1
|
Mueller KE, Kray JA, Blumenthal DM. Coordination of leaf, root, and seed traits shows the importance of whole plant economics in two semiarid grasslands. THE NEW PHYTOLOGIST 2024; 241:2410-2422. [PMID: 38214451 DOI: 10.1111/nph.19529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/18/2023] [Indexed: 01/13/2024]
Abstract
Uncertainty persists within trait-based ecology, partly because few studies assess multiple axes of functional variation and their effect on plant performance. For 55 species from two semiarid grasslands, we quantified: (1) covariation between economic traits of leaves and absorptive roots, (2) covariation among economic traits, plant height, leaf size, and seed mass, and (3) relationships between these traits and species' abundance. Pairs of analogous leaf and root traits were at least weakly positively correlated (e.g. specific leaf area (SLA) and specific root length (SRL)). Two pairs of such traits, N content and DMC of leaves and roots, were at least moderately correlated (r > 0.5) whether species were grouped by site, taxonomic group and growth form, or life history. Root diameter was positively correlated with seed mass for all groups of species except annuals and monocots. Species with higher leaf dry matter content (LDMC) tended to be more abundant (r = 0.63). Annuals with larger seeds were more abundant (r = 0.69). Compared with global-scale syntheses with many observations from mesic ecosystems, we observed stronger correlations between analogous leaf and root traits, weaker correlations between SLA and leaf N, and stronger correlations between SRL and root N. In dry grasslands, plant persistence may require coordination of above- and belowground traits, and dense tissues may facilitate dominance.
Collapse
Affiliation(s)
- Kevin E Mueller
- Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH, 44115, USA
| | - Julie A Kray
- United States Department of Agriculture, Agricultural Research Service, Rangeland Resources & Systems Research, Fort Collins, CO, 80526, USA
| | - Dana M Blumenthal
- United States Department of Agriculture, Agricultural Research Service, Rangeland Resources & Systems Research, Fort Collins, CO, 80526, USA
| |
Collapse
|
2
|
Zhou Y, Ma H, Lu Q, Ma J, Shen Y, Wang G. Different responses of leaf and root economics spectrum to grazing time at the community level in desert steppe, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 909:168547. [PMID: 37981138 DOI: 10.1016/j.scitotenv.2023.168547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/30/2023] [Accepted: 11/11/2023] [Indexed: 11/21/2023]
Abstract
The plant economic spectrum can explain the trade-off strategies of vascular plants between resource acquisition and storage. Grazing can alter the plant functional characteristics of grassland ecosystems, resulting in a shift in plant resource acquisition strategies. Taking fenced grassland as a control, in this study we quantified six leaf traits and four root traits of 14 plant species (those that comprised >85 % of the species community abundance) of different grazing time grasslands in desert grasslands in Ningxia. We examined how grazing time shapes the functional structure of plant communities and the resource acquisition strategy. The results revealed an inverse pattern of the fast-slow economic spectrum of leaf and root traits; that is, as grazing time increased, the leaf traits shifted from an acquisitive type to a conservative type of resource acquisition strategy. In contrast, the root traits showed a shift from a conservative type to an acquisitive type of resource acquisition strategy. Grazing time leads to a whole plant economic spectrum, and plant functional traits may facilitate their response to environmental change, the study of which can hereby deepen our understanding of the plant economics spectrum. Our study provides new evidence that leaf and root resource acquisition and utilization are relatively independent under grazing pressure.
Collapse
Affiliation(s)
- Yao Zhou
- College of Forestry and Prataculture, Ningxia University, Yinchuan 750021, China; Key Laboratory for Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Ningxia University, Yinchuan 750021, China; Grassland and Animal Husbandry Engineering Technology Research Center of Ningxia Province, Ningxia University, Yinchuan 750021, China; Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration of Northwest China, Ningxia University, Yinchuan 750021, China
| | - Hongbin Ma
- College of Forestry and Prataculture, Ningxia University, Yinchuan 750021, China; Key Laboratory for Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Ningxia University, Yinchuan 750021, China; Grassland and Animal Husbandry Engineering Technology Research Center of Ningxia Province, Ningxia University, Yinchuan 750021, China; Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration of Northwest China, Ningxia University, Yinchuan 750021, China.
| | - Qi Lu
- College of Forestry and Prataculture, Ningxia University, Yinchuan 750021, China; Key Laboratory for Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Ningxia University, Yinchuan 750021, China; Grassland and Animal Husbandry Engineering Technology Research Center of Ningxia Province, Ningxia University, Yinchuan 750021, China
| | - Jingli Ma
- College of Forestry and Prataculture, Ningxia University, Yinchuan 750021, China; Key Laboratory for Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Ningxia University, Yinchuan 750021, China; Grassland and Animal Husbandry Engineering Technology Research Center of Ningxia Province, Ningxia University, Yinchuan 750021, China
| | - Yan Shen
- College of Forestry and Prataculture, Ningxia University, Yinchuan 750021, China; Key Laboratory for Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Ningxia University, Yinchuan 750021, China; Grassland and Animal Husbandry Engineering Technology Research Center of Ningxia Province, Ningxia University, Yinchuan 750021, China; Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration of Northwest China, Ningxia University, Yinchuan 750021, China
| | - Guohui Wang
- College of Forestry and Prataculture, Ningxia University, Yinchuan 750021, China; Key Laboratory for Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Ningxia University, Yinchuan 750021, China; Grassland and Animal Husbandry Engineering Technology Research Center of Ningxia Province, Ningxia University, Yinchuan 750021, China; Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration of Northwest China, Ningxia University, Yinchuan 750021, China
| |
Collapse
|
3
|
Da R, Fan C, Zhang C, Zhao X, von Gadow K. Are absorptive root traits good predictors of ecosystem functioning? A test in a natural temperate forest. THE NEW PHYTOLOGIST 2023; 239:75-86. [PMID: 36978285 DOI: 10.1111/nph.18915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/22/2023] [Indexed: 06/02/2023]
Abstract
Trait-based approaches provide a useful framework to predict ecosystem functions under intensifying global change. However, our current understanding of trait-functioning relationships mainly relies on aboveground traits. Belowground traits (e.g. absorptive root traits) are rarely studied although these traits are related to important plant functions. We analyzed four pairs of analogous leaf and absorptive root traits of woody plants in a temperate forest and examined how these traits are coordinated at the community-level, and to what extent the trait covariation depends on local-scale environmental conditions. We then quantified the contributions of leaf and absorptive root traits and the environmental conditions in determining two important forest ecosystem functions, aboveground carbon storage, and woody biomass productivity. The results showed that both morphological trait pairs and chemical trait pairs exhibited positive correlations at the community level. Absorptive root traits show a strong response to environmental conditions compared to leaf traits. We also found that absorptive root traits were better predictors of the two forest ecosystem functions than leaf traits and environmental conditions. Our study confirms the important role of belowground traits in modulating ecosystem functions and deepens our understanding of belowground responses to changing environmental conditions.
Collapse
Affiliation(s)
- Rihan Da
- Research Center of Forest Management Engineering of State Forestry and Grassland Administration, Beijing Forestry University, Beijing, 100083, China
| | - Chunyu Fan
- Research Center of Forest Management Engineering of State Forestry and Grassland Administration, Beijing Forestry University, Beijing, 100083, China
| | - Chunyu Zhang
- Research Center of Forest Management Engineering of State Forestry and Grassland Administration, Beijing Forestry University, Beijing, 100083, China
| | - Xiuhai Zhao
- Research Center of Forest Management Engineering of State Forestry and Grassland Administration, Beijing Forestry University, Beijing, 100083, China
| | - Klaus von Gadow
- Faculty of Forestry and Forest Ecology, Georg-August-University Göttingen, Büsgenweg 5, D-37077, Göttingen, Germany
- Department of Forest and Wood Science, University of Stellenbosch, Stellenbosch, 7600, South Africa
| |
Collapse
|
4
|
Wang X, Wang R, Gao J. Precipitation and soil nutrients determine the spatial variability of grassland productivity at large scales in China. FRONTIERS IN PLANT SCIENCE 2022; 13:996313. [PMID: 36160972 PMCID: PMC9505511 DOI: 10.3389/fpls.2022.996313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 08/17/2022] [Indexed: 06/16/2023]
Abstract
Changes in net primary productivity (NPP) to global change have been studied, yet the relative impacts of global change on grassland productivity at large scales remain poorly understood. Using 182 grassland samples established in 17 alpine meadows (AM) and 21 desert steppes (DS) in China, we show that NPP of AM was significantly higher than that of DS. NPP increased significantly with increasing leaf nitrogen content (LN) and leaf phosphorus content (LP) but decreased significantly with increasing leaf dry matter content (LDMC). Among all abiotic factors, soil nutrient factor was the dominant factor affecting the variation of NPP of AM, while the NPP of DS was mainly influenced by the changing of precipitation. All abiotic factors accounted for 62.4% of the spatial variation in the NPP of AM, which was higher than the ability to explain the spatial variation in the NPP of DS (43.5%). Leaf traits together with soil nutrients and climatic factors determined the changes of the grassland productivity, but the relative contributions varied somewhat among different grassland types. We quantified the effects of biotic and abiotic factors on grassland NPP, and provided theoretical guidance for predicting the impacts of global change on the NPP of grasslands.
Collapse
Affiliation(s)
- Xianxian Wang
- College of Life Sciences, Xinjiang Normal University, Urumqi, China
| | - Ru Wang
- College of Life Sciences, Xinjiang Normal University, Urumqi, China
| | - Jie Gao
- College of Life Sciences, Xinjiang Normal University, Urumqi, China
- Institute of Ecology and Key Laboratory of Earth Surface Processes of Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, China
| |
Collapse
|
5
|
Sanaphre-Villanueva L, Pineda-García F, Dáttilo W, Pinzón-Pérez LF, Ricaño-Rocha A, Paz H. Above- and below-ground trait coordination in tree seedlings depend on the most limiting resource: a test comparing a wet and a dry tropical forest in Mexico. PeerJ 2022; 10:e13458. [PMID: 35722267 PMCID: PMC9205306 DOI: 10.7717/peerj.13458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 04/27/2022] [Indexed: 01/14/2023] Open
Abstract
The study of above- and below-ground organ plant coordination is crucial for understanding the biophysical constraints and trade-offs involved in species' performance under different environmental conditions. Environmental stress is expected to increase constraints on species trait combinations, resulting in stronger coordination among the organs involved in the acquisition and processing of the most limiting resource. To test this hypothesis, we compared the coordination of trait combinations in 94 tree seedling species from two tropical forest systems in Mexico: dry and moist. In general, we expected that the water limitation experienced by dry forest species would result in stronger leaf-stem-root coordination than light limitation experienced by moist forest species. Using multiple correlations analyses and tools derived from network theory, we found similar functional trait coordination between forests. However, the most important traits differed between the forest types. While in the dry forest the most central traits were all related to water storage (leaf and stem water content and root thickness), in the moist forest they were related to the capacity to store water in leaves (leaf water content), root efficiency to capture resources (specific root length), and stem toughness (wood density). Our findings indicate that there is a shift in the relative importance of mechanisms to face the most limiting resource in contrasting tropical forests.
Collapse
Affiliation(s)
- Lucía Sanaphre-Villanueva
- Centro del Cambio Global y la Sustentabilidad A.C., Consejo Nacional de Ciencia y Tecnología, Villahermosa, Tabasco, México,Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia, Michoacán, México
| | - Fernando Pineda-García
- Escuela Nacional de Estudios Superiores, Unidad Morelia, Universidad Nacional Autónoma de México, Morelia, Michoacán, México
| | - Wesley Dáttilo
- Red de Ecoetología, Instituto de Ecología, A.C., Xalapa, Veracruz, México
| | - Luisa Fernanda Pinzón-Pérez
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia, Michoacán, México
| | - Arlett Ricaño-Rocha
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia, Michoacán, México
| | - Horacio Paz
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia, Michoacán, México,Laboratorio Nacional de Innovación Ecotecnológica para la Sustentabilidad, Universidad Nacional Autónoma de México, Morelia, Michoacán, México,Center for Stable Isotope Biogeochemistry and the Department of Integrative Biology, University of California, Berkeley, CA, United States of America
| |
Collapse
|
6
|
Weigelt A, Mommer L, Andraczek K, Iversen CM, Bergmann J, Bruelheide H, Fan Y, Freschet GT, Guerrero-Ramírez NR, Kattge J, Kuyper TW, Laughlin DC, Meier IC, van der Plas F, Poorter H, Roumet C, van Ruijven J, Sabatini FM, Semchenko M, Sweeney CJ, Valverde-Barrantes OJ, York LM, McCormack ML. An integrated framework of plant form and function: the belowground perspective. THE NEW PHYTOLOGIST 2021; 232:42-59. [PMID: 34197626 DOI: 10.1111/nph.17590] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/13/2021] [Indexed: 06/13/2023]
Abstract
Plant trait variation drives plant function, community composition and ecosystem processes. However, our current understanding of trait variation disproportionately relies on aboveground observations. Here we integrate root traits into the global framework of plant form and function. We developed and tested an overarching conceptual framework that integrates two recently identified root trait gradients with a well-established aboveground plant trait framework. We confronted our novel framework with published relationships between above- and belowground trait analogues and with multivariate analyses of above- and belowground traits of 2510 species. Our traits represent the leaf and root conservation gradients (specific leaf area, leaf and root nitrogen concentration, and root tissue density), the root collaboration gradient (root diameter and specific root length) and the plant size gradient (plant height and rooting depth). We found that an integrated, whole-plant trait space required as much as four axes. The two main axes represented the fast-slow 'conservation' gradient on which leaf and fine-root traits were well aligned, and the 'collaboration' gradient in roots. The two additional axes were separate, orthogonal plant size axes for height and rooting depth. This perspective on the multidimensional nature of plant trait variation better encompasses plant function and influence on the surrounding environment.
Collapse
Affiliation(s)
- Alexandra Weigelt
- Systematic Botany and Functional Biodiversity, Institute of Biology, Leipzig University, Leipzig, 04103, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, 04103, Germany
| | - Liesje Mommer
- Plant Ecology and Nature Conservation Group, Department of Environmental Sciences, Wageningen University, PO Box 47, Wageningen, 6700 AA, the Netherlands
| | - Karl Andraczek
- Systematic Botany and Functional Biodiversity, Institute of Biology, Leipzig University, Leipzig, 04103, Germany
| | - Colleen M Iversen
- Oak Ridge National Laboratory, Climate Change Science Institute and Environmental Sciences Division, Oak Ridge, TN, 37831, USA
| | - Joana Bergmann
- Sustainable Grassland Systems, Leibniz Centre for Agricultural Landscape Research (ZALF), Paulinenaue, 14641, Germany
| | - Helge Bruelheide
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, 04103, Germany
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle, 06108, Germany
| | - Ying Fan
- Department of Earth and Planetary Sciences, Rutgers University, New Brunswick, NJ, 08854, USA
| | - Grégoire T Freschet
- Theoretical and Experimental Ecology Station (SETE), National Center for Scientific Research (CNRS), Moulis, 09200, France
| | - Nathaly R Guerrero-Ramírez
- Biodiversity, Macroecology & Biogeography, Faculty of Forest Sciences and Forest Ecology, University of Goettingen, Göttingen, 37077, Germany
| | - Jens Kattge
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, 04103, Germany
- Functional Biogeography, Max Planck Institute for Biogeochemistry, Jena, 07745, Germany
| | - Thom W Kuyper
- Soil Biology Group, Department of Environmental Sciences, Wageningen University, PO Box 47, Wageningen, 6700 AA, the Netherlands
| | - Daniel C Laughlin
- Department of Botany, University of Wyoming, Laramie, WY, 82071, USA
| | - Ina C Meier
- Functional Forest Ecology, Department of Biology, Universität Hamburg, Barsbüttel-Willinghusen, 22885, Germany
| | - Fons van der Plas
- Systematic Botany and Functional Biodiversity, Institute of Biology, Leipzig University, Leipzig, 04103, Germany
- Plant Ecology and Nature Conservation Group, Department of Environmental Sciences, Wageningen University, PO Box 47, Wageningen, 6700 AA, the Netherlands
| | - Hendrik Poorter
- Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, Jülich, 52425, Germany
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Catherine Roumet
- CEFE, CNRS, EPHE, IRD, University Montpellier, Montpellier, 34293, France
| | - Jasper van Ruijven
- Plant Ecology and Nature Conservation Group, Department of Environmental Sciences, Wageningen University, PO Box 47, Wageningen, 6700 AA, the Netherlands
| | - Francesco Maria Sabatini
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, 04103, Germany
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle, 06108, Germany
| | - Marina Semchenko
- Department of Earth and Environmental Sciences, The University of Manchester, Manchester, M13 9PL, UK
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, 51005, Estonia
| | - Christopher J Sweeney
- Department of Earth and Environmental Sciences, The University of Manchester, Manchester, M13 9PL, UK
| | - Oscar J Valverde-Barrantes
- Institute of Environment, Department of Biological Sciences, Florida International University, Miami, FL, 33199, USA
| | - Larry M York
- Noble Research Institute, LLC, Ardmore, OK, 73401, USA
| | - M Luke McCormack
- The Root Lab, Center for Tree Science, The Morton Arboretum, Lisle, IL, 60515, USA
| |
Collapse
|
7
|
Zadworny M, Mucha J, Bagniewska-Zadworna A, Żytkowiak R, Mąderek E, Danusevičius D, Oleksyn J, Wyka TP, McCormack ML. Higher biomass partitioning to absorptive roots improves needle nutrition but does not alleviate stomatal limitation of northern Scots pine. GLOBAL CHANGE BIOLOGY 2021; 27:3859-3869. [PMID: 33934467 DOI: 10.1111/gcb.15668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
Harsh environmental conditions affect both leaf structure and root traits. However, shoot growth in high-latitude systems is predominately under photoperiod control while root growth may occur for as long as thermal conditions are favorable. The different sensitivities of these organs may alter functional relationships above- and belowground along environmental gradients. We examined the relationship between absorptive root and foliar traits of Scots pine trees growing in situ along a temperate-boreal transect and in trees grown in a long-term common garden at a temperate latitude. We related changes in foliar nitrogen, phosphorus, specific leaf area, needle mass and 13 C signatures to geographic trends in absorptive root biomass to better understand patterns of altered tree nutrition and water balance. Increased allocation to absorptive fine roots was associated with greater uptake of soil nutrients and subsequently higher needle nutrient contents in the northern provenances compared with more southern provenances when grown together in a common garden setting. In contrast, the leaf δ13 C in northern and southern provenances were similar within the common garden suggesting that higher absorptive root biomass fractions could not adequately increase water supply in warmer climates. These results highlight the importance of allocation within the fine-root system and its impacts on needle nutrition while also suggesting increasing stomatal limitation of photosynthesis in the context of anticipated climatic changes.
Collapse
Affiliation(s)
- Marcin Zadworny
- Institute of Dendrology, Polish Academy of Sciences, Kórnik, Poland
| | - Joanna Mucha
- Institute of Dendrology, Polish Academy of Sciences, Kórnik, Poland
| | - Agnieszka Bagniewska-Zadworna
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Roma Żytkowiak
- Institute of Dendrology, Polish Academy of Sciences, Kórnik, Poland
| | - Ewa Mąderek
- Institute of Dendrology, Polish Academy of Sciences, Kórnik, Poland
| | - Darius Danusevičius
- Faculty of Forest Science and Ecology, Vytautas Magnus University, Kaunas, Lithuania
| | - Jacek Oleksyn
- Institute of Dendrology, Polish Academy of Sciences, Kórnik, Poland
| | - Tomasz P Wyka
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | | |
Collapse
|
8
|
Yang Y, Xiao C, Wu X, Long W, Feng G, Liu G. Differing Trade-Off Patterns of Tree Vegetative Organs in a Tropical Cloud Forest. FRONTIERS IN PLANT SCIENCE 2021; 12:680379. [PMID: 34367205 PMCID: PMC8334555 DOI: 10.3389/fpls.2021.680379] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
Functional trait ecology demonstrates the significance of the leaf economics spectrum in understanding plants' trade-off between acquisitive and conservative resource utilization. However, whether trait variations of different vegetative organs are coordinated and whether the plant economics spectrum is characterized by more than one vegetative organ remain controversial. To gain insights into these questions, within a tropical cloud forest in Hainan Island, a total of 13 functional traits of 84 tree species were analyzed here, including leaf, stem and root traits. By using standardized major axis (SMA) regression and principal components analysis, we examined the trait variations and correlations for deciphering plants' trade-off pattern. We found decreases of leaf phosphorus content, leaf nitrogen content and specific leaf area and increases of leaf mass per unit area (LMA), wood density and leaf thickness along the first principal component, while there were decreases of specific root length and specific root area and increases of root tissue density along the second principal component. Root phosphorus and nitrogen contents were significantly positively associated with the phosphorus and nitrogen contents of both stem and leaf. Wood density was significantly positively associated with LMA and leaf thickness, but negatively associated with leaf thickness and specific leaf area. Our results indicate that, in the tropical cloud forest, there is a "fast-slow" economic spectrum characterized by leaf and stem. Changes of nutrient trait are coordinated, whereas the relationships of morphological traits varied independently between plant above- and below-ground parts, while root nutrient traits are decoupled from root morphological traits. Our findings can provide an insight into the species coexistence and community assembly in high-altitude tropical forests.
Collapse
Affiliation(s)
- Yuanyuan Yang
- College of Ecology and Environment, Hainan University, Haikou, China
- National Positioning Observation and Research Station of Forest Ecosystem, College of Forestry, Hainan University, Haikou, China
- Key Laboratory of Tropical Forest Flower Genetics and Germplasm Innovation, Ministry of Education, Haikou, China
| | - Chuchu Xiao
- College of Ecology and Environment, Hainan University, Haikou, China
- National Positioning Observation and Research Station of Forest Ecosystem, College of Forestry, Hainan University, Haikou, China
- Key Laboratory of Tropical Forest Flower Genetics and Germplasm Innovation, Ministry of Education, Haikou, China
| | - Xianming Wu
- Bawangling Branch, Hainan Tropical Rainforest National Park Administration, Changjiang, China
| | - Wenxing Long
- National Positioning Observation and Research Station of Forest Ecosystem, College of Forestry, Hainan University, Haikou, China
- Key Laboratory of Tropical Forest Flower Genetics and Germplasm Innovation, Ministry of Education, Haikou, China
| | - Guang Feng
- National Positioning Observation and Research Station of Forest Ecosystem, College of Forestry, Hainan University, Haikou, China
- Key Laboratory of Tropical Forest Flower Genetics and Germplasm Innovation, Ministry of Education, Haikou, China
| | - Guoying Liu
- National Positioning Observation and Research Station of Forest Ecosystem, College of Forestry, Hainan University, Haikou, China
- Key Laboratory of Tropical Forest Flower Genetics and Germplasm Innovation, Ministry of Education, Haikou, China
| |
Collapse
|
9
|
Functional components in extracts of Beta vulgaris (Chukandar) parts for antioxidant effect and antiobesity potential with lipase inhibition. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.100983] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Wang R, Yu G, He N. Root Community Traits: Scaling-Up and Incorporating Roots Into Ecosystem Functional Analyses. FRONTIERS IN PLANT SCIENCE 2021; 12:690235. [PMID: 34367214 PMCID: PMC8339581 DOI: 10.3389/fpls.2021.690235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/28/2021] [Indexed: 05/17/2023]
Affiliation(s)
- Ruili Wang
- College of Forestry, Northwest A&F University, Yangling, China
| | - Guirui Yu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Guirui Yu
| | - Nianpeng He
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
- Institute of Grassland Science, Northeast Normal University and Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, China
- Nianpeng He
| |
Collapse
|
11
|
Disentangling the Contributions of Plant Taxonomic and Functional Diversities in Shaping Aboveground Biomass of a Restored Forest Landscape in Southern China. PLANTS 2019; 8:plants8120612. [PMID: 31888237 PMCID: PMC6963651 DOI: 10.3390/plants8120612] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/17/2019] [Accepted: 12/13/2019] [Indexed: 11/30/2022]
Abstract
Restoration is essential for supporting key ecosystem functions such as aboveground biomass production. However, the relative importance of functional versus taxonomic diversity in predicting aboveground biomass during restoration is poorly studied. Here, we used a trait-based approach to test for the importance of multiple plant diversity attributes in regulating aboveground biomass in a 30-years-old restored subtropical forest in southern China. We show that both taxonomic and functional diversities are significant and positive regulators of aboveground biomass; however, functional diversity (FD) was more important than taxonomic diversity (species richness) in controlling aboveground biomass. FD had the strongest direct effect on aboveground biomass compared with species richness, soil nutrients, and community weighted mean (CWM) traits. Our results further indicate that leaf and root morphological traits and traits related to the nutrient content in plant tissues represent the existence of a leaf and root economic spectrum, and the acquisitive resource use strategy influenced aboveground biomass. Our results suggest that both taxonomic and FD play a role in shaping aboveground biomass, but FD is more important in supporting aboveground biomass in this type of environments. These results imply that enhancing FD is important to restoring and managing degraded forest landscapes.
Collapse
|
12
|
Hu Y, Pan X, Yang X, Liu G, Liu X, Song Y, Zhang M, Cui L, Dong M. Is there coordination of leaf and fine root traits at local scales? A test in temperate forest swamps. Ecol Evol 2019; 9:8714-8723. [PMID: 31410274 PMCID: PMC6686282 DOI: 10.1002/ece3.5421] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 05/14/2019] [Accepted: 06/08/2019] [Indexed: 11/09/2022] Open
Abstract
Examining the coordination of leaf and fine root traits not only aids a better understanding of plant ecological strategies from a whole-plant perspective, but also helps improve the prediction of belowground properties from aboveground traits. The relationships between leaf and fine root traits have been extensively explored at global and regional scales, but remain unclear at local scales. Here, we measured six pairs of analogous leaf and fine root traits related to resource economy and organ size for coexisting dominant and subordinate vascular plants at three successional stages of temperate forest swamps in Lingfeng National Nature Reserve in the Greater Hinggan Mountains, NE China. Leaf and fine root traits related to resource acquisition (e.g., specific leaf area [SLA], leaf N, leaf P, root water content, and root P) decreased with succession. Overall, we found strong linear relationships between leaf dry matter content (LDMC) and root water content, and between leaf and root C, N, and P concentrations, but only weak correlations were observed between leaf area and root diameter, and between SLA and specific root length (SRL). The strong relationships between LDMC and root water content and between leaf and root C, N, and P held at the early and late stages, but disappeared at the middle stage. Besides, C and P of leaves were significantly correlated with those of roots for woody plants, while strong linkages existed between LDMC and root water content and between leaf N and root N for herbaceous species. These results provided evidence for the existence of strong coordination between leaf and root traits at the local scale. Meanwhile, the leaf-root trait relationships could be modulated by successional stage and growth form, indicating the complexity of coordination of aboveground and belowground traits at the local scale.
Collapse
Affiliation(s)
- Yu‐Kun Hu
- Institute of Wetland ResearchChinese Academy of ForestryBeijingChina
- Beijing Key Laboratory of Wetland Services and RestorationBeijingChina
| | - Xu Pan
- Institute of Wetland ResearchChinese Academy of ForestryBeijingChina
- Beijing Key Laboratory of Wetland Services and RestorationBeijingChina
| | - Xue‐Jun Yang
- State Key Laboratory of Vegetation and Environmental Change, Institute of BotanyChinese Academy of SciencesBeijingChina
| | - Guo‐Fang Liu
- State Key Laboratory of Vegetation and Environmental Change, Institute of BotanyChinese Academy of SciencesBeijingChina
| | - Xu‐Yan Liu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources ResearchChinese Academy of SciencesBeijingChina
| | - Yao‐Bin Song
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, College of Life and Environmental SciencesHangzhou Normal UniversityHangzhouChina
| | - Man‐Yin Zhang
- Institute of Wetland ResearchChinese Academy of ForestryBeijingChina
- Beijing Key Laboratory of Wetland Services and RestorationBeijingChina
| | - Li‐Juan Cui
- Institute of Wetland ResearchChinese Academy of ForestryBeijingChina
- Beijing Key Laboratory of Wetland Services and RestorationBeijingChina
| | - Ming Dong
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, College of Life and Environmental SciencesHangzhou Normal UniversityHangzhouChina
| |
Collapse
|
13
|
García‐Palacios P, Gattinger A, Bracht‐Jørgensen H, Brussaard L, Carvalho F, Castro H, Clément J, De Deyn G, D'Hertefeldt T, Foulquier A, Hedlund K, Lavorel S, Legay N, Lori M, Mäder P, Martínez‐García LB, Martins da Silva P, Muller A, Nascimento E, Reis F, Symanczik S, Paulo Sousa J, Milla R. Crop traits drive soil carbon sequestration under organic farming. J Appl Ecol 2018. [DOI: 10.1111/1365-2664.13113] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pablo García‐Palacios
- Departamento de Biología y Geología Física y Química Inorgánica y Analítica Área de Biodiversidad y Conservación Universidad Rey Juan Carlos Móstoles Spain
| | | | | | - Lijbert Brussaard
- Department of Soil Quality Wageningen University Wageningen The Netherlands
| | - Filipe Carvalho
- Department of Life Sciences Centre for Functional Ecology University of Coimbra Coimbra Portugal
| | - Helena Castro
- Department of Life Sciences Centre for Functional Ecology University of Coimbra Coimbra Portugal
| | - Jean‐Christophe Clément
- Laboratoire d'Ecologie Alpine UMR 5553 CNRS‐UGA‐USMB Université Grenoble Alpes Grenoble Cedex 09 France
- CARRTEL INRA Université Savoie Mont Blanc Thonon‐Les‐Bains France
| | - Gerlinde De Deyn
- Department of Soil Quality Wageningen University Wageningen The Netherlands
| | | | - Arnaud Foulquier
- Laboratoire d'Ecologie Alpine UMR 5553 CNRS‐UGA‐USMB Université Grenoble Alpes Grenoble Cedex 09 France
| | | | - Sandra Lavorel
- Laboratoire d'Ecologie Alpine UMR 5553 CNRS‐UGA‐USMB Université Grenoble Alpes Grenoble Cedex 09 France
| | - Nicolas Legay
- Laboratoire d'Ecologie Alpine UMR 5553 CNRS‐UGA‐USMB Université Grenoble Alpes Grenoble Cedex 09 France
- Ecole de la Nature et du Paysage INSA CVL Blois France
- CNRS CITERES UMR 7324 Tours France
| | - Martina Lori
- Research Institute of Organic Agriculture FiBL Frick Switzerland
| | - Paul Mäder
- Research Institute of Organic Agriculture FiBL Frick Switzerland
| | | | - Pedro Martins da Silva
- Department of Life Sciences Centre for Functional Ecology University of Coimbra Coimbra Portugal
| | - Adrian Muller
- Research Institute of Organic Agriculture FiBL Frick Switzerland
- Institute of Environmental Decisions IED Federal Institutes of Technology Zurich ETHZ Zurich Switzerland
| | - Eduardo Nascimento
- Department of Life Sciences Centre for Functional Ecology University of Coimbra Coimbra Portugal
| | - Filipa Reis
- Department of Life Sciences Centre for Functional Ecology University of Coimbra Coimbra Portugal
| | - Sarah Symanczik
- Research Institute of Organic Agriculture FiBL Frick Switzerland
| | - José Paulo Sousa
- Department of Life Sciences Centre for Functional Ecology University of Coimbra Coimbra Portugal
| | - Rubén Milla
- Departamento de Biología y Geología Física y Química Inorgánica y Analítica Área de Biodiversidad y Conservación Universidad Rey Juan Carlos Móstoles Spain
| |
Collapse
|
14
|
Valverde-Barrantes OJ, Smemo KA, Feinstein LM, Kershner MW, Blackwood CB. Patterns in spatial distribution and root trait syndromes for ecto and arbuscular mycorrhizal temperate trees in a mixed broadleaf forest. Oecologia 2017; 186:731-741. [DOI: 10.1007/s00442-017-4044-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 12/10/2017] [Indexed: 11/25/2022]
|
15
|
Bergmann J, Ryo M, Prati D, Hempel S, Rillig MC. Root traits are more than analogues of leaf traits: the case for diaspore mass. THE NEW PHYTOLOGIST 2017; 216:1130-1139. [PMID: 28895147 DOI: 10.1111/nph.14748] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 07/13/2017] [Indexed: 05/13/2023]
Abstract
Root traits are often thought to be analogues of leaf traits along the plant economics spectrum. But evolutionary pressures have most likely shaped above- and belowground patterns differentially. Here, we aimed to identify the most important aboveground traits for explaining root traits without an a priori focus on known concepts. We measured morphological root traits in a glasshouse experiment on 141 common Central European grassland species. Using random forest algorithms, we built predictive models of six root traits from 97 aboveground morphological, ecological and life history traits. Root tissue density was best predicted by leaf dry matter content, whereas traits related to root fineness were best predicted by diaspore mass: the heavier the diaspore, the coarser the root system. Specific leaf area (SLA) was not an important predictor for any of the root traits. This study confirms the hypothesis that root traits are more than analogues of leaf traits within a plant economics spectrum. The results reveal a novel ecological pattern and highlight the power of root data to close important knowledge gaps in trait-based ecology.
Collapse
Affiliation(s)
- Joana Bergmann
- Dahlem Centre of Plant Science (DCPS), Freie Universität Berlin, Institute for Biology, Altensteinstr. 6, 14195, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstr. 6, 14195, Berlin, Germany
| | - Masahiro Ryo
- Dahlem Centre of Plant Science (DCPS), Freie Universität Berlin, Institute for Biology, Altensteinstr. 6, 14195, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstr. 6, 14195, Berlin, Germany
| | - Daniel Prati
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, CH-3013, Bern, Switzerland
| | - Stefan Hempel
- Dahlem Centre of Plant Science (DCPS), Freie Universität Berlin, Institute for Biology, Altensteinstr. 6, 14195, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstr. 6, 14195, Berlin, Germany
| | - Matthias C Rillig
- Dahlem Centre of Plant Science (DCPS), Freie Universität Berlin, Institute for Biology, Altensteinstr. 6, 14195, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstr. 6, 14195, Berlin, Germany
| |
Collapse
|
16
|
Wang R, Wang Q, Zhao N, Xu Z, Zhu X, Jiao C, Yu G, He N. Different phylogenetic and environmental controls of first‐order root morphological and nutrient traits: Evidence of multidimensional root traits. Funct Ecol 2017. [DOI: 10.1111/1365-2435.12983] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ruili Wang
- College of ForestryNorthwest A&F University Yangling China
| | - Qiufeng Wang
- Key Laboratory of Ecosystem Network Observation and ModelingSynthesis Research Center of Chinese Ecosystem Research NetworkInstitute of Geographic Sciences and Natural Resources ResearchChinese Academy of Sciences Beijing China
| | - Ning Zhao
- Laboratory of Remote Sensing and Geospatial ScienceCold and Arid Regions Environmental and Engineering Research InstituteChinese Academy of Sciences Lanzhou China
| | - Zhiwei Xu
- School of Geographical SciencesNortheast Normal University Changchun China
| | - Xianjin Zhu
- College of AgronomyShenyang Agricultural University Shenyang China
| | - Cuicui Jiao
- College of EconomicsSichuan University of Science and Engineering Zigong China
| | - Guirui Yu
- Key Laboratory of Ecosystem Network Observation and ModelingSynthesis Research Center of Chinese Ecosystem Research NetworkInstitute of Geographic Sciences and Natural Resources ResearchChinese Academy of Sciences Beijing China
| | - Nianpeng He
- Key Laboratory of Ecosystem Network Observation and ModelingSynthesis Research Center of Chinese Ecosystem Research NetworkInstitute of Geographic Sciences and Natural Resources ResearchChinese Academy of Sciences Beijing China
| |
Collapse
|
17
|
Wang R, Wang Q, Zhao N, Yu G, He N. Complex trait relationships between leaves and absorptive roots: Coordination in tissue N concentration but divergence in morphology. Ecol Evol 2017; 7:2697-2705. [PMID: 28428860 PMCID: PMC5395436 DOI: 10.1002/ece3.2895] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 02/06/2017] [Accepted: 02/07/2017] [Indexed: 01/29/2023] Open
Abstract
Leaves and absorptive roots (i.e., first‐order root) are above‐ and belowground plant organs related to resource acquisition; however, it is controversy over whether these two sets of functional traits vary in a coordinated manner. Here, we examined the relationships between analogous above‐ and belowground traits, including chemical (tissue C and N concentrations) and morphological traits (thickness and diameter, specific leaf area and root length, and tissue density) of 154 species sampling from eight subtropical and temperate forests. Our results showed that N concentrations of leaves and absorptive roots were positively correlated independent of phylogeny and plant growth forms, whereas morphological traits between above‐ and belowground organs varied independently. These results indicate that, different from plant economics spectrum theory, there is a complex integration of diverse adaptive strategies of plant species to above‐ and belowground environments, with convergent adaptation in nutrient traits but divergence in morphological traits across plant organs. Our results offer a new perspective for understanding the resource capture strategies of plants in adaptation to heterogeneous environments, and stress the importance of phylogenetic consideration in the discussion of cross‐species trait relationships.
Collapse
Affiliation(s)
- Ruili Wang
- College of Forestry Northwest A&F University Yangling Shaanxi China
| | - Qiufeng Wang
- Synthesis Research Center of Chinese Ecosystem Research Network Key Laboratory of Ecosystem Network Observation and Modeling Institute of Geographic Sciences and Natural Resources Research Chinese Academy of Sciences Beijing China
| | - Ning Zhao
- Laboratory of Remote Sensing and Geospatial Science Cold and Arid Regions Environmental and Engineering Research Institute Chinese Academy of Sciences Lanzhou Gansu China
| | - Guirui Yu
- Synthesis Research Center of Chinese Ecosystem Research Network Key Laboratory of Ecosystem Network Observation and Modeling Institute of Geographic Sciences and Natural Resources Research Chinese Academy of Sciences Beijing China
| | - Nianpeng He
- Synthesis Research Center of Chinese Ecosystem Research Network Key Laboratory of Ecosystem Network Observation and Modeling Institute of Geographic Sciences and Natural Resources Research Chinese Academy of Sciences Beijing China
| |
Collapse
|