half the articles projecting to future climates held human predictors constant over time, risking false optimism about the effects of human activities compared with climate change. Advances in using human predictors in SDMs are paramount for accurately informing and advancing policy, conservation, management and ecology. We show considerable gaps in including human predictors to understand current and future species distributions in the Anthropocene, opening opportunities for new inquiries. We pose 15 questions to advance ecological theory, methods and real-world applications.
Collapse
Affiliation(s)
- Veronica F Frans
- Center for Systems Integration and Sustainability, Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, USA.
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI, USA.
- W. K. Kellogg Biological Station, Michigan State University, Hickory Corners, MI, USA.
| | - Jianguo Liu
- Center for Systems Integration and Sustainability, Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, USA
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
3
|
Dhakal T, Kim TS, Kim SH, Tiwari S, Kim JY, Jang GS, Lee DH. Distribution of sika deer (Cervus nippon) and the bioclimatic impact on their habitats in South Korea. Sci Rep 2023; 13:19040. [PMID: 37923751 PMCID: PMC10624661 DOI: 10.1038/s41598-023-45845-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/24/2023] [Indexed: 11/06/2023] Open
Abstract
Invasive species and climate change are primary factors influencing biodiversity, and examining the behavior of invasive species is essential for effective conservation management. Here, we report the global distribution of the sika deer (Cervus nippon) based on locations reported in published literature (Google Scholar), the Global Biodiversity Information Facility (GBIF) database, and the International Union for Conservation of Nature report. We used the maximum entropy (Maxent) model to examine the impact of climate change on sika deer habitats in South Korea based on GBIF occurrence data and WorldClim bioclimatic variables. Habitat suitability analysis was performed using the Maxent model under Representative Concentration Pathways (RCPs) 4.5 and 8.5 (for predicted climatic conditions in both 2050 and 2070) to project the effects of different climate change scenarios on South Korean sika deer habitats. We identified that the sika deer is distributed in 39 countries worldwide. Due to climate change effects, South Korean sika deer habitats will decline by approximately 24.98% and 20.63% (under RCP 4.5) and by 50.51% and 57.35% (under RCP 8.5) by 2050 and 2070, respectively. Our findings shed light on sika deer ecology and provide reference data for future conservation management strategies and policy design.
Collapse
Affiliation(s)
- Thakur Dhakal
- Department of Life Sciences, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Tae-Su Kim
- Department of Life Sciences, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Seong-Hyeon Kim
- Department of Life Sciences, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Shraddha Tiwari
- College of Veterinary Medicine, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Jun-Young Kim
- Department of Life Sciences, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Gab-Sue Jang
- Department of Life Sciences, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| | - Do-Hun Lee
- National Institute of Ecology, Seocheon, 33657, Republic of Korea.
| |
Collapse
|
4
|
Takagi T, Murakami R, Takano A, Torii H, Kaneko S, Tamate HB. A historic religious sanctuary may have preserved ancestral genetics of Japanese sika deer ( Cervus nippon). J Mammal 2023; 104:303-315. [PMID: 37032702 PMCID: PMC10075338 DOI: 10.1093/jmammal/gyac120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 12/10/2022] [Indexed: 01/31/2023] Open
Abstract
Abstract
Deer have been a major resource for human populations for thousands of years. Anthropogenic activities, such as hunting, have influenced the genetic structure and distribution of deer populations. In Japan, wild Japanese sika deer (Cervus nippon) have been hunted since ancient times but have also been historically protected as sacred animals in several sanctuaries. Sika deer have been protected for over a thousand years in the religious sanctuary around the Kasuga Taisha Shrine on the Kii Peninsula, located in the center of Japan. Here, we used short sequence repeats (SSR) and mitochondrial DNA (mtDNA) to investigate the genetic diversity, population structure, and demography of Japanese sika deer inhabiting the Kii Peninsula, Japan, and discuss possible anthropogenic influences. Using SSR, three distinct genetic groups were distinguished on the Kii Peninsula: an Eastern genetic group, a Western genetic group, and an isolated genetic group with individuals in the religious sanctuary of Kasuga Taisha Shrine in Nara city. The isolated genetic sanctuary group had only the mtDNA haplotype S4. The SSR genotype data suggested a newer divergence time of the genetic groups of the religious sanctuary than would have occurred as a result of Late Quaternary climate change. This time scale coincided with the establishment of the sanctuary with Kasuga Taisha Shrine. Thus, the religious protection conserved genetic variation over a thousand years.
Collapse
Affiliation(s)
- Toshihito Takagi
- Fukushima University, Graduate School of Symbiotic Systems Science and Technology , Fukushima 960-1296 , Japan
| | - Ryoko Murakami
- Yamagata University, Faculty of Medicine , Yamagata 990-9585 , Japan
| | - Ayako Takano
- Nara University of Education, Center for Natural Environment Education , Nara 630-8528 , Japan
| | - Harumi Torii
- Nara University of Education, Center for Natural Environment Education , Nara 630-8528 , Japan
| | - Shingo Kaneko
- Fukushima University, Faculty of Symbiotic Systems Science , Fukushima 960-1296 , Japan
| | | |
Collapse
|
5
|
Modeling Tree Recovery in Wind-Disturbed Forests with Dense Understory Species under Climate Change. Ecol Modell 2022. [DOI: 10.1016/j.ecolmodel.2022.110072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
6
|
Kasada M, Nakashima Y, Fukasawa K, Yajima G, Yokomizo H, Miyashita T. State‐space model combining local camera data and regional administration data reveals population dynamics of wild boar. POPUL ECOL 2022. [DOI: 10.1002/1438-390x.12138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Minoru Kasada
- Graduate School of Life Sciences Tohoku University Sendai Japan
- Department of Experimental Limnology Leibniz‐Institute of Freshwater Ecology and Inland Fisheries Stechlin Germany
| | | | - Keita Fukasawa
- Biodiversity Division National Institute for Environmental Studies Tsukuba Ibaraki Japan
| | - Gota Yajima
- College of Bioresource Science Nihon University Fujisawa Kanagawa Japan
| | - Hiroyuki Yokomizo
- Health and Environmental Risk Division National Institute for Environmental Studies Tsukuba Ibaraki Japan
| | - Tadashi Miyashita
- Graduate School of Agriculture and Life Sciences The University of Tokyo Tokyo Japan
| |
Collapse
|
7
|
Tsunoda H, Enari H. A strategy for wildlife management in depopulating rural areas of Japan. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2020; 34:819-828. [PMID: 32406975 DOI: 10.1111/cobi.13470] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/25/2019] [Accepted: 08/09/2019] [Indexed: 06/11/2023]
Abstract
Former ranges of wild animals have been reestablished in many developed countries. However, this reestablishment has led to increasing human-wildlife conflict in agroforest ecosystems. In Japan, human-wildlife conflict, such as crop raiding by and ecological impacts of wild ungulates and primates, is a serious problem in depopulated rural areas due to these animal range expansions and increased abundances. Japan's human population is predicted to decline by 24% by 2050, and approximately 20% of agricultural settlements will become completely depopulated. In this scenario, anthropogenic pressures on wildlife (e.g., hunting and habitat alteration) will continue to decrease and human-wildlife conflict will increase due to increasing wildlife recovery. Japan's local governments plan to slow range recovery, prevent species reestablishment, or remove recolonizing large mammals through lethal control. This strategy, however, is not cost-effective, and workforce shortages in depopulated communities make it infeasible. Moreover, the suppression of wildlife prevents the recovery of ecological functions and thus would degrade regional biodiversity. The declining pressure on wildlife that accompanies human depopulation will prevent the restoration of any past states of human-wildlife interaction. We suggest human-used areas in rural landscapes be aggregated in compact cities and that in transition zones between human settlements and depopulated lands that land-sharing approaches be applied. Concentrating management efforts in compact cities may effectively decrease human-wildlife conflict, rather than intensifying human pressures. Reforestation of depopulated lands may lead to recovery of wildlife habitats, their ecosystem functions, and regional biodiversity due to minimization of negative anthropogenic effects (land-sparing approach). Balancing resolution of human-wildlife conflict and ecological rewilding could become a new, challenging task for regional wildlife managers.
Collapse
Affiliation(s)
- Hiroshi Tsunoda
- Center for Environmental Science in Saitama, 914 Kamitanadare, Kazo-shi, Saitama, 347-0115, Japan
| | - Hiroto Enari
- Yamagata University, 1-23 Wakabamachi, Tsuruoka-shi, Yamagata, 997-8555, Japan
| |
Collapse
|
8
|
Ohashi H, Kominami Y, Higa M, Koide D, Nakao K, Tsuyama I, Matsui T, Tanaka N. Land abandonment and changes in snow cover period accelerate range expansions of sika deer. Ecol Evol 2016; 6:7763-7775. [PMID: 30128126 PMCID: PMC6093158 DOI: 10.1002/ece3.2514] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 08/29/2016] [Accepted: 08/31/2016] [Indexed: 11/09/2022] Open
Abstract
Ongoing climate change and land‐use change have the potential to substantially alter the distribution of large herbivores. This may result in drastic changes in ecosystems by changing plant–herbivore interactions. Here, we developed a model explaining sika deer persistence and colonization between 25 years in terms of neighborhood occupancy and habitat suitability. We used climatic, land‐use, and topographic variables to calculate the habitat suitability and evaluated the contributions of the variables to past range changes of sika deer. We used this model to predict the changes in the range of sika deer over the next 100 years under four scenario groups with the combination of land‐use change and climate change. Our results showed that both climate change and land‐use change had affected the range of sika deer in the past 25 years. Habitat suitability increased in northern or mountainous regions, which account for 71.6% of Japan, in line with a decrease in the snow cover period. Habitat suitability decreased in suburban areas, which account for 28.4% of Japan, corresponding to land‐use changes related to urbanization. In the next 100 years, the decrease in snow cover period and the increase in land abandonment were predicted to accelerate the range expansion of sika deer. Comparison of these two driving factors revealed that climate change will contribute more to range expansion, particularly from the 2070s onward. In scenarios that assumed the influence of both climate change and land‐use change, the total sika deer range increased by between +4.6% and +11.9% from the baseline scenario. Climate change and land‐use change will require additional efforts for future management of sika deer, particularly in the long term.
Collapse
Affiliation(s)
- Haruka Ohashi
- Department of Plant Ecology Forestry and Forest Products Research Institute 1 Matsunosato Tsukuba Ibaraki 305-8687 Japan.,Center for International Partnerships and Research on Climate Change Forestry and Forest Products Research Institute 1 Matsunosato Tsukuba Ibaraki 305-8687 Japan
| | - Yuji Kominami
- Kansai Research Center Forestry and Forest Products Research Institute 68 Nagaikyutaro, Momoyama-cho Fushimi Kyoto Kyoto 612-0855 Japan
| | - Motoki Higa
- Faculty of Science Kochi University 2-5-1 Akebono-cho Kochi Kochi 780-8520 Japan
| | - Dai Koide
- Department of Plant Ecology Forestry and Forest Products Research Institute 1 Matsunosato Tsukuba Ibaraki 305-8687 Japan.,Center for Global Environmental Research National Institute for Environmental Studies 16-2 Onogawa Tsukuba Ibaraki 305-8687 Japan
| | - Katsuhiro Nakao
- Kansai Research Center Forestry and Forest Products Research Institute 68 Nagaikyutaro, Momoyama-cho Fushimi Kyoto Kyoto 612-0855 Japan
| | - Ikutaro Tsuyama
- Hokkaido Research Center Forestry and Forest Products Research Institute 7 Hitsujigaoka, Toyohira Sapporo Hokkaido 062-8516 Japan
| | - Tetsuya Matsui
- Department of Plant Ecology Forestry and Forest Products Research Institute 1 Matsunosato Tsukuba Ibaraki 305-8687 Japan.,Center for International Partnerships and Research on Climate Change Forestry and Forest Products Research Institute 1 Matsunosato Tsukuba Ibaraki 305-8687 Japan
| | - Nobuyuki Tanaka
- Department of Plant Ecology Forestry and Forest Products Research Institute 1 Matsunosato Tsukuba Ibaraki 305-8687 Japan.,Department of International Agricultural Development Tokyo University of Agriculture 1-1-1 Sakuragaoka Setagaya Tokyo 156-8502 Japan
| |
Collapse
|