1
|
Luo K, Yuan W, Lu Z, Xiong Z, Lin CJ, Wang X, Feng X. Unveiling the Sources and Transfer of Mercury in Forest Bird Food Chains Using Techniques of Vivo-Nest Video Recording and Stable Isotopes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6007-6018. [PMID: 38513264 DOI: 10.1021/acs.est.3c10972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Knowledge gaps in mercury (Hg) biomagnification in forest birds, especially in the most species-rich tropical and subtropical forests, limit our understanding of the ecological risks of Hg deposition to forest birds. This study aimed to quantify Hg bioaccumulation and transfer in the food chains of forest birds in a subtropical montane forest using a bird diet recorded by video and stable Hg isotope signals of biological and environmental samples. Results show that inorganic mercury (IHg) does not biomagnify along food chains, whereas methylmercury (MeHg) has trophic magnification factors of 7.4-8.1 for the basal resource-invertebrate-bird food chain. The video observations and MeHg mass balance model suggest that Niltava (Niltava sundara) nestlings ingest 78% of their MeHg from forest floor invertebrates, while Flycatcher (Eumyias thalassinus) nestlings ingest 59% from emergent aquatic invertebrates (which fly onto the canopy) and 40% from canopy invertebrates. The diet of Niltava nestlings contains 40% more MeHg than that of Flycatcher nestlings, resulting in a 60% higher MeHg concentration in their feather. Hg isotopic model shows that atmospheric Hg0 is the main Hg source in the forest bird food chains and contributes >68% in most organisms. However, three categories of canopy invertebrates receive ∼50% Hg from atmospheric Hg2+. Overall, we highlight the ecological risk of MeHg exposure for understory insectivorous birds caused by atmospheric Hg0 deposition and methylation on the forest floor.
Collapse
Affiliation(s)
- Kang Luo
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Wei Yuan
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Zhiyun Lu
- Ailaoshan Station for Subtropical Forest Ecosystem Studies, Chinese Academy of Sciences, Jingdong, Yunnan 676200, China
| | - Zichun Xiong
- Ailaoshan Station for Subtropical Forest Ecosystem Studies, Chinese Academy of Sciences, Jingdong, Yunnan 676200, China
| | - Che-Jen Lin
- Center for Advances in Water and Air Quality, Lamar University, Beaumont, Texas 77710, United States
| | - Xun Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Steffan SA, Dharampal PS, Kueneman JG, Keller A, Argueta-Guzmán MP, McFrederick QS, Buchmann SL, Vannette RL, Edlund AF, Mezera CC, Amon N, Danforth BN. Microbes, the 'silent third partners' of bee-angiosperm mutualisms. Trends Ecol Evol 2024; 39:65-77. [PMID: 37940503 DOI: 10.1016/j.tree.2023.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 11/10/2023]
Abstract
While bee-angiosperm mutualisms are widely recognized as foundational partnerships that have shaped the diversity and structure of terrestrial ecosystems, these ancient mutualisms have been underpinned by 'silent third partners': microbes. Here, we propose reframing the canonical bee-angiosperm partnership as a three-way mutualism between bees, microbes, and angiosperms. This new conceptualization casts microbes as active symbionts, processing and protecting pollen-nectar provisions, consolidating nutrients for bee larvae, enhancing floral attractancy, facilitating plant fertilization, and defending bees and plants from pathogens. In exchange, bees and angiosperms provide their microbial associates with food, shelter, and transportation. Such microbial communities represent co-equal partners in tripartite mutualisms with bees and angiosperms, facilitating one of the most important ecological partnerships on land.
Collapse
Affiliation(s)
- Shawn A Steffan
- US Department of Agriculture, Agricultural Research Service, 1575 Linden Drive, Madison, WI 53706, USA; Department of Entomology, University of Wisconsin, 1630 Linden Drive, Madison, WI 53706, USA.
| | - Prarthana S Dharampal
- Department of Entomology, University of Wisconsin, 1630 Linden Drive, Madison, WI 53706, USA; Biology Department, McHenry County College, 8900 Northwest Hwy #14, Crystal Lake, IL 60012, USA
| | - Jordan G Kueneman
- Department of Entomology, Cornell University, Comstock Hall, 2126, Ithaca, NY 14853, USA
| | - Alexander Keller
- Cellular and Organismic Networks, Faculty of Biology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | | | - Quinn S McFrederick
- Department of Entomology, University of California Riverside, Riverside, CA 92521, USA
| | - Stephen L Buchmann
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA; Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Rachel L Vannette
- Department of Entomology and Nematology, University of California, Davis, Davis, CA 95616, USA
| | - Anna F Edlund
- Department of Biology, Bethany College, 31 E Campus Drive, Bethany, WV 26032, USA
| | - Celeste C Mezera
- Department of Entomology, University of Wisconsin, 1630 Linden Drive, Madison, WI 53706, USA
| | - Nolan Amon
- Department of Entomology, University of Wisconsin, 1630 Linden Drive, Madison, WI 53706, USA
| | - Bryan N Danforth
- Department of Entomology, Cornell University, Comstock Hall, 2126, Ithaca, NY 14853, USA
| |
Collapse
|
3
|
Plesh SP, Lovvorn JR, Miller MWC. Organic matter sources and flows in tundra wetland food webs. PLoS One 2023; 18:e0286368. [PMID: 37235582 DOI: 10.1371/journal.pone.0286368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Arctic lowland tundra is often dominated by wetlands. As numbers and types of these wetlands change with climate warming, their invertebrate biomass and assemblages may also be affected. Increased influx of nutrients and dissolved organic matter (DOM) from thawing peat may alter the relative availability of organic matter (OM) sources, differentially affecting taxa with disparate dependence on those sources. In five shallow wetland types (<40 to 110 cm deep) and in littoral zones of deeper lakes (>150 cm), we used stable isotopes (δ13C, δ15N) to compare contributions of four OM sources (periphytic microalgae, cyanobacteria, macrophytes, peat) to the diets of nine macroinvertebrate taxa. Living macrophytes were not distinguishable isotopically from peat that likely contributed most DOM. Within invertebrate taxa, relative OM contributions were similar among all wetland types except deeper lakes. Physidae snails consumed substantial amounts of OM from cyanobacteria. However, for all other taxa examined, microalgae were the dominant or a major OM source (39-82%, mean 59%) in all wetland types except deeper lakes (20‒62%, mean 31%). Macrophytes and macrophyte-derived peat, likely consumed mostly indirectly as DOM-supported bacteria, ranged from 18‒61% (mean 41%) of ultimate OM sources in all wetland types except deeper lakes (38-80%, mean 69%). Invertebrate consumption of microalgal C may often have involved bacterial intermediates, or a mix of algae with bacteria consuming peat-derived OM. High production of periphyton with very low δ13C values were favored by continuous daylight illuminating shallow depths, high N and P levels, and high CO2 concentrations from bacterial respiration of peat-derived DOM. Although relative OM sources were similar across wetland types except deeper lakes, total invertebrate biomass was much higher in shallow wetlands with emergent vegetation. Impacts of warming on the availability of invertebrate prey to waterbirds will likely depend not on shifts in OM sources, but more on changes in overall number or area of shallow emergent wetlands.
Collapse
Affiliation(s)
- Steven P Plesh
- School of Biological Sciences, Southern Illinois University, Carbondale, Illinois, United States of America
| | - James R Lovvorn
- School of Biological Sciences, Southern Illinois University, Carbondale, Illinois, United States of America
| | - Micah W C Miller
- School of Biological Sciences, Southern Illinois University, Carbondale, Illinois, United States of America
- United States Fish and Wildlife Service, Fairbanks Fish and Wildlife Field Office, Fairbanks, Alaska, United States of America
| |
Collapse
|
4
|
Manlick PJ, Cook JA, Newsome SD. The coupling of green and brown food webs regulates trophic position in a montane mammal guild. Ecology 2023; 104:e3949. [PMID: 36495220 DOI: 10.1002/ecy.3949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/26/2022] [Accepted: 11/11/2022] [Indexed: 12/14/2022]
Abstract
Food web ecology has revolutionized our understanding of ecological processes, but the drivers of food web properties like trophic position (TP) and food chain length are notoriously enigmatic. In terrestrial ecosystems, above- and belowground systems were historically compartmentalized into "green" and "brown" food webs, but the coupling of these systems by animal consumers is increasingly recognized, with potential consequences for trophic structure. We used stable isotope analysis (δ13 C, δ15 N) of individual amino acids to trace the flow of essential biomolecules and jointly measure multichannel feeding, food web coupling, and TP in a guild of small mammals. We then tested the hypothesis that brown energy fluxes to aboveground consumers increase terrestrial food chain length via cryptic trophic transfers during microbial decomposition. We found that the average small mammal consumer acquired nearly 70% of their essential amino acids (69.0% ± 7.6%) from brown food webs, leading to significant increases in TP across species and functional groups. Fungi were the primary conduit of brown energy to aboveground consumers, providing nearly half the amino acid budget for small mammals on average (44.3% ± 12.0%). These findings illustrate the tightly coupled nature of green and brown food webs and show that microbially mediated energy flow ultimately regulates food web structure in aboveground consumers. Consequently, we propose that the integration of green and brown energy channels is a cryptic driver of food chain length in terrestrial ecosystems.
Collapse
Affiliation(s)
- Philip J Manlick
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, USA.,Museum of Southwestern Biology, University of New Mexico, Albuquerque, New Mexico, USA.,Pacific Northwest Research Station, USDA Forest Service, Juneau, Alaska, USA
| | - Joseph A Cook
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, USA.,Museum of Southwestern Biology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Seth D Newsome
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, USA
| |
Collapse
|
5
|
Garrison JA, Motwani NH, Broman E, Nascimento FJA. Molecular diet analysis enables detection of diatom and cyanobacteria DNA in the gut of Macoma balthica. PLoS One 2022; 17:e0278070. [PMID: 36417463 PMCID: PMC9683582 DOI: 10.1371/journal.pone.0278070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 11/08/2022] [Indexed: 11/25/2022] Open
Abstract
Detritivores are essential to nutrient cycling, but are often neglected in trophic networks, due to difficulties with determining their diet. DNA analysis of gut contents shows promise of trophic link discrimination, but many unknown factors limit its usefulness. For example, DNA can be rapidly broken down, especially by digestion processes, and DNA provides only a snapshot of the gut contents at a specific time. Few studies have been performed on the length of time that prey DNA can be detected in consumer guts, and none so far using benthic detritivores. Eutrophication, along with climate change, is altering the phytoplankton communities in aquatic ecosystems, on which benthic detritivores in aphotic soft sediments depend. Nutrient-poor cyanobacteria blooms are increasing in frequency, duration, and magnitude in many water bodies, while nutrient-rich diatom spring blooms are shrinking in duration and magnitude, creating potential changes in diet of benthic detritivores. We performed an experiment to identify the taxonomy and quantify the abundance of phytoplankton DNA fragments on bivalve gut contents, and how long these fragments can be detected after consumption in the Baltic Sea clam Macoma balthica. Two common species of phytoplankton (the cyanobacteria Nodularia spumigena or the diatom Skeletonema marinoi) were fed to M. balthica from two regions (from the northern and southern Stockholm archipelago). After removing the food source, M. balthica gut contents were sampled every 24 hours for seven days to determine the number of 23S rRNA phytoplankton DNA copies and when the phytoplankton DNA could no longer be detected by quantitative PCR. We found no differences in diatom 18S rRNA gene fragments of the clams by region, but the southern clams showed significantly more cyanobacteria 16S rRNA gene fragments in their guts than the northern clams. Interestingly, the cyanobacteria and diatom DNA fragments were still detectable by qPCR in the guts of M. balthica one week after removal from its food source. However, DNA metabarcoding of the 23S rRNA phytoplankton gene found in the clam guts showed that added food (i.e. N. spumigena and S. marinoi) did not make up a majority of the detected diet. Our results suggest that these detritivorous clams therefore do not react as quickly as previously thought to fresh organic matter inputs, with other phytoplankton than large diatoms and cyanobacteria constituting the majority of their diet. This experiment demonstrates the viability of using molecular methods to determine feeding of detritivores, but further studies investigating how prey DNA signals can change over time in benthic detritivores will be needed before this method can be widely applicable to both models of ecological functions and conservation policy.
Collapse
Affiliation(s)
- Julie A. Garrison
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
- * E-mail:
| | - Nisha H. Motwani
- School of Natural Sciences, Technology and Environmental Studies, Södertörn University, Huddinge, Sweden
- Department of Environmental Science, Stockholm University, Stockholm, Sweden
| | - Elias Broman
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
- Baltic Sea Centre, Stockholm University, Stockholm, Sweden
| | - Francisco J. A. Nascimento
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
- Baltic Sea Centre, Stockholm University, Stockholm, Sweden
| |
Collapse
|
6
|
Dang Z, Luo Z, Wang S, Liao Y, Jiang Z, Zhu X, Ji G. Using hierarchical stable isotope to reveal microbial food web structure and trophic transfer efficiency differences during lake melt season. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156893. [PMID: 35753488 DOI: 10.1016/j.scitotenv.2022.156893] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/31/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
The microbial food web (MFW) is a material and energy source in lake water ecosystems. Although it is crucial to determine its structure and function for water ecological health, MFW changes during lake melt period have not been well studied. In this study, the MFW was divided into three categories by analyzing its structure and trophic transfer efficiency using hierarchical C/N stable isotopes and eDNA sequencing techniques, including the detrital food web (DFC, 15 %), classical grazing food web (CFC, 60 %), and mixed trophic food web (MFC, 25 %). The trophic structure and type of MFW in ice-melting lakes are always in the process of succession and adaptation, which is in a relatively low trophic transfer efficiency stage under stable conditions (i.e. CFC), whereas the input of exogenous debris and organic pollutants may lead to an increase in MFW trophic transfer efficiency (i.e. MFC, DFC). The trophic transfer efficiency from the previous trophic level to protozoa and micrometazoa was 16.32 % and 20.77 % in DFC and 10.20 % and 29.43 % in MFC, respectively. Both are obviously higher than those of the CFC (11.69 % and 9.45 %, respectively). In terms of trophic structure, the community interaction and trophic cascade effect of DFC and MFC were enhanced but easily changed with environmental factors. In contrast, the core species and cascading effects of the CFC were clearer, and the MFW structure was relatively stable. Overall, this study reveals that the explosive increase in MFW trophic transfer efficiency induced by exogenous input during the lake melt period may subsequently lead to the destabilization of the microbial community structure and cause potential ecological risks. These are manifested in the absence of ecological trophic processes, the decrease in trophic structure complexity and stability, and the weakening of microecology self-adaptive regulation ability.
Collapse
Affiliation(s)
- Zhengzhu Dang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871, China
| | - Zhongxin Luo
- China Institute of Water Resources and Hydropower Research, Beijing 100038, China; National Research Center for Sustainable Hydropower Development, Beijing 100038, China
| | - Shuo Wang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871, China
| | - Yinhao Liao
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871, China
| | - Zhuo Jiang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871, China
| | - Xianfang Zhu
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871, China
| | - Guodong Ji
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
7
|
Miller-ter Kuile A, Apigo A, Bui A, Butner K, Childress JN, Copeland S, DiFiore BP, Forbes ES, Klope M, Motta CI, Orr D, Plummer KA, Preston DL, Young HS. Changes in invertebrate food web structure between high- and low-productivity environments are driven by intermediate but not top-predator diet shifts. Biol Lett 2022; 18:20220364. [PMID: 36287142 PMCID: PMC9601239 DOI: 10.1098/rsbl.2022.0364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/06/2022] [Indexed: 12/30/2022] Open
Abstract
Predator-prey interactions shape ecosystem stability and are influenced by changes in ecosystem productivity. However, because multiple biotic and abiotic drivers shape the trophic responses of predators to productivity, we often observe patterns, but not mechanisms, by which productivity drives food web structure. One way to capture mechanisms shaping trophic responses is to quantify trophic interactions among multiple trophic groups and by using complementary metrics of trophic ecology. In this study, we combine two diet-tracing methods: diet DNA and stable isotopes, for two trophic groups (top predators and intermediate predators) in both low- and high-productivity habitats to elucidate where in the food chain trophic structure shifts in response to changes in underlying ecosystem productivity. We demonstrate that while top predators show increases in isotopic trophic position (δ15N) with productivity, neither their isotopic niche size nor their DNA diet composition changes. Conversely, intermediate predators show clear turnover in DNA diet composition towards a more predatory prey base in high-productivity habitats. Taking this multi-trophic approach highlights how predator identity shapes responses in predator-prey interactions across environments with different underlying productivity, building predictive power for understanding the outcomes of ongoing anthropogenic change.
Collapse
Affiliation(s)
- Ana Miller-ter Kuile
- Ecology, Evolution, and Marine Biology Department, University of California, Santa Barbara, CA, USA
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ, USA
- USDA Forest Service Rocky Mountain Research Station, Flagstaff, AZ, USA
| | - Austen Apigo
- Ecology, Evolution, and Marine Biology Department, University of California, Santa Barbara, CA, USA
| | - An Bui
- Ecology, Evolution, and Marine Biology Department, University of California, Santa Barbara, CA, USA
| | - Kirsten Butner
- Ecology, Evolution, and Marine Biology Department, University of California, Santa Barbara, CA, USA
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jasmine N. Childress
- Ecology, Evolution, and Marine Biology Department, University of California, Santa Barbara, CA, USA
| | - Stephanie Copeland
- Ecology, Evolution, and Marine Biology Department, University of California, Santa Barbara, CA, USA
| | - Bartholomew P. DiFiore
- Ecology, Evolution, and Marine Biology Department, University of California, Santa Barbara, CA, USA
| | - Elizabeth S. Forbes
- Ecology, Evolution, and Marine Biology Department, University of California, Santa Barbara, CA, USA
- Yale School of the Environment, Yale University, New Haven, CT, USA
| | - Maggie Klope
- Ecology, Evolution, and Marine Biology Department, University of California, Santa Barbara, CA, USA
| | - Carina I. Motta
- Ecology, Evolution, and Marine Biology Department, University of California, Santa Barbara, CA, USA
- Departamento de Biodiversidade, Universidade Estadual Paulista Júlio de Mesquita Filho, Av. 24 A, 1515 - Bela Vista, Rio Claro, SP, 13506-752, Brasil
| | - Devyn Orr
- Ecology, Evolution, and Marine Biology Department, University of California, Santa Barbara, CA, USA
- USDA ARS Eastern Oregon Agricultural Research Center, Burns, OR, USA
| | | | - Daniel L. Preston
- Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, CO, USA
| | - Hillary S. Young
- Ecology, Evolution, and Marine Biology Department, University of California, Santa Barbara, CA, USA
| |
Collapse
|
8
|
Yun HY, Larsen T, Choi B, Won E, Shin K. Amino acid nitrogen and carbon isotope data: Potential and implications for ecological studies. Ecol Evol 2022; 12:e8929. [PMID: 35784034 PMCID: PMC9163675 DOI: 10.1002/ece3.8929] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/18/2022] [Accepted: 04/25/2022] [Indexed: 12/17/2022] Open
Abstract
Explaining food web dynamics, stability, and functioning depend substantially on understanding of feeding relations within a community. Bulk stable isotope ratios (SIRs) in natural abundance are well-established tools to express direct and indirect feeding relations as continuous variables across time and space. Along with bulk SIRs, the SIRs of individual amino acids (AAs) are now emerging as a promising and complementary method to characterize the flow and transformation of resources across a diversity of organisms, from microbial domains to macroscopic consumers. This significant AA-SIR capacity is based on empirical evidence that a consumer's SIR, specific to an individual AA, reflects its diet SIR coupled with a certain degree of isotopic differences between the consumer and its diet. However, many empirical ecologists are still unfamiliar with the scope of applicability and the interpretative power of AA-SIR. To fill these knowledge gaps, we here describe a comprehensive approach to both carbon and nitrogen AA-SIR assessment focusing on two key topics: pattern in AA-isotope composition across spatial and temporal scales, and a certain variability of AA-specific isotope differences between the diet and the consumer. On this basis we review the versatile applicability of AA-SIR to improve our understanding of physiological processes as well as food web functioning, allowing us to reconstruct dominant basal dietary sources and trace their trophic transfers at the specimen and community levels. Given the insightful and opportunities of AA-SIR, we suggest future applications for the dual use of carbon and nitrogen AA-SIR to study more realistic food web structures and robust consumer niches, which are often very difficult to explain in nature.
Collapse
Affiliation(s)
- Hee Young Yun
- Deparment of Marine Science and Convergent TechnologyHanyang UniversityAnsanKorea
| | - Thomas Larsen
- Department of ArchaeologyMax Planck Institute for the Science of Human HistoryJenaGermany
| | - Bohyung Choi
- Deparment of Marine Science and Convergent TechnologyHanyang UniversityAnsanKorea
- Inland Fisheries Research InstituteNational Institute of Fisheries ScienceGeumsan‐gunKorea
| | - Eun‐Ji Won
- Deparment of Marine Science and Convergent TechnologyHanyang UniversityAnsanKorea
| | - Kyung‐Hoon Shin
- Deparment of Marine Science and Convergent TechnologyHanyang UniversityAnsanKorea
| |
Collapse
|
9
|
Mucci NC, Jones KA, Cao M, Wyatt MR, Foye S, Kauffman SJ, Richards GR, Taufer M, Chikaraishi Y, Steffan SA, Campagna SR, Goodrich-Blair H. Apex Predator Nematodes and Meso-Predator Bacteria Consume Their Basal Insect Prey through Discrete Stages of Chemical Transformations. mSystems 2022; 7:e0031222. [PMID: 35543104 PMCID: PMC9241642 DOI: 10.1128/msystems.00312-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/04/2022] [Indexed: 11/20/2022] Open
Abstract
Microbial symbiosis drives physiological processes of higher-order systems, including the acquisition and consumption of nutrients that support symbiotic partner reproduction. Metabolic analytics provide new avenues to examine how chemical ecology, or the conversion of existing biomass to new forms, changes over a symbiotic life cycle. We applied these approaches to the nematode Steinernema carpocapsae, its mutualist bacterium, Xenorhabdus nematophila, and the insects they infect. The nematode-bacterium pair infects, kills, and reproduces in an insect until nutrients are depleted. To understand the conversion of insect biomass over time into either nematode or bacterium biomass, we integrated information from trophic, metabolomic, and gene regulation analyses. Trophic analysis established bacteria as meso-predators and primary insect consumers. Nematodes hold a trophic position of 4.6, indicative of an apex predator, consuming bacteria and likely other nematodes. Metabolic changes associated with Galleria mellonella insect bioconversion were assessed using multivariate statistical analyses of metabolomics data sets derived from sampling over an infection time course. Statistically significant, discrete phases were detected, indicating the insect chemical environment changes reproducibly during bioconversion. A novel hierarchical clustering method was designed to probe molecular abundance fluctuation patterns over time, revealing distinct metabolite clusters that exhibit similar abundance shifts across the time course. Composite data suggest bacterial tryptophan and nematode kynurenine pathways are coordinated for reciprocal exchange of tryptophan and NAD+ and for synthesis of intermediates that can have complex effects on bacterial phenotypes and nematode behaviors. Our analysis of pathways and metabolites reveals the chemistry underlying the recycling of organic material during carnivory. IMPORTANCE The processes by which organic life is consumed and reborn in a complex ecosystem were investigated through a multiomics approach applied to the tripartite Xenorhabdus bacterium-Steinernema nematode-Galleria insect symbiosis. Trophic analyses demonstrate the primary consumers of the insect are the bacteria, and the nematode in turn consumes the bacteria. This suggests the Steinernema-Xenorhabdus mutualism is a form of agriculture in which the nematode cultivates the bacterial food sources by inoculating them into insect hosts. Metabolomics analysis revealed a shift in biological material throughout progression of the life cycle: active infection, insect death, and conversion of cadaver tissues into bacterial biomass and nematode tissue. We show that each phase of the life cycle is metabolically distinct, with significant differences including those in the tricarboxylic acid cycle and amino acid pathways. Our findings demonstrate that symbiotic life cycles can be defined by reproducible stage-specific chemical signatures, enhancing our broad understanding of metabolic processes that underpin a three-way symbiosis.
Collapse
Affiliation(s)
- Nicholas C. Mucci
- Department of Microbiology, University of Tennessee–Knoxville, Knoxville, Tennessee, USA
- UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee–Knoxville, Knoxville, Tennessee, USA
| | - Katarina A. Jones
- Department of Chemistry, University of Tennessee–Knoxville, Knoxville, Tennessee, USA
| | - Mengyi Cao
- Department of Bacteriology, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Michael R. Wyatt
- Department of Electrical Engineering and Computer Science, University of Tennessee–Knoxville, Knoxville, Tennessee, USA
| | - Shane Foye
- Department of Entomology, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Sarah J. Kauffman
- Department of Microbiology, University of Tennessee–Knoxville, Knoxville, Tennessee, USA
| | - Gregory R. Richards
- Department of Bacteriology, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Michela Taufer
- Department of Electrical Engineering and Computer Science, University of Tennessee–Knoxville, Knoxville, Tennessee, USA
| | - Yoshito Chikaraishi
- Institute of Low Temperature Science, Hokkaido University, Japan
- Biogeochemistry Research Center, Japan Agency for Marine-Earth Science and Technology, Japan
| | - Shawn A. Steffan
- Department of Entomology, University of Wisconsin–Madison, Madison, Wisconsin, USA
- U.S. Department of Agriculture, Agricultural Research Service, Madison, Wisconsin, USA
| | - Shawn R. Campagna
- Department of Chemistry, University of Tennessee–Knoxville, Knoxville, Tennessee, USA
- Biological and Small Molecule Mass Spectrometry Core, University of Tennessee–Knoxville, Knoxville, Tennessee, USA
| | - Heidi Goodrich-Blair
- Department of Microbiology, University of Tennessee–Knoxville, Knoxville, Tennessee, USA
- Department of Bacteriology, University of Wisconsin–Madison, Madison, Wisconsin, USA
| |
Collapse
|
10
|
Amorim K, Loick-Wilde N, Yuen B, Osvatic JT, Wäge-Recchioni J, Hausmann B, Petersen JM, Fabian J, Wodarg D, Zettler ML. Chemoautotrophy, symbiosis and sedimented diatoms support high biomass of benthic molluscs in the Namibian shelf. Sci Rep 2022; 12:9731. [PMID: 35697901 PMCID: PMC9192762 DOI: 10.1038/s41598-022-13571-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 05/17/2022] [Indexed: 11/26/2022] Open
Abstract
The molluscs Lucinoma capensis, Lembulus bicuspidatus and Nassarius vinctus are highly abundant in Namibian oxygen minimum zone sediments. To understand which nutritional strategies allow them to reach such impressive abundances in this extreme habitat we investigated their trophic diversity, including a chemosymbiosis in L. capensis, focussing on nitrogen biochemical pathways of the symbionts. We combined results of bulk nitrogen and carbon (δ13C and δ15N) and of compound-specific isotope analyses of amino acid nitrogen (AAs-δ15NPhe and δ15NGlu), with 16S rRNA gene sequencing of L. capensis tissues and also with exploratory results of ammonium, nitrate and nitrite turnover. The trophic position (TP) of the bivalve L. capensis is placed between autotrophy and mixotrophy, consistent with its proposed symbiosis with sulfur-oxidizing Candidatus Thiodiazotropha sp. symbionts. The symbionts are here revealed to perform nitrate reduction and ammonium uptake, with clear indications of ammonium host-symbionts recycling, but surprisingly unable to fix nitrogen. The TP of the bivalve L. bicuspidatus is placed in between mixotrophy and herbivory. The TP of the gastropod N. vinctus reflected omnivory. Multiple lines of evidences in combination with current ecosystem knowledge point to sedimented diatoms as important components of L. bicuspidatus and N. vinctus' diet, likely supplemented at times with chemoautotrophic bacteria. This study highlights the importance of benthic-pelagic coupling that fosters the dietary base for macrozoobenthos in the OMZ. It further unveils that, in contrast to all shallow water lucinid symbionts, deeper water lucinid symbionts rely on ammonium assimilation rather than dinitrogen fixation to obtain nitrogen for growth.
Collapse
Affiliation(s)
- K Amorim
- Department of Biological Oceanography, Leibniz Institute for Baltic Sea Research Warnemünde, Rostock, Germany.
| | - N Loick-Wilde
- Department of Biological Oceanography, Leibniz Institute for Baltic Sea Research Warnemünde, Rostock, Germany
| | - B Yuen
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - J T Osvatic
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Doctoral School in Microbiology and Environmental Science, University of Vienna, Vienna, Austria
| | - J Wäge-Recchioni
- Department of Biological Oceanography, Leibniz Institute for Baltic Sea Research Warnemünde, Rostock, Germany
| | - B Hausmann
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria
| | - J M Petersen
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - J Fabian
- Department of Biological Oceanography, Leibniz Institute for Baltic Sea Research Warnemünde, Rostock, Germany
| | - D Wodarg
- Department of Marine Chemistry, Leibniz Institute for Baltic Sea Research Warnemünde, Rostock, Germany
| | - M L Zettler
- Department of Biological Oceanography, Leibniz Institute for Baltic Sea Research Warnemünde, Rostock, Germany
| |
Collapse
|
11
|
Modeling Patterns and Controls of Food Web Structure in Saline Wetlands of a Rocky Mountain Basin. Ecosystems 2022. [DOI: 10.1007/s10021-022-00768-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
12
|
Manlick PJ, Newsome SD. Stable isotope fingerprinting traces essential amino acid assimilation and multichannel feeding in a vertebrate consumer. Methods Ecol Evol 2022. [DOI: 10.1111/2041-210x.13903] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Philip J. Manlick
- Department of Biology University of New Mexico Albuquerque New Mexico USA
| | - Seth D. Newsome
- Department of Biology University of New Mexico Albuquerque New Mexico USA
| |
Collapse
|
13
|
Potapov AM. Multifunctionality of belowground food webs: resource, size and spatial energy channels. Biol Rev Camb Philos Soc 2022; 97:1691-1711. [PMID: 35393748 DOI: 10.1111/brv.12857] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 01/17/2023]
Abstract
The belowground compartment of terrestrial ecosystems drives nutrient cycling, the decomposition and stabilisation of organic matter, and supports aboveground life. Belowground consumers create complex food webs that regulate functioning, ensure stability and support biodiversity both below and above ground. However, existing soil food-web reconstructions do not match recently accumulated empirical evidence and there is no comprehensive reproducible approach that accounts for the complex resource, size and spatial structure of food webs in soil. Here I build on generic food-web organisation principles and use multifunctional classification of soil protists, invertebrates and vertebrates, to reconstruct a 'multichannel' food web across size classes of soil-associated consumers. I infer weighted trophic interactions among trophic guilds using feeding preferences and prey protection traits (evolutionarily inherited traits), size and spatial distributions (niche overlaps), and biomass-dependent feeding. I then use food-web reconstruction, together with assimilation efficiencies, to calculate energy fluxes assuming a steady-state energetic system. Based on energy fluxes, I propose a number of indicators, related to stability, biodiversity and multiple ecosystem-level functions such as herbivory, top-down control, translocation and transformation of organic matter. I illustrate this approach with an empirical example, comparing it with traditional resource-focused soil food-web reconstruction. The multichannel reconstruction can be used to assess 'trophic multifunctionality' (analogous to ecosystem multifunctionality), i.e. simultaneous support of multiple trophic functions by the food web, and compare it across communities and ecosystems spanning beyond the soil. With further empirical validation of the proposed functional indicators, this multichannel reconstruction approach could provide an effective tool for understanding animal diversity-ecosystem functioning relationships in soil. This tool hopefully will inspire more researchers to describe soil communities and belowground-aboveground interactions comprehensively. Such studies will provide informative indicators for including consumers as active agents in biogeochemical models, not only locally but also on regional and global scales.
Collapse
Affiliation(s)
- Anton M Potapov
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, Animal Ecology, University of Göttingen, Untere Karspüle 2, 37073, Göttingen, Germany.,A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninsky Prospect 33, 119071, Moscow
| |
Collapse
|
14
|
Barceló G, Perrig PL, Dharampal P, Donadio E, Steffan SA, Pauli JN. More than just meat: Carcass decomposition shapes trophic identities in a terrestrial vertebrate. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Gonzalo Barceló
- Department of Forest and Wildlife Ecology University of Wisconsin‐Madison Madison WI USA
| | - Paula L. Perrig
- Department of Forest and Wildlife Ecology University of Wisconsin‐Madison Madison WI USA
- Grupo de Investigaciones en Biología de la Conservación INIBIOMA (Universidad Nacional del Comahue ‐ CONICET) Bariloche Argentina
| | | | | | - Shawn A. Steffan
- Department of Entomology University of Wisconsin‐Madison Madison WI USA
- USDA‐ARS Vegetable Crop Research Unit Madison WI USA
| | - Jonathan N. Pauli
- Department of Forest and Wildlife Ecology University of Wisconsin‐Madison Madison WI USA
| |
Collapse
|
15
|
Voigt E, Rall BC, Chatzinotas A, Brose U, Rosenbaum B. Phage strategies facilitate bacterial coexistence under environmental variability. PeerJ 2021; 9:e12194. [PMID: 34760346 PMCID: PMC8572521 DOI: 10.7717/peerj.12194] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 08/31/2021] [Indexed: 12/14/2022] Open
Abstract
Bacterial communities are often exposed to temporal variations in resource availability, which exceed bacterial generation times and thereby affect bacterial coexistence. Bacterial population dynamics are also shaped by bacteriophages, which are a main cause of bacterial mortality. Several strategies are proposed in the literature to describe infections by phages, such as "Killing the Winner", "Piggyback the loser" (PtL) or "Piggyback the Winner" (PtW). The two temperate phage strategies PtL and PtW are defined by a change from lytic to lysogenic infection when the host density changes, from high to low or from low to high, respectively. To date, the occurrence of different phage strategies and their response to environmental variability is poorly understood. In our study, we developed a microbial trophic network model using ordinary differential equations (ODEs) and performed 'in silico' experiments. To model the switch from the lysogenic to the lytic cycle, we modified the lysis rate of infected bacteria and their growth was turned on or off using a density-dependent switching point. We addressed whether and how the different phage strategies facilitate bacteria coexistence competing for limiting resources. We also studied the impact of a fluctuating resource inflow to evaluate the response of the different phage strategies to environmental variability. Our results show that the viral shunt (i.e. nutrient release after bacterial lysis) leads to an enrichment of the system. This enrichment enables bacterial coexistence at lower resource concentrations. We were able to show that an established, purely lytic model leads to stable bacterial coexistence despite fluctuating resources. Both temperate phage models differ in their coexistence patterns. The model of PtW yields stable bacterial coexistence at a limited range of resource supply and is most sensitive to resource fluctuations. Interestingly, the purely lytic phage strategy and PtW both result in stable bacteria coexistence at oligotrophic conditions. The PtL model facilitates stable bacterial coexistence over a large range of stable and fluctuating resource inflow. An increase in bacterial growth rate results in a higher resilience to resource variability for the PtL and the lytic infection model. We propose that both temperate phage strategies represent different mechanisms of phages coping with environmental variability. Our study demonstrates how phage strategies can maintain bacterial coexistence in constant and fluctuating environments.
Collapse
Affiliation(s)
- Esther Voigt
- German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany.,Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| | - Björn C Rall
- German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany.,Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| | - Antonis Chatzinotas
- German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany.,Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany.,Institute of Biology, Leipzig University, Leipzig, Germany
| | - Ulrich Brose
- German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany.,Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| | - Benjamin Rosenbaum
- German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany.,Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
16
|
Potapov AM, Pollierer MM, Salmon S, Šustr V, Chen T. Multidimensional trophic niche revealed by complementary approaches: Gut content, digestive enzymes, fatty acids and stable isotopes in Collembola. J Anim Ecol 2021; 90:1919-1933. [PMID: 33914342 PMCID: PMC8453724 DOI: 10.1111/1365-2656.13511] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 04/22/2021] [Indexed: 11/28/2022]
Abstract
Trophic niche differentiation may explain coexistence and shape functional roles of species. In complex natural food webs, however, trophic niche parameters depicted by single and isolated methods may simplify the multidimensional nature of consumer trophic niches, which includes feeding processes such as food choice, ingestion, digestion, assimilation and retention. Here we explore the correlation and complementarity of trophic niche parameters tackled by four complementary methodological approaches, that is, visual gut content, digestive enzyme, fatty acid and stable isotope analyses-each assessing one or few feeding processes, and demonstrate the power of method combination. Focusing on soil ecosystems, where many omnivore species with cryptic feeding habits coexist, we chose Collembola as an example. We compiled 15 key trophic niche parameters for 125 species from 40 studies. We assessed correlations among trophic niche parameters and described variation of these parameters in different Collembola species, families and across life-forms, which represent microhabitat specialisation. Correlation between trophic niche parameters was weak in 45 out of 64 pairwise comparisons, pointing at complementarity of the four methods. Jointly, the results indicated that fungal- and plant-feeding Collembola assimilate storage, rather than structural polysaccharides, and suggested bacterial feeding as a potential alternative feeding strategy. Gut content and fatty acid analyses suggested alignment between ingestion and assimilation/retention processes in fungal- and plant-feeding Collembola. From the 15 trophic niche parameters, six were related to Collembola family identity, suggesting that not all trophic niche dimensions are phylogenetically structured. Only three parameters were related to the life-forms, suggesting that species use various feeding strategies when living in the same microenvironments. Consumers can meet their nutritional needs by varying their food choices, ingestion and digestion strategies, with the connection among different feeding processes being dependent on the consumed resource and consumer adaptations. Multiple methods reveal different dimensions, together drawing a comprehensive picture of the trophic niche. Future studies applying the multidimensional trophic niche approach will allow us to trace trophic complexity and reveal niche partitioning of omnivorous species and their functional roles, especially in cryptic environments such as soils, caves, deep ocean or benthic ecosystems.
Collapse
Affiliation(s)
- Anton M. Potapov
- A.N. Severtsov Institute of Ecology and EvolutionRussian Academy of SciencesMoscowRussia
- J.F. Blumenbach Institute of Zoology and AnthropologyUniversity of GöttingenGöttingenGermany
| | - Melanie M. Pollierer
- J.F. Blumenbach Institute of Zoology and AnthropologyUniversity of GöttingenGöttingenGermany
| | - Sandrine Salmon
- Muséum National d'Histoire NaturelleDépartement Adaptations du VivantUMR 7179 MECADEVBrunoyFrance
| | - Vladimír Šustr
- Biology Centre of the Czech Academy of SciencesInstitute of Soil BiologyČeské BudějoviceCzech Republic
| | - Ting‐Wen Chen
- Biology Centre of the Czech Academy of SciencesInstitute of Soil BiologyČeské BudějoviceCzech Republic
| |
Collapse
|
17
|
Haubrock PJ, Balzani P, Matsuzaki SIS, Tarkan AS, Kourantidou M, Haase P. Spatio-temporal niche plasticity of a freshwater invader as a harbinger of impact variability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 777:145947. [PMID: 33676206 DOI: 10.1016/j.scitotenv.2021.145947] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/10/2021] [Accepted: 02/14/2021] [Indexed: 05/25/2023]
Abstract
Invasive alien fishes have detrimental ecological effects on aquatic ecosystems and the services they provide. Impacts from an invasion in a single ecosystem may differ across space and time due to variability in prey availability and environmental conditions. We hypothesize that such variability can be profound, even within a single ecosystem. Stable isotopes analysis (SIA) is commonly used to quantitatively describe the trophic niche of a species. However, spatial and temporal variability in occupied niches are often not incorporated into management strategies and policy options. Here, we used long-term monitoring data to investigate the invasion stage as well as SIA to analyse the trophic niche of the invasive channel catfish Ictalurus punctatus in Lake Kasumigaura (Japan), a long-term ecological research site (LTER), across distant sampling sites and years. We found a significant spatio-temporal variability in relative growth and isotopic niche occupation. Moreover, we defined a new index, the Isotopic Plasticity Index (IPI), which is the ratio between core and total home range of an occupied isotopic niche, to be used as a proxy for the trophic niche stretch or density. We found that this IPI varied considerably, confirming the spatio-temporal variability in trophic niches, suggesting the IPI to be an adequate new isotopic metric. Our results further provide evidence for the existence of variation across invaded landscapes, implying heterogeneous impacts on recipient native communities. Therefore, our work emphasizes the importance of exploring trophic plasticity in feeding ecology and growth as such information enables a better understanding of impacts and can inform the design and implementation of effective management responses.
Collapse
Affiliation(s)
- Phillip J Haubrock
- Senckenberg Research Institute and Natural History Museum Frankfurt, Department of River Ecology and Conservation, Clamecystrasse 12, 63571 Gelnhausen, Germany; University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic.
| | - Paride Balzani
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
| | - Shin-Ichiro S Matsuzaki
- Center for Environmental Biology and Ecosystem Studies, National Institute for Environmental Studies, Tsukuba 305-8506, Japan
| | - Ali Serhan Tarkan
- Muğla Sıtkı Koçman University, Faculty of Fisheries, Muğla, Turkey; University of Łódź, Department of Ecology and Vertebrate Zoology, Faculty of Biology and Environmental Protection, Łódź, Poland
| | - Melina Kourantidou
- Woods Hole Oceanographic Institution, Marine Policy Center, Woods Hole, MA 02543, USA; Hellenic Center for Marine Research, Institute of Marine Biological Resources and Inland Waters, Athens 164 52, Greece; University of Southern Denmark, Department of Sociology, Environmental and Business Economics, 6705 Esbjerg Ø, Denmark
| | - Peter Haase
- Senckenberg Research Institute and Natural History Museum Frankfurt, Department of River Ecology and Conservation, Clamecystrasse 12, 63571 Gelnhausen, Germany; University of Duisburg Essen, Faculty of Biology, Universitätsstraße 5, 45141 Essen, Germany
| |
Collapse
|
18
|
Romero-Romero S, Miller EC, Black JA, Popp BN, Drazen JC. Abyssal deposit feeders are secondary consumers of detritus and rely on nutrition derived from microbial communities in their guts. Sci Rep 2021; 11:12594. [PMID: 34131174 PMCID: PMC8206261 DOI: 10.1038/s41598-021-91927-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/31/2021] [Indexed: 11/21/2022] Open
Abstract
Trophic ecology of detrital-based food webs is still poorly understood. Abyssal plains depend entirely on detritus and are among the most understudied ecosystems, with deposit feeders dominating megafaunal communities. We used compound-specific stable isotope ratios of amino acids (CSIA-AA) to estimate the trophic position of three abundant species of deposit feeders collected from the abyssal plain of the Northeast Pacific (Station M; ~ 4000 m depth), and compared it to the trophic position of their gut contents and the surrounding sediments. Our results suggest that detritus forms the base of the food web and gut contents of deposit feeders have a trophic position consistent with primary consumers and are largely composed of a living biomass of heterotrophic prokaryotes. Subsequently, deposit feeders are a trophic level above their gut contents making them secondary consumers of detritus on the abyssal plain. Based on δ13C values of essential amino acids, we found that gut contents of deposit feeders are distinct from the surrounding surface detritus and form a unique food source, which was assimilated by the deposit feeders primarily in periods of low food supply. Overall, our results show that the guts of deposit feeders constitute hotspots of organic matter on the abyssal plain that occupy one trophic level above detritus, increasing the food-chain length in this detritus-based ecosystem.
Collapse
Affiliation(s)
- Sonia Romero-Romero
- Department of Oceanography, University of Hawaii at Manoa, 1000 Pope Road, Honolulu, HI, 96822, USA.
| | - Elizabeth C Miller
- Department of Oceanography, University of Hawaii at Manoa, 1000 Pope Road, Honolulu, HI, 96822, USA
| | - Jesse A Black
- Department of Oceanography, University of Hawaii at Manoa, 1000 Pope Road, Honolulu, HI, 96822, USA
| | - Brian N Popp
- Department of Earth Sciences, University of Hawaii at Manoa, 1680 East West Road, Honolulu, HI, 96822, USA
| | - Jeffrey C Drazen
- Department of Oceanography, University of Hawaii at Manoa, 1000 Pope Road, Honolulu, HI, 96822, USA
| |
Collapse
|
19
|
Kjeldgaard MK, Hewlett JA, Eubanks MD. Widespread variation in stable isotope trophic position estimates: patterns, causes, and potential consequences. ECOL MONOGR 2021. [DOI: 10.1002/ecm.1451] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | - Jeremy A. Hewlett
- Department of Entomology Texas A&M University College Station Texas 77843 USA
| | - Micky D. Eubanks
- Department of Entomology Texas A&M University College Station Texas 77843 USA
| |
Collapse
|
20
|
Pollierer MM, Scheu S. Stable isotopes of amino acids indicate that soil decomposer microarthropods predominantly feed on saprotrophic fungi. Ecosphere 2021. [DOI: 10.1002/ecs2.3425] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Affiliation(s)
- Melanie M. Pollierer
- J.F. Blumenbach Institute of Zoology and Anthropology University of Göttingen Untere Karspüle 2 Göttingen37073Germany
| | - Stefan Scheu
- J.F. Blumenbach Institute of Zoology and Anthropology University of Göttingen Untere Karspüle 2 Göttingen37073Germany
- Centre of Biodiversity and Sustainable Land Use University of Göttingen Büsgenweg 1 Göttingen37077Germany
| |
Collapse
|
21
|
Bae S, Heidrich L, Levick SR, Gossner MM, Seibold S, Weisser WW, Magdon P, Serebryanyk A, Bässler C, Schäfer D, Schulze E, Doerfler I, Müller J, Jung K, Heurich M, Fischer M, Roth N, Schall P, Boch S, Wöllauer S, Renner SC, Müller J. Dispersal ability, trophic position and body size mediate species turnover processes: Insights from a multi‐taxa and multi‐scale approach. DIVERS DISTRIB 2020. [DOI: 10.1111/ddi.13204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Soyeon Bae
- Department of Animal Ecology and Tropical Biology University of Würzburg Würzburg Germany
| | - Lea Heidrich
- Department of Animal Ecology and Tropical Biology University of Würzburg Würzburg Germany
| | | | - Martin M. Gossner
- Forest Entomology WSL Swiss Federal Research Institute Birmensdorf Switzerland
- Department of Environmental Systems Science Institute of Terrestrial Ecosystems ETH Zurich Zurich Switzerland
| | - Sebastian Seibold
- Terrestrial Ecology Research Group Department of Ecology and Ecosystem Management Technical University of Munich Freising Germany
- Ecosystem Dynamics and Forest Management Group Technical University of MunichFreising and Berchtesgaden National Park Berchtesgaden Germany
| | - Wolfgang W. Weisser
- Terrestrial Ecology Research Group Department of Ecology and Ecosystem Management Technical University of Munich Freising Germany
| | - Paul Magdon
- Forest Inventory and Remote Sensing Faculty of Forest Sciences and Forest Ecology University of Göttingen Göttingen Germany
| | - Alla Serebryanyk
- Department of Geoinformatics Munich University of Applied Sciences München Germany
| | - Claus Bässler
- Bavarian Forest National Park Grafenau Germany
- Faculty of Biological Sciences Institute for Ecology, Evolution and DiversityGoethe University Frankfurt, Frankfurt am Main Germany
| | | | | | - Inken Doerfler
- Plant Biodiversity Research Group Department of Ecology & Ecosystem Management Technical University of Munich Freising Germany
- Institute of Biology and Environmental Science Vegetation Science & Nature ConservationUniversity of Oldenburg Oldenburg Germany
| | - Jörg Müller
- Department of Nature Conservation Heinz Sielmann Foundation Wustermark Germany
- Institute of Biology and Biochemistry University of Potsdam Potsdam Germany
| | - Kirsten Jung
- Evolutionary Ecology and Conservation Genomics University Ulm Ulm Germany
| | - Marco Heurich
- Bavarian Forest National Park Grafenau Germany
- Chair of Wildlife Ecology and Wildlife Management University of Freiburg Freiburg im Breisgau Germany
| | - Markus Fischer
- Institute of Plant Sciences University of Bern Bern Switzerland
- Senckenberg Biodiversity and Climate Research Centre (SBiK‐F) Frankfurt am Main Germany
| | - Nicolas Roth
- Department of Animal Ecology and Tropical Biology University of Würzburg Würzburg Germany
- Forest Entomology WSL Swiss Federal Research Institute Birmensdorf Switzerland
- School of Agricultural Forest and Food Sciences Bern University of Applied Sciences Zollikofen Switzerland
| | - Peter Schall
- Silviculture and Forest Ecology of the Temperate Zones University of Göttingen Göttingen Germany
| | - Steffen Boch
- Research Unit Biodiversity & Conservation Biology WSL Swiss Federal Research Institute Birmensdorf Switzerland
| | - Stephan Wöllauer
- Faculty of Geography Philipps‐University Marburg Marburg Germany
| | - Swen C. Renner
- Head of Ornithology Natural History Museum Vienna Vienna Austria
| | - Jörg Müller
- Department of Animal Ecology and Tropical Biology University of Würzburg Würzburg Germany
- Bavarian Forest National Park Grafenau Germany
| |
Collapse
|
22
|
Ledesma M, Gorokhova E, Holmstrand H, Garbaras A, Karlson AML. Nitrogen isotope composition of amino acids reveals trophic partitioning in two sympatric amphipods. Ecol Evol 2020; 10:10773-10784. [PMID: 33072295 PMCID: PMC7548185 DOI: 10.1002/ece3.6734] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/20/2020] [Accepted: 08/03/2020] [Indexed: 11/10/2022] Open
Abstract
According to ecological theory, two species cannot occupy the same niche. Using nitrogen isotope analyses (δ15N) of amino acids, we tested the extent to which two sympatric deposit‐feeding amphipods, Monoporeia affinis and Pontoporeia femorata, partition their trophic resources. We found that trophic position (TP) and resynthesis index (∑V; a proxy for degradation status of ingested material prior to assimilation by the consumer) differ between species. The surface‐feeding M. affinis had higher TP and intermediate ∑V, both pointing to a large contribution of metazoans in its diet. P. femorata, which feeds in the subsurface layers, had lower TP and a bimodal distribution of the ∑V values, supporting previous experimental evidence of a larger feeding niche. We also evaluated whether TP and ∑V values have consequences for amphipod fecundity and embryo viability and found that embryo viability in M. affinis was negatively linked to TP. Our results indicate that the amino acid‐δ15N data paired with information about reproductive status are useful for detecting differences in the trophic ecology of sympatric amphipods.
Collapse
Affiliation(s)
- Matias Ledesma
- Department of EcologyEnvironment and Plant Science (DEEP)Stockholm UniversityStockholmSweden
| | - Elena Gorokhova
- Department of Environmental Science and Analytical Chemistry (ACES)Stockholm UniversityStockholmSweden
| | - Henry Holmstrand
- Department of Environmental Science and Analytical Chemistry (ACES)Stockholm UniversityStockholmSweden
| | - Andrius Garbaras
- Mass Spectrometry LaboratoryCentre for Physical Science and TechnologyLithuania
| | - Agnes M. L. Karlson
- Department of EcologyEnvironment and Plant Science (DEEP)Stockholm UniversityStockholmSweden
- Stockholm University Baltic Sea CentreStockholmSweden
| |
Collapse
|
23
|
The Influence of Leaf Type on Carbon and Nitrogen Assimilation by Aquatic Invertebrate Communities: A New Perspective on Trophic Efficiency. Ecosystems 2020. [DOI: 10.1007/s10021-020-00550-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
24
|
Heterogeneity-diversity relationships differ between and within trophic levels in temperate forests. Nat Ecol Evol 2020; 4:1204-1212. [PMID: 32661404 DOI: 10.1038/s41559-020-1245-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 06/03/2020] [Indexed: 11/08/2022]
Abstract
The habitat heterogeneity hypothesis predicts that biodiversity increases with increasing habitat heterogeneity due to greater niche dimensionality. However, recent studies have reported that richness can decrease with high heterogeneity due to stochastic extinctions, creating trade-offs between area and heterogeneity. This suggests that greater complexity in heterogeneity-diversity relationships (HDRs) may exist, with potential for group-specific responses to different facets of heterogeneity that may only be partitioned out by a simultaneous test of HDRs of several species groups and several facets of heterogeneity. Here, we systematically decompose habitat heterogeneity into six major facets on ~500 temperate forest plots across Germany and quantify biodiversity of 12 different species groups, including bats, birds, arthropods, fungi, lichens and plants, representing 2,600 species. Heterogeneity in horizontal and vertical forest structure underpinned most HDRs, followed by plant diversity, deadwood and topographic heterogeneity, but the relative importance varied even within the same trophic level. Among substantial HDRs, 53% increased monotonically, consistent with the classical habitat heterogeneity hypothesis but 21% were hump-shaped, 25% had a monotonically decreasing slope and 1% showed no clear pattern. Overall, we found no evidence of a single generalizable mechanism determining HDR patterns.
Collapse
|
25
|
Larson CE, Pechal JL, Gerig BS, Chaloner DT, Lamberti GA, Benbow ME. Microbial Community Response to a Novel Salmon Resource Subsidy. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2019.00505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
26
|
Potapov AM, Brose U, Scheu S, Tiunov AV. Trophic Position of Consumers and Size Structure of Food Webs across Aquatic and Terrestrial Ecosystems. Am Nat 2019; 194:823-839. [DOI: 10.1086/705811] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
27
|
Pauli JN, Manlick PJ, Dharampal PS, Takizawa Y, Chikaraishi Y, Niccolai LJ, Grauer JA, Black KL, Garces Restrepo M, Perrig PL, Wilson EC, Martin ME, Rodriguez Curras M, Bougie TA, Thompson KL, Smith MM, Steffan SA. Quantifying niche partitioning and multichannel feeding among tree squirrels. FOOD WEBS 2019. [DOI: 10.1016/j.fooweb.2019.e00124] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Steffan SA, Dharampal PS, Danforth BN, Gaines-Day HR, Takizawa Y, Chikaraishi Y. Omnivory in Bees: Elevated Trophic Positions among All Major Bee Families. Am Nat 2019; 194:414-421. [DOI: 10.1086/704281] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
29
|
|
30
|
Pollierer MM, Larsen T, Potapov A, Brückner A, Heethoff M, Dyckmans J, Scheu S. Compound‐specific isotope analysis of amino acids as a new tool to uncover trophic chains in soil food webs. ECOL MONOGR 2019. [DOI: 10.1002/ecm.1384] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Melanie M. Pollierer
- J.F. Blumenbach Institute of Zoology and Anthropology University of Göttingen Untere Karspüle 2 37073 Göttingen Germany
| | - Thomas Larsen
- Max Planck Institute for the Science of Human History Kahlaische Straße 07745 Jena Germany
| | - Anton Potapov
- J.F. Blumenbach Institute of Zoology and Anthropology University of Göttingen Untere Karspüle 2 37073 Göttingen Germany
- A.N. Severtsov Institute of Ecology and Evolution Russian Academy of Sciences Leninsky Prospect 33 119071 Moscow Russia
| | - Adrian Brückner
- Ecological Networks Technische Universität Darmstadt Schnittspahnstraße 3 64287 Darmstadt Germany
| | - Michael Heethoff
- Ecological Networks Technische Universität Darmstadt Schnittspahnstraße 3 64287 Darmstadt Germany
| | - Jens Dyckmans
- Centre for Stable Isotope Research and Analysis Büsgen‐Institute University of Göttingen Büsgenweg 2 37077 Göttingen Germany
| | - Stefan Scheu
- J.F. Blumenbach Institute of Zoology and Anthropology University of Göttingen Untere Karspüle 2 37073 Göttingen Germany
- Centre of Biodiversity and Sustainable Land Use University of Göttingen Von‐Siebold‐Straße 8 37075 Göttingen Germany
| |
Collapse
|
31
|
Abstract
D. melanogaster ingests microorganisms growing within its rotting vegetation diet. Some of these microbes form associations with flies, while others pass through the gut with meals. Fly-microbe-diet interactions are dynamic, and changes to the fly culture medium can influence microbial growth in the overall environment. In turn, these alterations in microbial growth may not only impact the nutritional value of fly meals but also modulate behavior and health, at least in part due to direct contributions to fly nutrition. The interactive ecology between flies, microbes, and their environment can cause a specific microbe to be either beneficial or detrimental to fly life span, indicating that the environment should be considered a key influential factor in host-microbe interactions. Microbes can extend Drosophila melanogaster life span by contributing to the nutritional value of malnourishing fly culture medium. The beneficial effect of microbes during malnutrition is dependent on their individual ability to proliferate in the fly environment and is mimicked by lifelong supplementation of equivalent levels of heat-killed microbes or dietary protein, suggesting that microbes can serve directly as a protein-rich food source. Here, we use nutritionally rich fly culture medium to demonstrate how changes in dietary composition influence monocolonized fly life span; microbes that extend fly life span on malnourishing diets can shorten life on rich diets. The mechanisms employed by microbes to affect host health likely differ on low- or high-nutrient diets. Our results demonstrate how Drosophila-associated microbes can positively or negatively influence fly life span depending on the nutritional environment. Although controlled laboratory environments allow focused investigations on the interaction between fly microbiota and nutrition, the relevance of these studies is not straightforward, because it is difficult to mimic the nutritional ecology of natural Drosophila-microbe interactions. As such, caution is needed in designing and interpreting fly-microbe experiments and before categorizing microbes into specific symbiotic roles based on results obtained from experiments testing limited conditions.
Collapse
|
32
|
Dharampal PS, Carlson C, Currie CR, Steffan SA. Pollen-borne microbes shape bee fitness. Proc Biol Sci 2019; 286:20182894. [PMID: 31185869 PMCID: PMC6571465 DOI: 10.1098/rspb.2018.2894] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 05/17/2019] [Indexed: 01/15/2023] Open
Abstract
Teeming within pollen provisions are diverse communities of symbiotic microbes, which provide a variety of benefits to bees. Microbes themselves may represent a major dietary resource for developing bee larvae. Despite their apparent importance in sustaining bee health, evidence linking pollen-borne microbes to larval health is currently lacking. We examined the effects of microbe-deficient diets on the fitness of larval mason bees. In a series of diet manipulations, microbe-rich maternally collected pollen provisions were replaced with increasing fractions of sterilized, microbe-deficient pollen provisions before being fed to developing larvae. Convergent findings from amino acid and fatty acid trophic biomarker analyses revealed that larvae derived a substantial amount of nutrition from microbial prey and occupied a significantly higher trophic position than that of strict herbivores. Larvae feeding on increasingly sterile diets experienced significant adverse effects on growth rates, biomass and survivorship. When completely deprived of pollen-borne microbes, larvae consistently exhibited marked decline in fitness. We conclude that microbes associated with aged pollen provisions are central to bee health, not only as nutritional mutualists, but also as a major dietary component. In an era of global bee decline, the conservation of such bee-microbe interactions may represent an important facet of pollinator protection strategies.
Collapse
Affiliation(s)
| | - Caitlin Carlson
- Department of Bacteriology, University of Wisconsin, Madison, WI, USA
| | - Cameron R. Currie
- Department of Bacteriology, University of Wisconsin, Madison, WI, USA
| | - Shawn A. Steffan
- Department of Entomology, University of Wisconsin, Madison, WI, USA
- USDA-ARS, Vegetable Crops Research Unit, Madison, WI, USA
| |
Collapse
|
33
|
Tsz-Ki Tsui M, Liu S, Brasso RL, Blum JD, Kwon SY, Ulus Y, Nollet YH, Balogh SJ, Eggert SL, Finlay JC. Controls of Methylmercury Bioaccumulation in Forest Floor Food Webs. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:2434-2440. [PMID: 30727732 DOI: 10.1021/acs.est.8b06053] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Compared to the extensive research on aquatic ecosystems, very little is known about the sources and trophic transfer of methylmercury (MeHg) in terrestrial ecosystems. In this study, we examine energy flow and trophic structure using stable carbon (δ13C) and nitrogen (δ15N) isotope ratios, respectively, and MeHg levels in basal resources and terrestrial invertebrates from four temperate forest ecosystems. We show that MeHg levels in biota increased significantly ( p < 0.01) with δ13C and δ15N at all sites, implying the importance of both microbially processed diets (with increased δ13C) and trophic level (with increased δ15N) at which organisms feed, on MeHg levels in forest floor biota. The trophic magnification slopes of MeHg (defined as the slope of log10MeHg vs δ15N) for these forest floor food webs (0.20-0.28) were not significantly different ( p > 0.05) from those observed for diverse temperate freshwater systems (0.24 ± 0.07; n = 78), demonstrating for the first time the nearly equivalent efficiencies with which MeHg moves up the food chain in these contrasting ecosystem types. Our results suggest that in situ production of MeHg within the forest floor and efficient biomagnification both elevate MeHg levels in carnivorous invertebrates in temperate forests, which can contribute to significant bioaccumulation of this neurotoxin in terrestrial apex predators.
Collapse
Affiliation(s)
- Martin Tsz-Ki Tsui
- Department of Biology , University of North Carolina at Greensboro , Greensboro , North Carolina 27402 , United States
| | - Songnian Liu
- Department of Biology , University of North Carolina at Greensboro , Greensboro , North Carolina 27402 , United States
| | - Rebecka L Brasso
- Department of Zoology , Weber State University , Ogden , Utah 84408 , United States
| | - Joel D Blum
- Department of Earth and Environmental Sciences , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Sae Yun Kwon
- Division of Environmental Science and Engineering , Pohang University of Science and Technology , Pohang 37673 , South Korea
| | - Yener Ulus
- Department of Biology , University of North Carolina at Greensboro , Greensboro , North Carolina 27402 , United States
| | - Yabing H Nollet
- Metropolitan Council Environmental Services , St. Paul , Minnesota 55106 , United States
| | - Steven J Balogh
- Metropolitan Council Environmental Services , St. Paul , Minnesota 55106 , United States
| | - Sue L Eggert
- U.S.D.A. Forest Service , Northern Research Station, Grand Rapids , Minnesota 55744 , United States
| | - Jacques C Finlay
- Department of Ecology, Evolution, and Behavior , University of Minnesota , St. Paul , Minnesota 55108 , United States
| |
Collapse
|
34
|
Steffan SA, Dharampal PS. Undead food-webs: Integrating microbes into the food-chain. FOOD WEBS 2019. [DOI: 10.1016/j.fooweb.2018.e00111] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
35
|
Trophic interactions among dead-wood-dependent forest arthropods in the southern Appalachian Mountains, USA. FOOD WEBS 2019. [DOI: 10.1016/j.fooweb.2018.e00112] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
Potapov AM, Tiunov AV, Scheu S. Uncovering trophic positions and food resources of soil animals using bulk natural stable isotope composition. Biol Rev Camb Philos Soc 2019; 94:37-59. [PMID: 29920907 DOI: 10.1111/brv.12434] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 05/10/2018] [Accepted: 05/15/2018] [Indexed: 01/24/2023]
Abstract
Despite the major importance of soil biota in nutrient and energy fluxes, interactions in soil food webs are poorly understood. Here we provide an overview of recent advances in uncovering the trophic structure of soil food webs using natural variations in stable isotope ratios. We discuss approaches of application, normalization and interpretation of stable isotope ratios along with methodological pitfalls. Analysis of published data from temperate forest ecosystems is used to outline emerging concepts and perspectives in soil food web research. In contrast to aboveground and aquatic food webs, trophic fractionation at the basal level of detrital food webs is large for carbon and small for nitrogen stable isotopes. Virtually all soil animals are enriched in 13 C as compared to plant litter. This 'detrital shift' likely reflects preferential uptake of 13 C-enriched microbial biomass and underlines the importance of microorganisms, in contrast to dead plant material, as a major food resource for the soil animal community. Soil organic matter is enriched in 15 N and 13 C relative to leaf litter. Decomposers inhabiting mineral soil layers therefore might be enriched in 15 N resulting in overlap in isotope ratios between soil-dwelling detritivores and litter-dwelling predators. By contrast, 13 C content varies little between detritivores in upper litter and in mineral soil, suggesting that they rely on similar basal resources, i.e. little decomposed organic matter. Comparing vertical isotope gradients in animals and in basal resources can be a valuable tool to assess trophic interactions and dynamics of organic matter in soil. As indicated by stable isotope composition, direct feeding on living plant material as well as on mycorrhizal fungi is likely rare among soil invertebrates. Plant carbon is taken up predominantly by saprotrophic microorganisms and channelled to higher trophic levels of the soil food web. However, feeding on photoautotrophic microorganisms and non-vascular plants may play an important role in fuelling soil food webs. The trophic niche of most high-rank animal taxa spans at least two trophic levels, implying the use of a wide range of resources. Therefore, to identify trophic species and links in food webs, low-rank taxonomic identification is required. Despite overlap in feeding strategies, stable isotope composition of the high-rank taxonomic groups reflects differences in trophic level and in the use of basal resources. Different taxonomic groups of predators and decomposers are likely linked to different pools of organic matter in soil, suggesting different functional roles and indicating that trophic niches in soil animal communities are phylogenetically structured. During last two decades studies using stable isotope analysis have elucidated the trophic structure of soil communities, clarified basal food resources of the soil food web and revealed links between above- and belowground ecosystem compartments. Extending the use of stable isotope analysis to a wider range of soil-dwelling organisms, including microfauna, and a larger array of ecosystems provides the perspective of a comprehensive understanding of the structure and functioning of soil food webs.
Collapse
Affiliation(s)
- Anton M Potapov
- University of Göttingen, J.F. Blumenbach Institute of Zoology and Anthropology, Untere Karspüle 2, 37073 Göttingen, Germany.,Russian Academy of Sciences, A.N. Severtsov Institute of Ecology and Evolution, Leninsky Prospect 33, 119071 Moscow, Russia
| | - Alexei V Tiunov
- Russian Academy of Sciences, A.N. Severtsov Institute of Ecology and Evolution, Leninsky Prospect 33, 119071 Moscow, Russia
| | - Stefan Scheu
- University of Göttingen, J.F. Blumenbach Institute of Zoology and Anthropology, Untere Karspüle 2, 37073 Göttingen, Germany.,University of Göttingen, Centre of Biodiversity and Sustainable Land Use, Von-Siebold-Str. 8, 37075 Göttingen, Germany
| |
Collapse
|
37
|
Potapov AM, Tiunov AV, Scheu S, Larsen T, Pollierer MM. Combining bulk and amino acid stable isotope analyses to quantify trophic level and basal resources of detritivores: a case study on earthworms. Oecologia 2019; 189:447-460. [DOI: 10.1007/s00442-018-04335-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 12/27/2018] [Indexed: 12/17/2022]
|
38
|
Vane K, Larsen T, Scholz‐Böttcher BM, Kopke B, Ekau W. Ontogenetic resource utilization and migration reconstruction with δ 13C values of essential amino acids in the Cynoscion acoupa otolith. Ecol Evol 2018; 8:9859-9869. [PMID: 30386581 PMCID: PMC6202751 DOI: 10.1002/ece3.4471] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 05/01/2018] [Accepted: 07/20/2018] [Indexed: 11/20/2022] Open
Abstract
With the increasing anthropogenic impacts on fish habitats, it has become more important to understand which primary resources sustain fish populations. This resource utilization can differ between fish life stages, and individuals can migrate between habitats in search of resources. Such lifetime information is difficult to obtain due to the large spatial and temporal scales of fish behavior. The otolith organic matrix has the potential to indicate this resource utilization and migration with δ13C values of essential amino acids (EAAs), which are a direct indication of the primary producers. In a proof-of-concept study, we selected the Acoupa weakfish, Cynoscion acoupa, as a model fish species with distinct ontogenetic migration patterns. While it inhabits the Brazilian mangrove estuaries during juvenile stages, it moves to the coastal shelf as an adult. Thus, we expected that lifetime resource utilization and migration would be reflected in δ13CEAA patterns and baseline values in C. acoupa otoliths. By analyzing the C. acoupa otolith edges across a size range of 12-119 cm, we found that baseline δ13CEAA values increased with size, which indicated an estuarine to coastal shelf distribution. This trend is highly correlated with inorganic δ13C values. The δ13CEAA patterns showed that estuarine algae rather than mangrove-derived resources supported the juvenile C. acoupa populations. Around the juvenile size of 40 cm, resource utilization overlapped with those of adults and mean baseline δ13CEAA values increased. This trend was confirmed by comparing otolith core and edges, although with some individuals potentially migrating over longer distances than others. Hence, δ13CEAA patterns and baseline values in otoliths have great potential to reconstruct ontogenetic shifts in resource use and habitats. The insight could aid in predictions on how environmental changes affect fish populations by identifying the controlling factors at the base of the food web.
Collapse
Affiliation(s)
- Kim Vane
- Leibniz Centre for Tropical Marine ResearchBremenGermany
| | - Thomas Larsen
- Leibniz‐Laboratory for Radiometric Dating and Stable Isotope ResearchChristian‐Albrechts Universität zu KielKielGermany
| | | | - Bernd Kopke
- Institute for Chemistry and Biology of the Marine EnvironmentUniversity of OldenburgOldenburgGermany
| | - Werner Ekau
- Leibniz Centre for Tropical Marine ResearchBremenGermany
| |
Collapse
|
39
|
Keebaugh ES, Yamada R, Obadia B, Ludington WB, Ja WW. Microbial Quantity Impacts Drosophila Nutrition, Development, and Lifespan. iScience 2018; 4:247-259. [PMID: 30240744 PMCID: PMC6146667 DOI: 10.1016/j.isci.2018.06.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 05/21/2018] [Accepted: 06/05/2018] [Indexed: 02/07/2023] Open
Abstract
In Drosophila, microbial association can promote development or extend life. We tested the impact of microbial association during malnutrition and show that microbial quantity is a predictor of fly longevity. Although all tested microbes, when abundantly provided, can rescue lifespan on low-protein diet, the effect of a single inoculation seems linked to the ability of that microbial strain to thrive under experimental conditions. Microbes, dead or alive, phenocopy dietary protein, and the calculated dependence on microbial protein content is similar to the protein requirements determined from fly feeding studies, suggesting that microbes enhance host protein nutrition by serving as protein-rich food. Microbes that enhance larval growth are also associated with the ability to better thrive on fly culture medium. Our results suggest an unanticipated range of microbial species that promote fly development and longevity and highlight microbial quantity as an important determinant of effects on physiology and lifespan during undernutrition. Microbial association promotes fly longevity and development on low-protein diet A wide range of microbes can serve as a source of protein during undernutrition The extent of effects correlates with microbiota quantity and biomass The most impactful microbial species simply thrive on fly culture medium
Collapse
Affiliation(s)
- Erin S Keebaugh
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA; Center on Aging, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Ryuichi Yamada
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA; Center on Aging, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Benjamin Obadia
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - William B Ludington
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - William W Ja
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA; Center on Aging, The Scripps Research Institute, Jupiter, FL 33458, USA.
| |
Collapse
|
40
|
Eglite E, Wodarg D, Dutz J, Wasmund N, Nausch G, Liskow I, Schulz-Bull D, Loick-Wilde N. Strategies of amino acid supply in mesozooplankton during cyanobacteria blooms: a stable nitrogen isotope approach. Ecosphere 2018. [DOI: 10.1002/ecs2.2135] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Elvita Eglite
- Leibniz-Institute for Baltic Sea Research; Seestr. 15 Rostock 18119 Germany
| | - Dirk Wodarg
- Leibniz-Institute for Baltic Sea Research; Seestr. 15 Rostock 18119 Germany
| | - Jörg Dutz
- Leibniz-Institute for Baltic Sea Research; Seestr. 15 Rostock 18119 Germany
| | - Norbert Wasmund
- Leibniz-Institute for Baltic Sea Research; Seestr. 15 Rostock 18119 Germany
| | - Günther Nausch
- Leibniz-Institute for Baltic Sea Research; Seestr. 15 Rostock 18119 Germany
| | - Iris Liskow
- Leibniz-Institute for Baltic Sea Research; Seestr. 15 Rostock 18119 Germany
| | - Detlef Schulz-Bull
- Leibniz-Institute for Baltic Sea Research; Seestr. 15 Rostock 18119 Germany
| | | |
Collapse
|
41
|
Steffan SA, Chikaraishi Y, Dharampal PS, Pauli JN, Guédot C, Ohkouchi N. Unpacking brown food-webs: Animal trophic identity reflects rampant microbivory. Ecol Evol 2017; 7:3532-3541. [PMID: 28515888 PMCID: PMC5433990 DOI: 10.1002/ece3.2951] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 02/23/2017] [Accepted: 03/07/2017] [Indexed: 11/30/2022] Open
Abstract
Detritivory is the dominant trophic paradigm in most terrestrial, aquatic, and marine ecosystems, yet accurate measurement of consumer trophic position within detrital (=“brown”) food webs has remained unresolved. Measurement of detritivore trophic position is complicated by the fact that detritus is suffused with microbes, creating a detrital complex of living and nonliving biomass. Given that microbes and metazoans are trophic analogues of each other, animals feeding on detrital complexes are ingesting other detritivores (microbes), which should elevate metazoan trophic position and should be rampant within brown food webs. We tested these hypotheses using isotopic (15N) analyses of amino acids extracted from wild and laboratory‐cultured consumers. Vertebrate (fish) and invertebrate detritivores (beetles and moths) were reared on detritus, with and without microbial colonization. In the field, detritivorous animal specimens were collected and analyzed to compare trophic identities among laboratory‐reared and free‐roaming detritivores. When colonized by bacteria or fungi, the trophic positions of detrital complexes increased significantly over time. The magnitude of trophic inflation was mediated by the extent of microbial consumption of detrital substrates. When detrital complexes were fed to vertebrate and invertebrate animals, the consumers registered similar degrees of trophic inflation, albeit one trophic level higher than their diets. The wild‐collected detritivore fauna in our study exhibited significantly elevated trophic positions. Our findings suggest that the trophic positions of detrital complexes rise predictably as microbes convert nonliving organic matter into living microbial biomass. Animals consuming such detrital complexes exhibit similar trophic inflation, directly attributable to the assimilation of microbe‐derived amino acids. Our data demonstrate that detritivorous microbes elevate metazoan trophic position, suggesting that detritivory among animals is, functionally, omnivory. By quantifying the impacts of microbivory on the trophic positions of detritivorous animals and then tracking how these effects propagate “up” food chains, we reveal the degree to which microbes influence consumer groups within trophic hierarchies. The trophic inflation observed among our field‐collected fauna further suggests that microbial proteins represent an immense contribution to metazoan biomass. Collectively, these findings provide an empirical basis to interpret detritivore trophic identity, and further illuminate the magnitude of microbial contributions to food webs.
Collapse
Affiliation(s)
- Shawn A Steffan
- Department of Entomology University of Wisconsin Madison WI USA.,US Department of Agriculture Agricultural Research Service Madison WI USA
| | - Yoshito Chikaraishi
- Department of Biogeochemistry Japan Agency for Marine Science & Technology Yokosuka Japan.,Institute of Low Temperature Science Hokkaido University Sapporo Japan
| | | | - Jonathan N Pauli
- Department of Forest & Wildlife Ecology University of Wisconsin Madison WI USA
| | | | - Naohiko Ohkouchi
- Department of Biogeochemistry Japan Agency for Marine Science & Technology Yokosuka Japan
| |
Collapse
|