Doubleday LAD, Adler LS. Sex-biased oviposition by a nursery pollinator on a gynodioecious host plant: Implications for breeding system evolution and evolution of mutualism.
Ecol Evol 2017;
7:4694-4703. [PMID:
28690799 PMCID:
PMC5496538 DOI:
10.1002/ece3.3014]
[Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 03/17/2017] [Accepted: 03/27/2017] [Indexed: 11/09/2022] Open
Abstract
Dioecy, a breeding system where individual plants are exclusively male or female, has evolved repeatedly. Extensive theory describes when dioecy should arise from hermaphroditism, frequently through gynodioecy, where females and hermaphrodites coexist, and when gynodioecy should be stable. Both pollinators and herbivores often prefer the pollen‐bearing sex, with sex‐specific fitness effects that can affect breeding system evolution. Nursery pollination, where adult insects pollinate flowers but their larvae feed on plant reproductive tissues, is a model for understanding mutualism evolution but could also yield insights into plant breeding system evolution. We studied a recently established nursery pollination interaction between native Hadena ectypa moths and introduced gynodioecious Silene vulgaris plants in North America to assess whether oviposition was biased toward females or hermaphrodites, which traits were associated with oviposition, and the effect of oviposition on host plant fitness. Oviposition was hermaphrodite‐biased and associated with deeper flowers and more stems. Sexual dimorphism in flower depth, a trait also associated with oviposition on the native host plant (Silene stellata), explained the hermaphrodite bias. Egg‐receiving plants experienced more fruit predation than plants that received no eggs, but relatively few fruits were lost, and egg receipt did not significantly alter total fruit production at the plant level. Oviposition did not enhance pollination; egg‐receiving flowers usually failed to expand and produce seeds. Together, our results suggest that H. ectypa oviposition does not exert a large fitness cost on host plants, sex‐biased interactions can emerge from preferences developed on a hermaphroditic host species, and new nursery pollination interactions can arise as negative or neutral rather than as mutualistic for the plant.
Collapse