1
|
Scott PA, Najafi-Majd E, Yıldırım Caynak E, Gidiş M, Kaya U, Bradley Shaffer H. Phylogenomics reveal species limits and inter-relationships in the narrow-range endemic lycian salamanders. Mol Phylogenet Evol 2024; 202:108205. [PMID: 39393763 DOI: 10.1016/j.ympev.2024.108205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/17/2024] [Accepted: 09/24/2024] [Indexed: 10/13/2024]
Abstract
Salamanders of the genus Lyciasalamandra are represented by as many as 20 narrow-range endemic taxa inhabiting the Mediterranean coast of Turkey and a handful of Aegean Islands. Despite recent molecular phylogenetic studies, the genus is rife with uncertainty about the number of contained species and their phylogenetic relationships, both of which can interfere with needed conservation actions. To test species limits and infer interrelationships we generated as many as 113,176 RAD loci containing 229,427 single nucleotide polymorphisms (SNPs), for 110 specimens of Lyciasalamandra representing 19 of the 20 described taxa. Through a conservative species delimitation approach, we found support for eight species in the genus which broadly agree with currently described species-level diversity. We then use multiple coalescent-based species tree methods to resolve relationships in this relatively old, synchronous species radiation. We recommend synonymization of the largely over-split subspecific taxa, and the elevation of L. luschani finikensis to full species status as L. finikensis. Our hope is that this revised taxonomic framework provides a stable foundation for conservation management in these fragile, microendemic taxa.
Collapse
Affiliation(s)
- Peter A Scott
- Natural Sciences Collegium, Eckerd College, 4200 54(th) Ave S, St. Petersburg, FL 33711 USA; Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Elnaz Najafi-Majd
- Section of Zoology, Department of Biology, Faculty of Science, Ege University, Bornova, İzmir, Turkey
| | - Elif Yıldırım Caynak
- Section of Zoology, Department of Biology, Faculty of Science, Dokuz Eylül University, İzmir, Turkey
| | - Müge Gidiş
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, USA; Department of Biochemistry, Faculty of Arts and Science, Kütahya Dumlupınar University, Kütahya, Turkey
| | - Uğur Kaya
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, USA; Section of Zoology, Department of Biology, Faculty of Science, Ege University, Bornova, İzmir, Turkey
| | - H Bradley Shaffer
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, USA; La Kretz Center for California Conservation Science, Institute of the Environment and Sustainability, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
2
|
Islam S, Peart C, Kehlmaier C, Sun YH, Lei F, Dahl A, Klemroth S, Alexopoulou D, Del Mar Delgado M, Laiolo P, Carlos Illera J, Dirren S, Hille S, Lkhagvasuren D, Töpfer T, Kaiser M, Gebauer A, Martens J, Paetzold C, Päckert M. Museomics help resolving the phylogeny of snowfinches (Aves, Passeridae, Montifringilla and allies). Mol Phylogenet Evol 2024; 198:108135. [PMID: 38925425 DOI: 10.1016/j.ympev.2024.108135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 03/25/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024]
Abstract
Historical specimens from museum collections provide a valuable source of material also from remote areas or regions of conflict that are not easily accessible to scientists today. With this study, we are providing a taxon-complete phylogeny of snowfinches using historical DNA from whole skins of an endemic species from Afghanistan, the Afghan snowfinch, Pyrgilauda theresae. To resolve the strong conflict between previous phylogenetic hypotheses, we generated novel mitogenome sequences for selected taxa and genome-wide SNP data using ddRAD sequencing for all extant snowfinch species endemic to the Qinghai-Tibet Plateau (QTP) and for an extended intraspecific sampling of the sole Central and Western Palearctic snowfinch species (Montifringilla nivalis). Our phylogenetic reconstructions unanimously refuted the previously suggested paraphyly of genus Pyrgilauda. Misplacement of one species-level taxon (Onychostruthus tazcanowskii) in previous snowfinch phylogenies was undoubtedly inferred from chimeric mitogenomes that included heterospecific sequence information. Furthermore, comparison of novel and previously generated sequence data showed that the presumed sister-group relationship between M. nivalis and the QTP endemic M. henrici was suggested based on flawed taxonomy. Our phylogenetic reconstructions based on genome-wide SNP data and on mitogenomes were largely congruent and supported reciprocal monophyly of genera Montifringilla and Pyrgilauda with monotypic Onychostruthus being sister to the latter. The Afghan endemic P. theresae likely originated from a rather ancient Pliocene out-of-Tibet dispersal probably from a common ancestor with P. ruficollis. Our extended trans-Palearctic sampling for the white-winged snowfinch, M. nivalis, confirmed strong lineage divergence between an Asian and a European clade dated to 1.5 - 2.7 million years ago (mya). Genome-wide SNP data suggested subtle divergence among European samples from the Alps and from the Cantabrian mountains.
Collapse
Affiliation(s)
- Safiqul Islam
- Senckenberg Natural History Collections, Museum of Zoology, Königsbrücker Landstraße 159, 01109 Dresden, Germany; Max Planck-Genome-Centre Cologne, Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, 50829 Köln, Germany; Division of Systematic Zoology, Faculty of Biology, LMU Munich, Biocenter, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany
| | - Claire Peart
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Biocenter, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany
| | - Christian Kehlmaier
- Senckenberg Natural History Collections, Museum of Zoology, Königsbrücker Landstraße 159, 01109 Dresden, Germany
| | - Yue-Hua Sun
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fumin Lei
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Andreas Dahl
- Dresden-Concept Genome Center, c/o Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Fetscherstraße 105, 1307 Dresden, Germany
| | - Sylvia Klemroth
- Dresden-Concept Genome Center, c/o Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Fetscherstraße 105, 1307 Dresden, Germany
| | - Dimitra Alexopoulou
- Dresden-Concept Genome Center, c/o Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Fetscherstraße 105, 1307 Dresden, Germany
| | - Maria Del Mar Delgado
- Biodiversity Research Institute (IMIB, Universidad de Oviedo, CSIC, Principality of Asturias) - Campus de Mieres, Edificio de Investigación - 5ª planta, C. Gonzalo Gutiérrez Quirós s/n, 33600 Mieres, Spain
| | - Paola Laiolo
- Biodiversity Research Institute (IMIB, Universidad de Oviedo, CSIC, Principality of Asturias) - Campus de Mieres, Edificio de Investigación - 5ª planta, C. Gonzalo Gutiérrez Quirós s/n, 33600 Mieres, Spain
| | - Juan Carlos Illera
- Biodiversity Research Institute (IMIB, Universidad de Oviedo, CSIC, Principality of Asturias) - Campus de Mieres, Edificio de Investigación - 5ª planta, C. Gonzalo Gutiérrez Quirós s/n, 33600 Mieres, Spain
| | | | - Sabine Hille
- University of Natural Resources and Life Sciences, Vienna, Gregor Mendel-Strasse 33, 1180 Vienna, Austria
| | - Davaa Lkhagvasuren
- Department of Biology, School of Arts and Sciences, National University of Mongolia, P.O.Box 46A-546, Ulaanbaatar 210646, Mongolia
| | - Till Töpfer
- Leibniz Institute for the Analysis of Biodiversity Change, Zoologisches Forschungsmuseum Alexander Koenig, Adenauerallee, Bonn, Germany
| | | | | | - Jochen Martens
- Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg University, 55099 Mainz, Germany
| | - Claudia Paetzold
- Senckenberg Natural History Collections, Museum of Zoology, Königsbrücker Landstraße 159, 01109 Dresden, Germany
| | - Martin Päckert
- Senckenberg Natural History Collections, Museum of Zoology, Königsbrücker Landstraße 159, 01109 Dresden, Germany.
| |
Collapse
|
3
|
Myburgh AM, Barnes A, Henriques R, Daniels SR. Congruent patterns of cryptic cladogenesis revealed using RADseq and Sanger sequencing in a velvet worm species complex (Onychophora: Peripatopsidae: Peripatopsis sedgwicki). Mol Phylogenet Evol 2024; 198:108132. [PMID: 38909874 DOI: 10.1016/j.ympev.2024.108132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/24/2024] [Accepted: 06/15/2024] [Indexed: 06/25/2024]
Abstract
In the present study, first generation DNA sequencing (mitochondrial cytochrome c oxidase subunit one, COI) and reduced-representative genomic RADseq data were used to understand the patterns and processes of diversification of the velvet worm, Peripatopsis sedgwicki species complex across its distribution range in South Africa. For the RADseq data, three datasets (two primary and one supplementary) were generated corresponding to 1,259-11,468 SNPs, in order to assess the diversity and phylogeography of the species complex. Tree topologies for the two primary datasets were inferred using maximum likelihood and Bayesian inferences methods. Phylogenetic analyses using the COI datasets retrieved four distinct, well-supported clades within the species complex. Five species delimitation methods applied to the COI data (ASAP, bPTP, bGMYC, STACEY and iBPP) all showed support for the distinction of the Fort Fordyce Nature Reserve specimens. In the main P. sedgwicki species complex, the species delimitation methods revealed a variable number of operational taxonomic units and overestimated the number of putative taxa. Divergence time estimates coupled with the geographic exclusivity of species and phylogeographic results suggest recent cladogenesis during the Plio/Pleistocene. The RADseq data were subjected to a principal components analysis and a discriminant analysis of principal components, under a maximum-likelihood framework. The latter results corroborate the four main clades observed using the COI data, however, applying additional filtering revealed additional diversity. The high overall congruence observed between the RADseq data and COI data suggest that first generation sequence data remain a cheap and effective method for evolutionary studies, although RADseq does provide a far greater resolution of contemporary temporo-spatial patterns.
Collapse
Affiliation(s)
- Angus Macgregor Myburgh
- Department of Botany and Zoology, Private Bag X1, Stellenbosch University, 7602, South Africa
| | - Aaron Barnes
- Department of Botany and Zoology, Private Bag X1, Stellenbosch University, 7602, South Africa
| | - Romina Henriques
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, South Africa
| | - Savel R Daniels
- Department of Botany and Zoology, Private Bag X1, Stellenbosch University, 7602, South Africa.
| |
Collapse
|
4
|
Diaz-Recio Lorenzo C, Tran Lu Y A, Brunner O, Arbizu PM, Jollivet D, Laurent S, Gollner S. Highly structured populations of copepods at risk to deep-sea mining: Integration of genomic data with demogenetic and biophysical modelling. Mol Ecol 2024; 33:e17340. [PMID: 38605683 DOI: 10.1111/mec.17340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/25/2024] [Accepted: 03/04/2024] [Indexed: 04/13/2024]
Abstract
Copepoda is the most abundant taxon in deep-sea hydrothermal vents, where hard substrate is available. Despite the increasing interest in seafloor massive sulphides exploitation, there have been no population genomic studies conducted on vent meiofauna, which are known to contribute over 50% to metazoan biodiversity at vents. To bridge this knowledge gap, restriction-site-associated DNA sequencing, specifically 2b-RADseq, was used to retrieve thousands of genome-wide single-nucleotide polymorphisms (SNPs) from abundant populations of the vent-obligate copepod Stygiopontius lauensis from the Lau Basin. SNPs were used to investigate population structure, demographic histories and genotype-environment associations at a basin scale. Genetic analyses also helped to evaluate the suitability of tailored larval dispersal models and the parameterization of life-history traits that better fit the population patterns observed in the genomic dataset for the target organism. Highly structured populations were observed on both spatial and temporal scales, with divergence of populations between the north, mid, and south of the basin estimated to have occurred after the creation of the major transform fault dividing the Australian and the Niuafo'ou tectonic plate (350 kya), with relatively recent secondary contact events (<20 kya). Larval dispersal models were able to predict the high levels of structure and the highly asymmetric northward low-level gene flow observed in the genomic data. These results differ from most studies conducted on megafauna in the region, elucidating the need to incorporate smaller size when considering site prospecting for deep-sea exploitation of seafloor massive sulphides, and the creation of area-based management tools to protect areas at risk of local extinction, should mining occur.
Collapse
Affiliation(s)
- Coral Diaz-Recio Lorenzo
- Adaptation et Diversité en Milieu Marin (AD2M), Station Biologique de Roscoff, Sorbonne Université, CNRS, Roscoff, France
| | - Adrien Tran Lu Y
- UMR MARBEC, University of Montpellier, IRD, Ifremer, CNRS, Sète, France
| | - Otis Brunner
- Okinawa Institute for Science and Technology, Kunigami-gun, Okinawa, Japan
| | - Pedro Martínez Arbizu
- Senckenberg am Meer, German Centre for Marine Biodiversity Research, Wilhelmshaven, Germany
| | - Didier Jollivet
- Adaptation et Diversité en Milieu Marin (AD2M), Station Biologique de Roscoff, Sorbonne Université, CNRS, Roscoff, France
| | | | - Sabine Gollner
- NIOZ Royal Netherlands Institute for Sea Research and Utrecht University, 't Horntje (Texel), The Netherlands
- Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
5
|
Dalapicolla J, Rodrigues do Prado J, Lacey Knowles L, Reis Percequillo A. Phylogenomics and species delimitation of an abundant and little-studied Amazonian forest spiny rat. Mol Phylogenet Evol 2024; 191:107992. [PMID: 38092321 DOI: 10.1016/j.ympev.2023.107992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 12/01/2023] [Accepted: 12/09/2023] [Indexed: 12/21/2023]
Abstract
Species delimitation studies based on integrating different datasets such as genomic, morphometric, and cytogenetics data are rare in studies focused on Neotropical rodents. As a consequence, the evolutionary history of most of these genera remains poorly understood. Proechimys is a highly diverse and widely distributed genus of Neotropical spiny rats with unique traits like multiple sympatry, micro-habitat segregation, and fuzzy species limits. Here, we applied RAD-Seq to infer the phylogenetic relationships, estimate the species boundaries, and estimate the divergence times for Proechimys, one of the most common and least studied small mammals in the Amazon. We tested whether inferred lineages in the phylogenetic trees could be considered distinct species based on the genomic dataset and morphometric data. Analyses revealed the genus is not monophyletic, with Proechimys hoplomyoides sister to a group of Hoplomys gymnurus + all other Proechimys species, contesting the generic status of Hoplomys. There are five main clades in Proechimys stricto sensu (excluding H. gymnurus and P. hoplomyoides). Species delimitation analyses supported 25 species within the genus Proechimys. The five main clades in Proechimys stricto sensu also showed similar ages for their origins, and two rapid diversification events were identified in the Early Pliocene and in the Early Pleistocene. Most cases of sympatry in Proechimys occur among species from the different main clades, and although Proechimys is an inhabitant of the Amazon, three species occupied the Cerrado biome during the Pleistocene. We could associate available nominal taxon, cytogenetics information, and DNA sequences in Genbank to most of the 25 species we hypothesized from our delimitation analyses. Based on our analyses, we estimate that eight forms represent putative new species that need a taxonomic revision.
Collapse
Affiliation(s)
- Jeronymo Dalapicolla
- Departamento de Sistemática e Ecologia, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil; Departamento de Ciências Biológicas, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, São Paulo, Brazil; Instituto Tecnológico Vale, Belém, Pará, Brazil.
| | | | - L Lacey Knowles
- Department of Ecology and Evolutionary Biology, Museum of Zoology, University of Michigan, Ann Arbor, MI, USA
| | - Alexandre Reis Percequillo
- Departamento de Ciências Biológicas, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
6
|
Guilliams CM, Hasenstab-Lehman KE. Conservation Genetics of the Endangered Lompoc Yerba Santa ( Eriodictyon capitatum Eastw., Namaceae), including Phylogenomic Insights into the Evolution of Eriodictyon. PLANTS (BASEL, SWITZERLAND) 2023; 13:90. [PMID: 38202398 PMCID: PMC10780715 DOI: 10.3390/plants13010090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024]
Abstract
Eriodictyon capitatum (Namaceae) is a narrowly distributed shrub endemic to western Santa Barbara County, where it is known from only 10 extant California Natural Diversity Database element occurrences (EOs). Owing to low numbers of plants in nature, a limited overall extent, and multiple current threats, E. capitatum is listed as Endangered under the Federal Endangered Species Act and as Rare under the California Native Plant Protection Act. In the present study, high-throughput DNA sequence data were analyzed to investigate genetic diversity within and among all accessible EOs; to determine the extent of genetic isolation among EOs; to examine clonality within EOs; and to examine the taxonomic circumscriptions of E. capitatum, E. altissimum, E. angustifolium, and E. californicum through phylogenomic analysis. Population genetic analyses of E. capitatum reveal a pattern of strong genetic differentiation by location/EO. The clonality assessment shows that certain small EOs may support relatively few multilocus genotypes. The phylogenomic analyses strongly support the present-day taxonomic circumscriptions of both E. altissimum and E. capitatum, showing them to be reciprocally monophyletic and sister with strong support. Taken together, these results paint a picture of an evolutionarily and morphologically distinct species known from relatively few, genetically isolated stations.
Collapse
|
7
|
Piwczyński M, Granjon L, Trzeciak P, Carlos Brito J, Oana Popa M, Daba Dinka M, Johnston NP, Boratyński Z. Unraveling phylogenetic relationships and species boundaries in the arid adapted Gerbillus rodents (Muridae: Gerbillinae) by RAD-seq data. Mol Phylogenet Evol 2023; 189:107913. [PMID: 37659480 DOI: 10.1016/j.ympev.2023.107913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/04/2023]
Abstract
Gerbillus is one of the most speciose genera among rodents, with ca. 51 recognized species. Previous attempts to reconstruct the evolutionary history of Gerbillus mainly relied on the mitochondrial cyt-b marker as a source of phylogenetic information. In this study, we utilize RAD-seq genomic data from 37 specimens representing 11 species to reconstruct the phylogenetic tree for Gerbillus, applying concatenation and coalescence methods. We identified four highly supported clades corresponding to the traditionally recognized subgenera: Dipodillus, Gerbillus, Hendecapleura and Monodia. Only two uncertain branches were detected in the resulting trees, with one leading to diversification of the main lineages in the genus, recognized by quartet sampling analysis as uncertain due to possible introgression. We also examined species boundaries for four pairs of sister taxa, including potentially new species from Morocco, using SNAPP. The results strongly supported a speciation model in which all taxa are treated as separate species. The dating analyses confirmed the Plio-Pleistocene diversification of the genus, with the uncertain branch coinciding with the beginning of aridification of the Sahara at the the Plio-Pleistocene boundary. This study aligns well with the earlier analyses based on the cyt-b marker, reaffirming its suitability as an adequate marker for estimating genetic diversity in Gerbillus.
Collapse
Affiliation(s)
- Marcin Piwczyński
- Department of Ecology and Biogeography, Nicolaus Copernicus University in Toruń, Lwowska 1, PL-87-100 Toruń, Poland.
| | - Laurent Granjon
- CBGP, IRD, CIRAD, INRAE, Institut Agro, Université de Montpellier, Montpellier, France
| | - Paulina Trzeciak
- Department of Ecology and Biogeography, Nicolaus Copernicus University in Toruń, Lwowska 1, PL-87-100 Toruń, Poland
| | - José Carlos Brito
- CIBIO-InBio, Research Center in Biodiversity and Genetic Resources, University of Porto, Campus de Vairão, Rua Padre Armando Quintas 7, 4485-661 Vairão, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal; Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Madalina Oana Popa
- Department of Ecology and Biogeography, Nicolaus Copernicus University in Toruń, Lwowska 1, PL-87-100 Toruń, Poland; "Stejarul" Research Centre for Biological Sciences, National Institute of Research and Development for Biological Sciences, Alexandru cel Bun 6, RO-610004, Piatra Neamţ, Romania
| | - Mergi Daba Dinka
- Department of Ecology and Biogeography, Nicolaus Copernicus University in Toruń, Lwowska 1, PL-87-100 Toruń, Poland
| | - Nikolas P Johnston
- School of Life Sciences, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia; Centre for Sustainable Ecosystem Solutions, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Northfields Ave, Wollongong, NSW 2500, Australia
| | - Zbyszek Boratyński
- CIBIO-InBio, Research Center in Biodiversity and Genetic Resources, University of Porto, Campus de Vairão, Rua Padre Armando Quintas 7, 4485-661 Vairão, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
| |
Collapse
|
8
|
Carscadden KA, Doak DF, Oldfather MF, Emery NC. Demographic responses of hybridizing cinquefoils to changing climate in the Colorado Rocky Mountains. Ecol Evol 2023; 13:e10097. [PMID: 37449020 PMCID: PMC10336340 DOI: 10.1002/ece3.10097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/27/2023] [Indexed: 07/18/2023] Open
Abstract
Hybridization between taxa generates new pools of genetic variation that can lead to different environmental responses and demographic trajectories over time than seen in parental lineages. The potential for hybrids to have novel environmental tolerances may be increasingly important in mountainous regions, which are rapidly warming and drying due to climate change. Demographic analysis makes it possible to quantify within- and among-species responses to variation in climate and to predict population growth rates as those conditions change. We estimated vital rates and population growth in 13 natural populations of two cinquefoil taxa (Potentilla hippiana and P. pulcherrima) and their hybrid across elevation gradients in the Southern Rockies. Using three consecutive years of environmental and demographic data, we compared the demographic responses of hybrid and parental taxa to environmental variation across space and time. All three taxa had lower predicted population growth rates under warm, dry conditions. However, the magnitude of these responses varied among taxa and populations. Hybrids had consistently lower predicted population growth rates than P. hippiana. In contrast, hybrid performance relative to P. pulcherrima varied with population and climate, with the hybrid maintaining relatively stable growth rates while populations of P. pulcherrima shrank under warm, dry conditions. Our findings demonstrate that hybrids in this system are neither intrinsically unfit nor universally more vigorous than parents, suggesting that the demographic consequences of hybridization are context-dependent. Our results also imply that shifts to warmer and drier conditions could have particularly negative repercussions for P. pulcherrima, which is currently the most abundant taxon in the study area, possibly as a legacy of more favorable historical climates. More broadly, the distributions of these long-lived taxa are lagging behind their demographic trajectories, such that the currently less common P. hippiana could become the most abundant of the Potentilla taxa as this region continues to warm and dry.
Collapse
Affiliation(s)
- Kelly A. Carscadden
- Department of Ecology and Evolutionary BiologyUniversity of Colorado BoulderBoulderColoradoUSA
| | - Daniel F. Doak
- Department of Environmental StudiesUniversity of Colorado BoulderBoulderColoradoUSA
| | - Meagan F. Oldfather
- Department of Ecology and Evolutionary BiologyUniversity of Colorado BoulderBoulderColoradoUSA
| | - Nancy C. Emery
- Department of Ecology and Evolutionary BiologyUniversity of Colorado BoulderBoulderColoradoUSA
| |
Collapse
|
9
|
Raheem DC, Gower DJ, Breugelmans K, Ranawana KB, Backeljau T. The systematics and evolution of the Sri Lankan rainforest land snail Corilla: New insights from RADseq-based phylogenetics. Mol Phylogenet Evol 2023; 182:107731. [PMID: 36781030 DOI: 10.1016/j.ympev.2023.107731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 01/20/2023] [Accepted: 02/09/2023] [Indexed: 02/13/2023]
Abstract
The stylommatophoran land-snail genus Corilla is endemic to Sri Lanka and India's Western Ghats. On the basis of habitat distribution and shell morphology, the 10 extant Sri Lankan species fall into two distinct groups, lowland and montane. Here, we use phylogenetic analyses of restriction-site-associated DNA sequencing (RADseq) data and ancestral-state reconstructions of habitat association and shell morphology to clarify the systematics and evolution of Sri Lankan Corilla. Our dataset consists of 9 species of Corilla. Phylogenetic analyses were based on 88 assemblies (9,604-4,132,850 bp) generated by the RADseq assembler ipyrad, using four parameter combinations and different levels of missing data. Trees were inferred using a maximum likelihood (ML) approach. Ancestral states were reconstructed using maximum parsimony (MP) and ML approaches, with 1 binary state character analysed for habitat association (lowland vs montane) and 6 binary state characters analysed for shell morphology (shape, colour, lip width, length of upper palatal folds, orientation of upper palatal folds and collabral sculpture). Over a wide range of missing data (40-87 % missing individuals per locus) and assembly sizes (62,279-4,132,850 bp), nearly all trees conformed to one of two topologies (A and B), most relationships were strongly supported and total branch support approached the maximal value. Apart from the position of Corilla odontophora 'south', topologies A and B showed similar, well-resolved relationships at and above the species level. Our study agrees with the shell-based taxonomy of C. adamsi, C. beddomeae, C. carabinata, C. colletti and C. humberti (all maximally supported as monophyletic species). It shows that C. erronea and C. fryae constitute a single relatively widespread species (for which the valid name is C. erronea) and that the names C. gudei and C. odontophora each apply to at least two distinct, yet conchologically-cryptic species. The MP and ML ancestral-state reconstructions yielded broadly similar results and provide firm evidence that diversification in Sri Lankan Corilla has involved evolutionary convergence in the shell morphology of lowland lineages, with a pale shell and wide lip having evolved on at least two separate occasions (in C. carabinata and C. colletti) from montane ancestors having a dark, narrow-lipped shell.
Collapse
Affiliation(s)
- Dinarzarde C Raheem
- Department of Biological Sciences, Faculty of Applied Sciences, Rajarata University of Sri Lanka, Mihintale 50300, Sri Lanka; Department of Life Sciences, Natural History Museum, London SW7 5BD, UK.
| | - David J Gower
- Department of Life Sciences, Natural History Museum, London SW7 5BD, UK
| | - Karin Breugelmans
- Royal Belgian Institute of Natural Sciences, Vautierstraat 29, B-1000 Brussels, Belgium
| | - Kithsiri B Ranawana
- Department of Zoology, Faculty of Science, University of Peradeniya, Peradeniya, Sri Lanka
| | - Thierry Backeljau
- Royal Belgian Institute of Natural Sciences, Vautierstraat 29, B-1000 Brussels, Belgium; Evolutionary Ecology Group, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium
| |
Collapse
|
10
|
Ambu J, Martínez-Solano Í, Suchan T, Hernandez A, Wielstra B, Crochet PA, Dufresnes C. Genomic phylogeography illuminates deep cyto-nuclear discordances in midwife toads (Alytes). Mol Phylogenet Evol 2023; 183:107783. [PMID: 37044190 DOI: 10.1016/j.ympev.2023.107783] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 03/28/2023] [Accepted: 04/06/2023] [Indexed: 04/14/2023]
Abstract
The advent of genomic methods allows us to revisit the evolutionary history of organismal groups for which robust phylogenies are still lacking, particularly in species complexes that frequently hybridize. In this study, we conduct RAD-sequencing (RAD-seq) analyses of midwife toads (genus Alytes), an iconic group of western Mediterranean amphibians famous for their parental care behavior, but equally infamous for the difficulties to reconstruct their evolutionary history. Through admixture and phylogenetic analyses of thousands of loci, we provide the most comprehensive phylogeographic framework for the A. obstetricans complex to date, as well as the first fully resolved phylogeny for the entire genus. As part of this effort, we carefully explore the influence of different sampling schemes and data filtering thresholds on tree reconstruction, showing that several, slightly different, yet robust topologies may be retrieved with small datasets obtained by stringent SNP calling parameters, especially when admixed individuals are included. In contrast, analyses of incomplete but larger datasets converged on the same phylogeny, irrespective of the reconstruction method used or the proportion of missing data. The Alytes tree features three Miocene-diverged clades corresponding to the proposed subgenera Ammoryctis (A. cisternasii), Baleaphryne (A. maurus, A. dickhilleni and A. muletensis), and Alytes (A. obstetricans complex). The latter consists of six evolutionary lineages, grouped into three clades of Pliocene origin, and currently delimited as two species: (1) A. almogavarii almogavarii and A. a. inigoi; (2) A. obstetricans obstetricans and A. o. pertinax; (3) A. o. boscai and an undescribed taxon (A. o. cf. boscai). These results contradict the mitochondrial tree, due to past mitochondrial captures in A. a. almogavarii (central Pyrenees) and A. o. boscai (central Iberia) by A. obstetricans ancestors during the Pleistocene. Patterns of admixture between subspecies appear far more extensive than previously assumed from microsatellites, causing nomenclatural uncertainties, and even underlying the reticulate evolution of one taxon (A. o. pertinax). All Ammoryctis and Baleaphryne species form shallow clades, so their taxonomy should remain stable. Amid the prevalence of cyto-nuclear discordance among terrestrial vertebrates and the usual lack of resolution of conventional nuclear markers, our study advocates for phylogeography based on next-generation sequencing, but also encourages properly exploring parameter space and sampling schemes when building and analyzing genomic datasets.
Collapse
Affiliation(s)
- Johanna Ambu
- LASER, College of Biology and the Environment, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Íñigo Martínez-Solano
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| | - Tomasz Suchan
- W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków, Poland
| | - Axel Hernandez
- LASER, College of Biology and the Environment, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Ben Wielstra
- Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, The Netherlands; Institute of Biology Leiden, Leiden University, P.O. Box 9505, 2300 RA Leiden, The Netherlands
| | | | - Christophe Dufresnes
- LASER, College of Biology and the Environment, Nanjing Forestry University, Nanjing, People's Republic of China
| |
Collapse
|
11
|
Maas DL, Prost S, de Leeuw CA, Bi K, Smith LL, Purwanto P, Aji LP, Tapilatu RF, Gillespie RG, Becking LE. Sponge diversification in marine lakes: Implications for phylogeography and population genomic studies on sponges. Ecol Evol 2023; 13:e9945. [PMID: 37066063 PMCID: PMC10099488 DOI: 10.1002/ece3.9945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 04/18/2023] Open
Abstract
The relative influence of geography, currents, and environment on gene flow within sessile marine species remains an open question. Detecting subtle genetic differentiation at small scales is challenging in benthic populations due to large effective population sizes, general lack of resolution in genetic markers, and because barriers to dispersal often remain elusive. Marine lakes can circumvent confounding factors by providing discrete and replicated ecosystems. Using high-resolution double digest restriction-site-associated DNA sequencing (4826 Single Nucleotide Polymorphisms, SNPs), we genotyped populations of the sponge Suberites diversicolor (n = 125) to test the relative importance of spatial scales (1-1400 km), local environmental conditions, and permeability of seascape barriers in shaping population genomic structure. With the SNP dataset, we show strong intralineage population structure, even at scales <10 km (average F ST = 0.63), which was not detected previously using single markers. Most variation was explained by differentiation between populations (AMOVA: 48.8%) with signatures of population size declines and bottlenecks per lake. Although the populations were strongly structured, we did not detect significant effects of geographic distance, local environments, or degree of connection to the sea on population structure, suggesting mechanisms such as founder events with subsequent priority effects may be at play. We show that the inclusion of morphologically cryptic lineages that can be detected with the COI marker can reduce the obtained SNP set by around 90%. Future work on sponge genomics should confirm that only one lineage is included. Our results call for a reassessment of poorly dispersing benthic organisms that were previously assumed to be highly connected based on low-resolution markers.
Collapse
Affiliation(s)
- Diede L. Maas
- Marine Animal EcologyWageningen University & ResearchWageningenThe Netherlands
| | - Stefan Prost
- LOEWE Centre for Translational Biodiversity GenomicsSenckenberg Natural History MuseumFrankfurt am MainGermany
- South African National Biodiversity InstituteNational Zoological Gardens of South AfricaPretoriaSouth Africa
| | | | - Ke Bi
- Museum of Vertebrate ZoologyUniversity of California BerkeleyBerkeleyCaliforniaUSA
- Computational Genomics Resource Laboratory, California Institute for Quantitative BiosciencesUniversity of California BerkeleyBerkeleyCaliforniaUSA
| | - Lydia L. Smith
- Museum of Vertebrate ZoologyUniversity of California BerkeleyBerkeleyCaliforniaUSA
| | | | - Ludi P. Aji
- Marine Animal EcologyWageningen University & ResearchWageningenThe Netherlands
- Research Centre for Oceanography, Indonesian Institute of SciencesLembaga Ilmu Pengetahuan IndonesiaJakartaIndonesia
| | - Ricardo F. Tapilatu
- Marine Science and Fisheries Departments and Research Center of Pacific Marine ResourcesState University of PapuaManokwariIndonesia
| | - Rosemary G. Gillespie
- Department of Environmental Science, Policy and ManagementUniversity of California BerkeleyBerkeleyCaliforniaUSA
| | - Leontine E. Becking
- Department of Environmental Science, Policy and ManagementUniversity of California BerkeleyBerkeleyCaliforniaUSA
- Aquaculture and Fisheries, Naturalis Biodiversity CenterWageningen University & ResearchWageningenThe Netherlands
| |
Collapse
|
12
|
Guo C, Luo Y, Gao LM, Yi TS, Li HT, Yang JB, Li DZ. Phylogenomics and the flowering plant tree of life. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:299-323. [PMID: 36416284 DOI: 10.1111/jipb.13415] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/22/2022] [Indexed: 06/16/2023]
Abstract
The advances accelerated by next-generation sequencing and long-read sequencing technologies continue to provide an impetus for plant phylogenetic study. In the past decade, a large number of phylogenetic studies adopting hundreds to thousands of genes across a wealth of clades have emerged and ushered plant phylogenetics and evolution into a new era. In the meantime, a roadmap for researchers when making decisions across different approaches for their phylogenomic research design is imminent. This review focuses on the utility of genomic data (from organelle genomes, to both reduced representation sequencing and whole-genome sequencing) in phylogenetic and evolutionary investigations, describes the baseline methodology of experimental and analytical procedures, and summarizes recent progress in flowering plant phylogenomics at the ordinal, familial, tribal, and lower levels. We also discuss the challenges, such as the adverse impact on orthology inference and phylogenetic reconstruction raised from systematic errors, and underlying biological factors, such as whole-genome duplication, hybridization/introgression, and incomplete lineage sorting, together suggesting that a bifurcating tree may not be the best model for the tree of life. Finally, we discuss promising avenues for future plant phylogenomic studies.
Collapse
Affiliation(s)
- Cen Guo
- Germplasm Bank of Wild Species, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, 650201, China
| | - Yang Luo
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, 650201, China
| | - Lian-Ming Gao
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, 650201, China
- Lijiang Forest Diversity National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, Lijiang, 674100, China
| | - Ting-Shuang Yi
- Germplasm Bank of Wild Species, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, 650201, China
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, 650201, China
| | - Hong-Tao Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, 650201, China
| | - Jun-Bo Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, 650201, China
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, 650201, China
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, 650201, China
- Lijiang Forest Diversity National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, Lijiang, 674100, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650201, China
| |
Collapse
|
13
|
Pina-Martins F, Caperta AD, Conceição SIR, Nunes VL, Marques I, Paulo OS. A first look at sea-lavenders genomics - can genome wide SNP information tip the scales of controversy in the Limonium vulgare species complex? BMC PLANT BIOLOGY 2023; 23:34. [PMID: 36642719 PMCID: PMC9841708 DOI: 10.1186/s12870-022-03974-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Sea-lavenders (Limonium Mill., Plumbaginaceae) are a cosmopolitan group of diploid and polyploid plants often adapted to extreme saline environments, with a mostly Tethyan distribution, occurring in the Mediterranean, Irano-Turanian, Euro-Siberian and in the New World. The halophylic Limonium vulgare polyploid complex in particular, presents a large distribution throughout extreme salt-marsh habitats and shows little morphological but high taximetric variation, frequently blurring species delimitation. In this work we pursue three main goals: assert whether SNP data from polyploid individuals has the resolution to distinguish the seven sampled species, to better understand how genetically structured Limonium vulgare is, and attempt to identify specific molecular mechanisms for the differentiation between L. maritimum and L. vulgare. For this purpose, 95 individuals were genotyped using Genotyping by Sequencing (GBS), which were assembled as two independent datasets using IPYRAD. All analyses performed downstream of assembly were fully automated. Phylogenetic inference, PCA, and admixture plots were used to infer answers to the study's main goals. RESULTS Close to 10,000 SNPs were obtained for each dataset. Phylogenetic analyses reveal that polyploid data can be used to infer species relationships. Population structure analyses suggest a genetically structured L. vulgare. A set of 34 SNPs were found to be fully segregated between L. vulgare and L. maritimum, two of which are potentially linked to proteins that might be involved in the speciation process. CONCLUSION Despite polyploid data analyses shortcomings, GBS generated SNPs have the resolution to discern all seven included species. Limonium vulgare revealed pronounced genetic structure along a geographical north-south cline. L. maritimum always appears as a distinct genetic entity. Segregated SNPs between L. vulgare and L. maritimum indicate salinity response and morphological trait control genes as potentially interesting to follow up for studying these species' divergence process.
Collapse
Affiliation(s)
- Francisco Pina-Martins
- cE3c - Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Departamento de Biologia Animal Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal.
| | - Ana D Caperta
- LEAF-Linking Landscape, Environment, Agriculture and Food, Associated Laboratory TERRA, Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisbon, Portugal
| | - Sofia I R Conceição
- LEAF-Linking Landscape, Environment, Agriculture and Food, Associated Laboratory TERRA, Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisbon, Portugal
- LASIGE Computer Science and Engineering Research Centre, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisbon, Portugal
| | - Vera L Nunes
- cE3c - Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Departamento de Biologia Animal Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal
| | - Isabel Marques
- cE3c - Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Departamento de Biologia Animal Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal
- Forest Research Centre (CEF) & Associated Laboratory TERRA, Instituto Superior de Agronomia (ISA), Universidade de Lisboa, 1349-017, Lisbon, Portugal
| | - Octávio S Paulo
- cE3c - Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Departamento de Biologia Animal Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal
| |
Collapse
|
14
|
Böhnert T, Luebert F, Merklinger FF, Harpke D, Stoll A, Schneider JV, Blattner FR, Quandt D, Weigend M. Plant migration under long-lasting hyperaridity - phylogenomics unravels recent biogeographic history in one of the oldest deserts on Earth. THE NEW PHYTOLOGIST 2022; 234:1863-1875. [PMID: 35274308 DOI: 10.1111/nph.18082] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
The post-Miocene climatic histories of arid environments have been identified as key drivers of dispersal and diversification. Here, we investigate how climatic history correlates with the historical biogeography of the Atacama Desert genus Cristaria (Malvaceae). We analyze phylogenetic relationships and historical biogeography by using next-generation sequencing (NGS), molecular clock dating, Dispersal Extinction Cladogenesis and Bayesian sampling approaches. We employ a novel way to identify biogeographically meaningful regions as well as a rarely utilized program permitting the use of dozens of ancestral areas. Partial incongruence between the established taxonomy and our phylogenetic data argue for a complex historical biogeography with repeated introgression and incomplete lineage sorting. Cristaria originated in the central southern part of the Atacama Desert, from there the genus colonized other areas from the late Miocene onwards. The more recently diverged lineages appear to have colonized different habitats in the Atacama Desert during pluvial phases of the Pliocene and early Pleistocene. We show that NGS combined with near-comprehensive sampling can provide an unprecedented degree of phylogenetic resolution and help to correlate the historical biogeography of plant communities with cycles of arid and pluvial phases.
Collapse
Affiliation(s)
- Tim Böhnert
- Nees Institute for Biodiversity of Plants, University of Bonn, 53115, Bonn, Germany
| | - Federico Luebert
- Nees Institute for Biodiversity of Plants, University of Bonn, 53115, Bonn, Germany
- Facultad de Ciencias Agronómicas and Departamento de Silvicultura y Conservación de la Naturaleza, Universidad de Chile, 8820000, Santiago, Chile
| | - Felix F Merklinger
- Nees Institute for Biodiversity of Plants, University of Bonn, 53115, Bonn, Germany
- Sukkulenten-Sammlung Zürich/Grün Stadt Zürich, 8002, Zürich, Switzerland
| | - Dörte Harpke
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Gatersleben, Germany
| | - Alexandra Stoll
- Centro de Estudios Avanzados en Zonas Áridas Ceaza, 1720256, La Serena, Chile
- Instituto de Investigación Multidisciplinar en Ciencia y Tecnología, Universidad de la Serena, 1720170, La Serena, Chile
| | - Julio V Schneider
- Botany and Molecular Evolution and Entomology III, Senckenberg Research Institute and Natural History Museum, Frankfurt, 60325, Germany
| | - Frank R Blattner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Gatersleben, Germany
| | - Dietmar Quandt
- Nees Institute for Biodiversity of Plants, University of Bonn, 53115, Bonn, Germany
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Gatersleben, Germany
| | - Maximilian Weigend
- Nees Institute for Biodiversity of Plants, University of Bonn, 53115, Bonn, Germany
| |
Collapse
|
15
|
Kurata NP, Hickerson MJ, Hoffberg SL, Gardiner N, Stiassny MLJ, Alter SE. Riverscape genomics of cichlid fishes in the lower Congo: Uncovering mechanisms of diversification in an extreme hydrological regime. Mol Ecol 2022; 31:3516-3532. [PMID: 35532943 DOI: 10.1111/mec.16495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 04/10/2022] [Accepted: 05/04/2022] [Indexed: 11/28/2022]
Abstract
Freshwater fishes are notably diverse, given that freshwater habitat represents a tiny fraction of the earth's surface, but the mechanisms generating this diversity remain poorly understood. Rivers provide excellent models to understand how freshwater diversity is generated and maintained across heterogeneous habitats. In particular, the lower Congo River (LCR) consists of a dynamic hydroscape exhibiting extraordinary aquatic biodiversity, endemicity, morphological and ecological specialization. Previous studies have suggested that the numerous high-energy rapids throughout the LCR form physical barriers to gene flow, thus facilitating diversification and speciation, generating ichthyofaunal diversity. However, this hypothesis has not been fully explored using genome-wide SNPs for fish species distributed across the LCR. Here, we examined four lamprologine cichlids endemic to the LCR that are distributed along the river without range overlap. Using genome-wide SNP data, we tested the hypotheses that high-energy rapids serve as physical barriers to gene flow that generate genetic divergence at inter- and intraspecific levels, and that gene flow occurs primarily in a downstream direction. Our results are consistent with the prediction that powerful rapids sometimes act as a barrier to gene flow but also suggest that, at certain temporal and spatial scales, they may provide multidirectional dispersal opportunities for riverine rheophilic cichlid fishes. These results highlight the complexity of diversification processes in rivers and the importance of assessing such processes across different riverscapes.
Collapse
Affiliation(s)
- Naoko P Kurata
- The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY, 10016, USA.,Department of Ichthyology, American Museum of Natural History, 79th Street and Central Park West, New York, NY, 10024, USA
| | - Michael J Hickerson
- The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY, 10016, USA.,The City College of New York, 160 Convent Ave, New York, NY, 10031, USA.,Division of Invertebrate Zoology, American Museum of Natural History, 79th Street and Central Park West, New York, NY, 10024, USA
| | - Sandra L Hoffberg
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY, 10027, USA
| | - Ned Gardiner
- Department of Geography, University of Georgia, 210 Field St #204, Athens, Georgia, GA, 30602, USA
| | - Melanie L J Stiassny
- Department of Ichthyology, American Museum of Natural History, 79th Street and Central Park West, New York, NY, 10024, USA.,The Sackler Institute for Comparative Genomics, American Museum of Natural History, 79th Street and Central Park West, New York, NY, 10024, USA
| | - S Elizabeth Alter
- Department of Ichthyology, American Museum of Natural History, 79th Street and Central Park West, New York, NY, 10024, USA.,Department of Biology and Chemistry, California State University Monterey Bay, Seaside, California, CA, 93955, USA
| |
Collapse
|
16
|
Bertola LD, Vermaat M, Lesilau F, Chege M, Tumenta PN, Sogbohossou EA, Schaap OD, Bauer H, Patterson BD, White PA, de Iongh HH, Laros JFJ, Vrieling K. Whole genome sequencing and the application of a SNP panel reveal primary evolutionary lineages and genomic variation in the lion (Panthera leo). BMC Genomics 2022; 23:321. [PMID: 35459090 PMCID: PMC9027350 DOI: 10.1186/s12864-022-08510-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/29/2022] [Indexed: 11/23/2022] Open
Abstract
Background Previous phylogeographic studies of the lion (Panthera leo) have improved our insight into the distribution of genetic variation, as well as a revised taxonomy which now recognizes a northern (Panthera leo leo) and a southern (Panthera leo melanochaita) subspecies. However, existing whole range phylogeographic studies on lions either consist of very limited numbers of samples, or are focused on mitochondrial DNA and/or a limited set of microsatellites. The geographic extent of genetic lineages and their phylogenetic relationships remain uncertain, clouded by massive sampling gaps, sex-biased dispersal and incomplete lineage sorting. Results In this study we present results of low depth whole genome sequencing and subsequent variant calling in ten lions sampled throughout the geographic range, resulting in the discovery of >150,000 Single Nucleotide Polymorphisms (SNPs). Phylogenetic analyses revealed the same basal split between northern and southern populations, as well as four population clusters on a more local scale. Further, we designed a SNP panel, including 125 autosomal and 14 mitochondrial SNPs, which was tested on >200 lions from across their range. Results allow us to assign individuals to one of these four major clades (West & Central Africa, India, East Africa, or Southern Africa) and delineate these clades in more detail. Conclusions The results presented here, particularly the validated SNP panel, have important applications, not only for studying populations on a local geographic scale, but also for tracing samples of unknown origin for forensic purposes, and for guiding conservation management of ex situ populations. Thus, these genomic resources not only contribute to our understanding of the evolutionary history of the lion, but may also play a crucial role in conservation efforts aimed at protecting the species in its full diversity. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08510-y.
Collapse
Affiliation(s)
- L D Bertola
- City University of New York, City College of New York, 160 Convent Avenue, New York, NY, 10031, USA. .,Institute of Environmental Sciences (CML), Leiden University, PO Box 9518, 2300 RA, Leiden, The Netherlands. .,Institute of Biology Leiden (IBL), Leiden University, PO Box 9505, 2300 RA, Leiden, The Netherlands.
| | - M Vermaat
- Department of Human Genetics, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands.,Leiden Genome Technology Center, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - F Lesilau
- Institute of Environmental Sciences (CML), Leiden University, PO Box 9518, 2300 RA, Leiden, The Netherlands.,Kenya Wildlife Service, Nairobi, Kenya
| | - M Chege
- Institute of Environmental Sciences (CML), Leiden University, PO Box 9518, 2300 RA, Leiden, The Netherlands.,Kenya Wildlife Service, Nairobi, Kenya
| | - P N Tumenta
- Centre for Environment and Developmental Studies, Cameroon (CEDC), Yaounde, Cameroon.,Regional Training Centre Specialized in Agriculture, Forest and Wood, University of Dschang, BP 138, Yaounde, Cameroon
| | - E A Sogbohossou
- Laboratoire d'Ecologie Appliquée, Université d'Abomey-Calavi, 03 BP 294, Cotonou, Benin
| | - O D Schaap
- Institute of Biology Leiden (IBL), Leiden University, PO Box 9505, 2300 RA, Leiden, The Netherlands
| | - H Bauer
- Wildlife Conservation Research Unit, Zoology, University of Oxford Recanati-Kaplan Centre, Tubney, OX13 5QL, UK
| | - B D Patterson
- Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, IL, 60605, USA
| | - P A White
- Center for Tropical Research, Institute of the Environment and Sustainability, University of California, Los Angeles, CA, 90095-1496, USA
| | - H H de Iongh
- Institute of Environmental Sciences (CML), Leiden University, PO Box 9518, 2300 RA, Leiden, The Netherlands.,Department of Biology, Evolutionary Ecology Group, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerpen, Belgium
| | - J F J Laros
- Department of Human Genetics, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands.,Leiden Genome Technology Center, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - K Vrieling
- Institute of Biology Leiden (IBL), Leiden University, PO Box 9505, 2300 RA, Leiden, The Netherlands
| |
Collapse
|
17
|
A RADseq Phylogeny of Barleria (Acanthaceae) Resolves Fine-Scale Relationships. Mol Phylogenet Evol 2022; 169:107428. [DOI: 10.1016/j.ympev.2022.107428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 12/29/2021] [Accepted: 01/14/2022] [Indexed: 11/20/2022]
|
18
|
Hanes MM, Shell S, Shimu T, Crist C, Machkour‐M’Rabet S. The phylogeographic history of Megistostegium (Malvaceae) in the dry, spiny thickets of southwestern Madagascar using RAD-seq data and ecological niche modeling. Ecol Evol 2022; 12:e8632. [PMID: 35222982 PMCID: PMC8848458 DOI: 10.1002/ece3.8632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 12/21/2021] [Accepted: 01/15/2022] [Indexed: 11/09/2022] Open
Abstract
The spiny thicket of southwestern Madagascar represents an extreme and ancient landscape with extraordinary levels of biodiversity and endemism. Few hypotheses exist for explaining speciation in the region and few plant studies have explored hypotheses for species diversification. Here, we investigate three species in the endemic genus Megistostegium (Malvaceae) to evaluate phylogeographic structure and explore the roles of climate, soil, and paleoclimate oscillations on population divergence and speciation throughout the region. We combine phylogenetic and phylogeographic inference of RADseq data with ecological niche modeling across space and time. Population structure is concurrent with major rivers in the region and we identify a new, potentially important biogeographic break coincident with several landscape features. Our data further suggests that niches occupied by species and populations differ substantially across their distribution. Paleodistribution modeling provide evidence that past climatic change could be responsible for the current distribution, population structure, and maintenance of species in Megistostegium.
Collapse
Affiliation(s)
- Margaret M. Hanes
- Department of BiologyEastern Michigan UniversityYpsilantiMichiganUSA
| | - Susan Shell
- Department of BiologyEastern Michigan UniversityYpsilantiMichiganUSA
| | - Tahsina Shimu
- Department of BiologyEastern Michigan UniversityYpsilantiMichiganUSA
| | - Clarissa Crist
- Department of BiologyEastern Michigan UniversityYpsilantiMichiganUSA
| | - Salima Machkour‐M’Rabet
- Departamento de Conservación de la BiodiversiadadEl Colegio de la Frontera SurChetumalMexico
| |
Collapse
|
19
|
Gutiérrez-Rodríguez J, Zaldívar-Riverón A, Weissman DB, Vandergast AG. Extensive species diversification and marked geographic phylogenetic structure in the Mesoamerican genus Stenopelmatus (Orthoptera: Stenopelmatidae: Stenopelmatinae) revealed by mitochondrial and nuclear 3RAD data. INVERTEBR SYST 2022. [DOI: 10.1071/is21022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The Jerusalem cricket subfamily Stenopelmatinae is distributed from south-western Canada through the western half of the United States to as far south as Ecuador. Recently, the generic classification of this subfamily was updated to contain two genera, the western North American Ammopelmatus, and the Mexican, and central and northern South American Stenopelmatus. The taxonomy of the latter genus was also revised, with 5, 13 and 14 species being respectively validated, declared as nomen dubium and described as new. Despite this effort, the systematics of Stenopelmatus is still far from complete. Here, we generated sequences of the mitochondrial DNA barcoding locus and performed two distinct DNA sequence-based approaches to assess the species’ limits among several populations of Stenopelmatus, with emphasis on populations from central and south-east Mexico. We reconstructed the phylogenetic relationships among representative species of the main clades within the genus using nuclear 3RAD data and carried out a molecular clock analysis to investigate its biogeographic history. The two DNA sequence-based approaches consistently recovered 34 putative species, several of which are apparently undescribed. Our estimates of phylogeny confirmed the recent generic update of Stenopelmatinae and revealed a marked phylogeographic structure within Stenopelmatus. Based on our results, we propose the existence of four species-groups within the genus (the faulkneri, talpa, Central America and piceiventris species-groups). The geographic distribution of these species-groups and our molecular clock estimates are congruent with the geological processes that took place in mountain ranges along central and southern Mexico, particularly since the Neogene. Our study emphasises the necessity to continue performing more taxonomic and phylogenetic studies on Stenopelmatus to clarify its actual species richness and evolutionary history in Mesoamerica.
Collapse
|
20
|
Sinn BT, Simon SJ, Santee MV, DiFazio SP, Fama NM, Barrett CF. ISSRseq: An extensible method for reduced representation sequencing. Methods Ecol Evol 2021. [DOI: 10.1111/2041-210x.13784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Brandon T. Sinn
- Department of Biology and Earth Science Otterbein University Westerville OH USA
- Department of Biology West Virginia University Morgantown WV USA
| | - Sandra J. Simon
- Department of Biology West Virginia University Morgantown WV USA
- Institute for Sustainability, Energy, and Environment (ISEE) University of Illinois at Urbana‐Champaign Urbana IL USA
- Department of Biology West Virginia University Institute of Technology Beckley WV USA
| | | | | | - Nicole M. Fama
- Department of Biology West Virginia University Morgantown WV USA
- Genetic Immunotherapy Section National Institute of Allergy and Infectious Diseases National Institutes of Health Bethesda MD USA
| | - Craig F. Barrett
- Department of Biology West Virginia University Morgantown WV USA
| |
Collapse
|
21
|
Diversification and post-glacial range expansion of giant North American camel spiders in genus Eremocosta (Solifugae: Eremobatidae). Sci Rep 2021; 11:22093. [PMID: 34764371 PMCID: PMC8586242 DOI: 10.1038/s41598-021-01555-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 10/29/2021] [Indexed: 11/08/2022] Open
Abstract
Species of camel spiders in the family Eremobatidae are an important component of arthropod communities in arid ecosystems throughout North America. Recently, research demonstrated that the evolutionary history and biogeography of the family are poorly understood. Herein we explore the biogeographic history of this group of arachnids using genome-wide single nucleotide polymorphism (SNP) data, morphology, and distribution modelling to study the eremobatid genus Eremocosta, which contains exceptionally large species distributed throughout North American deserts. Relationships among sampled species were resolved with strong support and they appear to have diversified within distinct desert regions along an east-to-west progression beginning in the Chihuahuan Desert. The unexpected phylogenetic position of some samples suggests that the genus may contain additional, morphologically cryptic species. Geometric morphometric analyses reveal a largely conserved cheliceral morphology among Eremocosta spp. Phylogeographic analyses indicate that the distribution of E. titania was substantially reduced during the last glacial maximum and the species only recently colonized much of the Mojave Desert. Results from this study underscore the power of genome-wide data for unlocking the genetic potential of museum specimens, which is especially promising for organisms like camel spiders that are notoriously difficult to collect.
Collapse
|
22
|
Ortiz D, Pekár S, Dianat M. Phylogenomics and loci dropout patterns of deeply diverged Zodarion ant-eating spiders suggest a high potential of RAD-seq for genus-level spider phylogenetics. Cladistics 2021; 38:320-334. [PMID: 34699083 DOI: 10.1111/cla.12493] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2021] [Indexed: 11/28/2022] Open
Abstract
RAD sequencing yields large amounts of genome-wide data at a relatively low cost and without requiring previous taxon-specific information, making it ideal for evolutionary studies of highly diversified and neglected organisms. However, concerns about information decay with phylogenetic distance have discouraged its use for assessing supraspecific relationships. Here, using Double Digest Restriction Associated DNA (ddRAD) data, we perform the first deep-level approach to the phylogeny of Zodarion, a highly diversified spider genus. We explore the impact of loci and taxon filtering across concatenated and multispecies coalescent reconstruction methods and investigate the patterns of information dropout in reference to both the time of divergence and the mitochondrial divergence between taxa. We found that relaxed loci-filtering and nested taxon-filtering strategies maximized the amount of molecular information and improved phylogenetic inference. As expected, there was a clear pattern of allele dropout towards deeper time and mitochondrial divergences, but the phylogenetic signal remained strong throughout the phylogeny. Therefore, we inferred topologies that were almost fully resolved, highly supported, and noticeably congruent between setups and inference methods, which highlights overall inconsistency in the taxonomy of Zodarion. Because Zodarion appears to be among the oldest and most mitochondrially diversified spider genera, our results suggest that ddRAD data show high potential for inferring intra-generic relationships across spiders and probably also in other taxonomic groups.
Collapse
Affiliation(s)
- David Ortiz
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czechia
| | - Stano Pekár
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czechia
| | - Malahat Dianat
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czechia
| |
Collapse
|
23
|
Ferrer Obiol J, James HF, Chesser RT, Bretagnolle V, González-Solís J, Rozas J, Riutort M, Welch AJ. Integrating Sequence Capture and Restriction Site-Associated DNA Sequencing to Resolve Recent Radiations of Pelagic Seabirds. Syst Biol 2021; 70:976-996. [PMID: 33512506 PMCID: PMC8357341 DOI: 10.1093/sysbio/syaa101] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 11/13/2020] [Accepted: 12/15/2020] [Indexed: 01/01/2023] Open
Abstract
The diversification of modern birds has been shaped by a number of radiations. Rapid diversification events make reconstructing the evolutionary relationships among taxa challenging due to the convoluted effects of incomplete lineage sorting (ILS) and introgression. Phylogenomic data sets have the potential to detect patterns of phylogenetic incongruence, and to address their causes. However, the footprints of ILS and introgression on sequence data can vary between different phylogenomic markers at different phylogenetic scales depending on factors such as their evolutionary rates or their selection pressures. We show that combining phylogenomic markers that evolve at different rates, such as paired-end double-digest restriction site-associated DNA (PE-ddRAD) and ultraconserved elements (UCEs), allows a comprehensive exploration of the causes of phylogenetic discordance associated with short internodes at different timescales. We used thousands of UCE and PE-ddRAD markers to produce the first well-resolved phylogeny of shearwaters, a group of medium-sized pelagic seabirds that are among the most phylogenetically controversial and endangered bird groups. We found that phylogenomic conflict was mainly derived from high levels of ILS due to rapid speciation events. We also documented a case of introgression, despite the high philopatry of shearwaters to their breeding sites, which typically limits gene flow. We integrated state-of-the-art concatenated and coalescent-based approaches to expand on previous comparisons of UCE and RAD-Seq data sets for phylogenetics, divergence time estimation, and inference of introgression, and we propose a strategy to optimize RAD-Seq data for phylogenetic analyses. Our results highlight the usefulness of combining phylogenomic markers evolving at different rates to understand the causes of phylogenetic discordance at different timescales. [Aves; incomplete lineage sorting; introgression; PE-ddRAD-Seq; phylogenomics; radiations; shearwaters; UCEs.].
Collapse
Affiliation(s)
- Joan Ferrer Obiol
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Barcelona, Catalonia, Spain
| | - Helen F James
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - R Terry Chesser
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
- U.S. Geological Survey, Patuxent Wildlife Research Center, Laurel, MD, USA
| | - Vincent Bretagnolle
- Centre d’Études Biologiques de Chizé, CNRS & La Rochelle Université, 79360, Villiers en Bois, France
| | - Jacob González-Solís
- Institut de Recerca de la Biodiversitat (IRBio), Barcelona, Catalonia, Spain
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Julio Rozas
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Barcelona, Catalonia, Spain
| | - Marta Riutort
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Barcelona, Catalonia, Spain
| | | |
Collapse
|
24
|
Acha S, Linan A, MacDougal J, Edwards C. The evolutionary history of vines in a neotropical biodiversity hotspot: Phylogenomics and biogeography of a large passion flower clade (Passiflora section Decaloba). Mol Phylogenet Evol 2021; 164:107260. [PMID: 34273502 DOI: 10.1016/j.ympev.2021.107260] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 11/28/2022]
Abstract
Because of their extraordinary flower and leaf morphology, passion flowers (Passifloraceae) have fascinated naturalists since their discovery. Within the large, diverse (600 species) genus Passiflora is an especially enigmatic and species-rich (120 spp.) subclade, Section Decaloba, which occurs in the Neotropics and has its center of diversity in Andean montane forests. A recent phylogenetic study of Passifloraceae showed that Section Decaloba was monophyletic, but was unable to resolve relationships within the clade, thus preventing inferences of evolutionary history and biogeography. The goal of this study was to elucidate the phylogeny and biogeography of Section Decaloba. We sampled 206 accessions representing 91 of the ~ 120 known species in section Decaloba and four outgroups, with samples derived predominantly from herbarium specimens. We generated DNA sequences using a high-throughput DNA sequencing technique called 2b-RAD, reconstructed the phylogeny, and conducted ancestral area reconstructions to infer the biogeographic history of the group. We recovered predominantly well-supported trees in which species were grouped into two main clades: 1) the Central American clade, within which the majority of nodes well supported and species were monophyletic and 2) the South American clade, a large clade that showed overall lower resolution and included several polyphyletic species and species complexes that need additional research. RASP analysis showed that section Decaloba originated in Central America around 10.4 Ma, and then dispersed to South America, the Greater Antilles, and the Bahamas. The South American clade diversified in the Northern Andes and then dispersed to the rest of South America, and Lesser Antilles. Results suggest that both long-distance dispersal and colonization of newly available habitats (i.e., in the Andes) likely promoted diversification of this clade. This study also illustrates how using herbarium specimens and a RAD-seq approach can produce phylogenies for broadly distributed, highly diverse, and poorly accessible groups of plants where field collections would be unfeasible.
Collapse
Affiliation(s)
- Serena Acha
- Department of Biology, University of Missouri-St. Louis, One University Blvd, Research Hall St. Louis, MO 63121, USA; Missouri Botanical Garden, 4344 Shaw Blvd, St. Louis, MO 63110, USA; University of Florida Herbarium, Florida Museum of Natural History,1659 Museum Rd, Gainesville, FL 32611-7800, USA.
| | - Alexander Linan
- Missouri Botanical Garden, 4344 Shaw Blvd, St. Louis, MO 63110, USA
| | - John MacDougal
- Missouri Botanical Garden, 4344 Shaw Blvd, St. Louis, MO 63110, USA; Harris-Stowe State University, 3026 Laclede Ave, St. Louis, MO 63103, USA
| | | |
Collapse
|
25
|
Silliman K, Indorf JL, Knowlton N, Browne WE, Hurt C. Base-substitution mutation rate across the nuclear genome of Alpheus snapping shrimp and the timing of isolation by the Isthmus of Panama. BMC Ecol Evol 2021; 21:104. [PMID: 34049492 PMCID: PMC8164322 DOI: 10.1186/s12862-021-01836-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/06/2021] [Indexed: 11/17/2022] Open
Abstract
Background The formation of the Isthmus of Panama and final closure of the Central American Seaway (CAS) provides an independent calibration point for examining the rate of DNA substitutions. This vicariant event has been widely used to estimate the substitution rate across mitochondrial genomes and to date evolutionary events in other taxonomic groups. Nuclear sequence data is increasingly being used to complement mitochondrial datasets for phylogenetic and evolutionary investigations; these studies would benefit from information regarding the rate and pattern of DNA substitutions derived from the nuclear genome. Results To estimate the genome-wide neutral mutation rate (µ), genotype-by-sequencing (GBS) datasets were generated for three transisthmian species pairs in Alpheus snapping shrimp. A range of bioinformatic filtering parameters were evaluated in order to minimize potential bias in mutation rate estimates that may result from SNP filtering. Using a Bayesian coalescent approach (G-PhoCS) applied to 44,960 GBS loci, we estimated µ to be 2.64E−9 substitutions/site/year, when calibrated with the closure of the CAS at 3 Ma. Post-divergence gene flow was detected in one species pair. Failure to account for this post-split migration inflates our substitution rate estimates, emphasizing the importance of demographic methods that can accommodate gene flow. Conclusions Results from our study, both parameter estimates and bioinformatic explorations, have broad-ranging implications for phylogeographic studies in other non-model taxa using reduced representation datasets. Our best estimate of µ that accounts for coalescent and demographic processes is remarkably similar to experimentally derived mutation rates in model arthropod systems. These results contradicted recent suggestions that the closure of the Isthmus was completed much earlier (around 10 Ma), as mutation rates based on an early calibration resulted in uncharacteristically low genomic mutation rates. Also, stricter filtering parameters resulted in biased datasets that generated lower mutation rate estimates and influenced demographic parameters, serving as a cautionary tale for the adherence to conservative bioinformatic strategies when generating reduced-representation datasets at the species level. To our knowledge this is the first use of transisthmian species pairs to calibrate the rate of molecular evolution from GBS data. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-021-01836-3.
Collapse
Affiliation(s)
- Katherine Silliman
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA. .,Committee on Evolutionary Biology, University of Chicago, Chicago, IL, 60637, USA.
| | - Jane L Indorf
- Department of Biology, University of Miami, Coral Gables, FL, 33146, USA
| | - Nancy Knowlton
- National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - William E Browne
- Department of Biology, University of Miami, Coral Gables, FL, 33146, USA
| | - Carla Hurt
- Department of Biology, University of Miami, Coral Gables, FL, 33146, USA.,Department of Biology, Tennessee Tech University, Cookeville, TN, 38505, USA
| |
Collapse
|
26
|
Sharples MT, Bentz PC, Manzitto-Tripp EA. Evolution of apetaly in the cosmopolitan genus Stellaria. AMERICAN JOURNAL OF BOTANY 2021; 108:869-882. [PMID: 33982285 DOI: 10.1002/ajb2.1650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 12/29/2020] [Indexed: 05/22/2023]
Abstract
PREMISE Apetaly is widespread across distantly related lineages of flowering plants and is associated with abiotic (or self-) pollination. It is particularly prevalent in the carnation family, and the cosmopolitan genus Stellaria contains many lineages that are hypothesized to have lost petals from showy petalous ancestors. But the pollination biology of apetalous species of Stellaria remains unclear. METHODS Using a substantial species-level sampling (~92% of known taxonomic diversity), we describe the pattern of petal evolution within Stellaria using ancestral character state reconstructions. To help shed light on the reproductive biology of apetalous Stellaria, we conducted a field experiment at an alpine tundra site in the southern Rocky Mountains to test whether an apetalous species (S. irrigua) exhibits higher levels of selfing than a sympatric, showy petalous congener (S. longipes). RESULTS Analyses indicated that the ancestor of Stellaria was likely showy petalous and that repeated, parallel reductions of petals occurred in clades across much of the world, with uncommon reversal back to showy petals. Field experiments supported high rates of selfing in the apetalous species and high rates of outcrossing in the petalous species. CONCLUSIONS Petal loss is rampant across major clades of Stellaria and is potentially linked with self-pollination worldwide. Self-pollination occurs within the buds in S. irrigua, and high propensities for this and other forms of selfing known in many other taxa of arctic-alpine habitats may reflect erratic availability of pollinators.
Collapse
Affiliation(s)
- Mathew T Sharples
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, 80309, USA
| | - Philip C Bentz
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, 80309, USA
- Department of Plant Biology, University of Georgia, Athens, Georgia, 30602, USA
| | - Erin A Manzitto-Tripp
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, 80309, USA
- Museum of Natural History, COLO Herbarium, University of Colorado, Boulder, Colorado, 80309, USA
| |
Collapse
|
27
|
Cervantes CR, Hinojosa-Alvarez S, Wegier A, Rosas U, Arias S. Evaluating the monophyly of Mammillaria series Supertextae (Cactaceae). PHYTOKEYS 2021; 177:25-42. [PMID: 33967580 PMCID: PMC8099837 DOI: 10.3897/phytokeys.177.62915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/13/2021] [Indexed: 05/03/2023]
Abstract
Mammillaria (Cactaceae) taxonomy has been historically problematic due to the morphological variability and sympatry of the species. This has led to several proposals for infrageneric classification, including subgeneric, section and series categories. Mammillaria ser. Supertextae is one of 15 series and is made up of a variable set of species that are mainly distributed in southern Mexico and Central America. However, the phylogenetic relationships within M. ser. Supertextae and its relationship to other Mammillaria taxa are far from fully understood. Here we attempt to elucidate these relationships using complete terminal sampling and newly obtained chloroplast marker sequences and comparing them to Mammillaria species sequences from GenBank. Our phylogenetic analyses showed that M. ser. Supertextae comprises a well-supported monophyletic group that diverged approximately 2.1 Mya and has M. ser. Polyacanthae as its sister group; however, relationships within M. ser. Supertextae remain unresolved. The topology obtained within M. ser. Supertextae must also be interpreted under the distribution shared by these taxa, but it is difficult to differentiate ancestral polymorphisms from possible introgression, given the short time elapsed and the markers used. Our results show that the infrageneric units of M. haageana and M. albilanata can be considered independent evolutionary units. We also suggest that the relationship between M. haageana and M. albilanata is convoluted because their distribution overlaps (mainly towards southern Mexico), with genetic differences that possibly indicate they represent more than two taxonomic entities. One possible explanation is that there could still be gene flow between these taxa, and we might be witnessing an ongoing speciation process.
Collapse
Affiliation(s)
- Cristian R. Cervantes
- Jardín Botánico, Instituto de Biología, Universidad Nacional Autónoma de México, Tercer Circuito Exterior, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico
- Posgrado en Ciencias Biológicas, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, Ciudad de México, 04510, Mexico
| | - Silvia Hinojosa-Alvarez
- Tecnologico de Monterrey, School of Engineering and Sciences, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. 64849, Mexico
| | - Ana Wegier
- Jardín Botánico, Instituto de Biología, Universidad Nacional Autónoma de México, Tercer Circuito Exterior, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico
| | - Ulises Rosas
- Jardín Botánico, Instituto de Biología, Universidad Nacional Autónoma de México, Tercer Circuito Exterior, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico
| | - Salvador Arias
- Jardín Botánico, Instituto de Biología, Universidad Nacional Autónoma de México, Tercer Circuito Exterior, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico
| |
Collapse
|
28
|
Hunt HV, Przelomska NAS, Campana MG, Cockram J, Bligh HFJ, Kneale CJ, Romanova OI, Malinovskaya EV, Jones MK. Population genomic structure of Eurasian and African foxtail millet landrace accessions inferred from genotyping-by-sequencing. THE PLANT GENOME 2021; 14:e20081. [PMID: 33543599 PMCID: PMC8638668 DOI: 10.1002/tpg2.20081] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/15/2020] [Indexed: 05/11/2023]
Abstract
Foxtail millet [Setaria italica (L.) P. Beauv.] is the second most important millet species globally and is adapted to cultivation in diverse environments. Like its wild progenitor, green foxtail [S. viridis (L.) P. Beauv.], it is a model species for C4 photosynthetic pathways and stress tolerance genes in related bioenergy crops. We addressed questions regarding the evolution and spread of foxtail millet through a population genomic study of landraces from across its cultivated range in Europe, Asia, and Africa. We sought to determine population genomic structure and the relationship of domesticated lineages relative to green foxtail. Further, we aimed to identify genes involved in environmental stress tolerance that have undergone differential selection between geographical and genetic groups. Foxtail millet landrace accessions (n = 328) and green foxtail accessions (n = 12) were sequenced by genotyping-by-sequencing (GBS). After filtering, 5,677 single nucleotide polymorphisms (SNPs) were retained for the combined foxtail millet-green foxtail dataset and 5,020 for the foxtail millet dataset. We extended geographic coverage of green foxtail by including previously published GBS sequence tags, yielding a 4,515-SNP dataset for phylogenetic reconstruction. All foxtail millet samples were monophyletic relative to green foxtail, suggesting a single origin of foxtail millet, although no group of foxtail millet was clearly the most ancestral. Four genetic clusters were found within foxtail millet, each with a distinctive geographical distribution. These results, together with archaeobotanical evidence, suggest plausible routes of spread of foxtail millet. Selection scans identified nine candidate genes potentially involved in environmental adaptations, particularly to novel climates encountered, as domesticated foxtail millet spread to new altitudes and latitudes.
Collapse
Affiliation(s)
- Harriet V. Hunt
- McDonald Institute for Archaeological ResearchUniversity of CambridgeDowning StreetCambridgeCB2 3ERUK
| | - Natalia A. S. Przelomska
- Comparative Plant and Fungal BiologyRoyal Botanic GardensKewRichmondTW9 3AEUK
- Department of AnthropologyNational Museum of Natural HistorySmithsonian InstitutionWashingtonDC20560USA
- Center for Conservation GenomicsSmithsonian's National Zoo and Conservation Biology InstituteSmithsonian InstitutionWashingtonDC20008USA
- Department of ArchaeologyUniversity of CambridgeDowning StreetCambridgeCB2 3DZUK
| | - Michael G. Campana
- Center for Conservation GenomicsSmithsonian's National Zoo and Conservation Biology InstituteSmithsonian InstitutionWashingtonDC20008USA
| | - James Cockram
- The John Bingham LaboratoryNIAB93 Lawrence Weaver RoadCambridgeCB3 0LEUK
| | | | - Catherine J. Kneale
- McDonald Institute for Archaeological ResearchUniversity of CambridgeDowning StreetCambridgeCB2 3ERUK
| | - Olga I. Romanova
- N.I. Vavilov Institute of Plant Genetic Resources (VIR)St. Petersburg190000Russia
| | | | - Martin K. Jones
- Department of ArchaeologyUniversity of CambridgeDowning StreetCambridgeCB2 3DZUK
| |
Collapse
|
29
|
Comparative Analysis of SNP Discovery and Genotyping in Fagus sylvatica L. and Quercus robur L. Using RADseq, GBS, and ddRAD Methods. FORESTS 2021. [DOI: 10.3390/f12020222] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Next-generation sequencing of reduced representation genomic libraries (RRL) is capable of providing large numbers of genetic markers for population genetic studies at relatively low costs. However, one major concern of these types of markers is the precision of genotyping, which is related to the common problem of missing data, which appears to be particularly important in association and genomic selection studies. We evaluated three RRL approaches (GBS, RADseq, ddRAD) and different SNP identification methods (de novo or based on a reference genome) to find the best solutions for future population genomics studies in two economically and ecologically important broadleaved tree species, namely F. sylvatica and Q. robur. We found that the use of ddRAD method coupled with SNP calling based on reference genomes provided the largest numbers of markers (28 k and 36 k for beech and oak, respectively), given standard filtering criteria. Using technical replicates of samples, we demonstrated that more than 80% of SNP loci should be considered as reliable markers in GBS and ddRAD, but not in RADseq data. According to the reference genomes’ annotations, more than 30% of the identified ddRAD loci appeared to be related to genes. Our findings provide a solid support for using ddRAD-based SNPs for future population genomics studies in beech and oak.
Collapse
|
30
|
High genomic diversity maintained by populations of Carex scirpoidea subsp. convoluta, a paraphyletic Great Lakes ecotype. CONSERV GENET 2021. [DOI: 10.1007/s10592-020-01326-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
31
|
Pearman WS, Wells SJ, Silander OK, Freed NE, Dale J. Concordant geographic and genetic structure revealed by genotyping-by-sequencing in a New Zealand marine isopod. Ecol Evol 2020; 10:13624-13639. [PMID: 33391668 PMCID: PMC7771188 DOI: 10.1002/ece3.6802] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 12/19/2022] Open
Abstract
Population genetic structure in the marine environment can be influenced by life-history traits such as developmental mode (biphasic, with distinct adult and larval morphology, and direct development, in which larvae resemble adults) or habitat specificity, as well as geography and selection. Developmental mode is thought to significantly influence dispersal, with direct developers expected to have much lower dispersal potential. However, this prediction can be complicated by the presence of geophysical barriers to dispersal. In this study, we use a panel of 8,020 SNPs to investigate population structure and biogeography over multiple spatial scales for a direct-developing species, the New Zealand endemic marine isopod Isocladus armatus. Because our sampling range is intersected by two well-known biogeographic barriers (the East Cape and the Cook Strait), our study provides an opportunity to understand how such barriers influence dispersal in direct developers. On a small spatial scale (20 km), gene flow between locations is extremely high, suggestive of an island model of migration. However, over larger spatial scales (600 km), populations exhibit a clear pattern of isolation-by-distance. Our results indicate that I. armatus exhibits significant migration across the hypothesized barriers and suggest that large-scale ocean currents associated with these locations do not present a barrier to dispersal. Interestingly, we find evidence of a north-south population genetic break occurring between Māhia and Wellington. While no known geophysical barrier is apparent in this area, it coincides with the location of a proposed border between bioregions. Analysis of loci under selection revealed that both isolation-by-distance and adaption may be contributing to the degree of population structure we have observed here. We conclude that developmental life history largely predicts dispersal in the intertidal isopod I. armatus. However, localized biogeographic processes can disrupt this expectation, and this may explain the potential meta-population detected in the Auckland region.
Collapse
Affiliation(s)
- William S. Pearman
- School of Natural and Computational SciencesMassey UniversityAucklandNew Zealand
| | - Sarah J. Wells
- School of Environmental and Animal SciencesUnitec Institute of TechnologyAucklandNew Zealand
| | - Olin K. Silander
- School of Natural and Computational SciencesMassey UniversityAucklandNew Zealand
| | - Nikki E. Freed
- School of Natural and Computational SciencesMassey UniversityAucklandNew Zealand
| | - James Dale
- School of Natural and Computational SciencesMassey UniversityAucklandNew Zealand
| |
Collapse
|
32
|
Ortiz D, Pekár S, Bilat J, Alvarez N. Poor performance of DNA barcoding and the impact of RAD loci filtering on the species delimitation of an Iberian ant-eating spider. Mol Phylogenet Evol 2020; 154:106997. [PMID: 33164854 DOI: 10.1016/j.ympev.2020.106997] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 11/28/2022]
Abstract
Genomic data provide unprecedented power for species delimitation. However, current implementations are still time and resource consuming. In addition, bioinformatic processing is contentious and its impact on downstream analyses is insufficiently understood. Here we employ ddRAD sequencing and a thorough sampling for species delimitation in Zodarion styliferum, a widespread Iberian ant-eating spider. We explore the influence of the loci filtering strategy on the downstream phylogenetic analyses, genomic clustering and coalescent species delimitation. We also assess the accuracy of one mitochondrial (COI) and one nuclear (ITS) barcode for fast and inexpensive species delineation in the group. Our genomic data strongly support two morphologically cryptic but ecologically divergent lineages, mainly restricted to the central-eastern and western parts of the Iberian Peninsula, respectively. Larger matrices with more missing data showed increased genomic diversity, supporting that bioinformatic strategies to maximize matrix completion disproportionately exclude loci with the highest mutation rates. Moderate loci filtering gave the best results across analyses: although larger matrices returned concatenated phylogenies with higher support, middle-sized matrices performed better in genetic structure analyses. COI displayed high diversity and a conspicuous barcode gap, revealing 13 mitochondrial lineages. Mitonuclear discordance is consistent with ancestral isolation in multiple groups, probably in glacial refugia, followed by range expansion and secondary contact that produced genomic homogenization. Several apparently (unidirectionally) introgressed specimens further challenge the accuracy of species identification through mitochondrial barcodes in the group. Conversely, ITS failed to separate both lineages of Z. styliferum. This study shows an extreme case of mitonuclear discordance that highlights the limitations of single molecular barcodes for species delimitation, even in presence of distinct barcode gaps, and brings new light on the effects of parameterization on shallow-divergence studies using RAD data.
Collapse
Affiliation(s)
- David Ortiz
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic.
| | - Stano Pekár
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Julia Bilat
- Geneva Natural History Museum, Geneva, Switzerland
| | - Nadir Alvarez
- Geneva Natural History Museum, Geneva, Switzerland; Department of Genetics & Evolution, University of Geneva, Geneva, Switzerland
| |
Collapse
|
33
|
Guo C, Ma PF, Yang GQ, Ye XY, Guo Y, Liu JX, Liu YL, Eaton DAR, Guo ZH, Li DZ. Parallel ddRAD and Genome Skimming Analyses Reveal a Radiative and Reticulate Evolutionary History of the Temperate Bamboos. Syst Biol 2020; 70:756-773. [PMID: 33057686 PMCID: PMC8208805 DOI: 10.1093/sysbio/syaa076] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/20/2020] [Accepted: 09/25/2020] [Indexed: 11/13/2022] Open
Abstract
Rapid evolutionary radiations are among the most challenging phylogenetic problems, wherein different types of data (e.g., morphology and molecular) or genetic markers (e.g., nuclear and organelle) often yield inconsistent results. The tribe Arundinarieae, that is, the temperate bamboos, is a clade of tetraploid originated 22 Ma and subsequently radiated in East Asia. Previous studies of Arundinarieae have found conflicting relationships and/or low support. Here, we obtain nuclear markers from ddRAD data for 213 Arundinarieae taxa and parallel sampling of chloroplast genomes from genome skimming for 147 taxa. We first assess the feasibility of using ddRAD-seq data for phylogenetic estimates of paleopolyploid and rapidly radiated lineages, optimize clustering thresholds, and analysis workflow for orthology identification. Reference-based ddRAD data assembly approaches perform well and yield strongly supported relationships that are generally concordant with morphology-based taxonomy. We recover five major lineages, two of which are notable (the pachymorph and leptomorph lineages), in that they correspond with distinct rhizome morphologies. By contrast, the phylogeny from chloroplast genomes differed significantly. Based on multiple lines of evidence, the ddRAD tree is favored as the best species tree estimation for temperate bamboos. Using a time-calibrated ddRAD tree, we find that Arundinarieae diversified rapidly around the mid-Miocene corresponding with intensification of the East Asian monsoon and the evolution of key innovations including the leptomorph rhizomes. Our results provide a highly resolved phylogeny of Arundinarieae, shed new light on the radiation and reticulate evolutionary history of this tribe, and provide an empirical example for the study of recalcitrant plant radiations. [Arundinarieae; ddRAD; paleopolyploid; genome skimming; rapid diversification; incongruence.]
Collapse
Affiliation(s)
- Cen Guo
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Peng-Fei Ma
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Guo-Qian Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Xia-Ying Ye
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Ying Guo
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Jing-Xia Liu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Yun-Long Liu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Deren A R Eaton
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY 10027, USA
| | - Zhen-Hua Guo
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| |
Collapse
|
34
|
Gutiérrez-Rodríguez J, Zaldívar-Riverón A, Solano-Zavaleta I, Campbell JA, Meza-Lázaro RN, Flores-Villela O, Nieto-Montes de Oca A. Phylogenomics of the Mesoamerican alligator-lizard genera Abronia and Mesaspis (Anguidae: Gerrhonotinae) reveals multiple independent clades of arboreal and terrestrial species. Mol Phylogenet Evol 2020; 154:106963. [PMID: 32950681 DOI: 10.1016/j.ympev.2020.106963] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 08/30/2020] [Accepted: 09/08/2020] [Indexed: 11/19/2022]
Abstract
Abronia and Mesaspis are two of the five anguid lizard genera in the subfamily Gerrhonotinae. Their members are restricted to Mesoamerica, and most have allopatric distributions. Species of Abronia are primarily arboreal and occur in cloud and seasonally dry pine-oak forests, whereas those of Mesaspis are terrestrial and inhabit mesic microhabitats of montane forests. Recent molecular studies suggest that although these genera together form a monophyletic group, neither genus is monophyletic. Here we performed a phylogenetic study of Abronia and Mesaspis based on the most comprehensive taxonomic sampling of these genera to date and double digest restriction site-associated (ddRADseq) data. Our reconstructed phylogeny differed considerably from all previously published topologies, consistently recovering multiple independent clades of arboreal and terrestrial species and Abronia and Mesaspis as non-monophyletic. Geography, rather than current taxonomy, provides the best explanation of their phylogenetic relationships. Our analyses consistently recovered two main clades, distributed on the highlands of Middle America east and west of the Isthmus of Tehuantepec, respectively, and each composed of subclades of Abronia and Mesaspis. In the former main clade, members of the subgenus Auriculabronia formed the sister taxon to the Mesaspis moreletii complex, whereas the main clade west of the Isthmus was composed of two clades with a subclade of Abronia and another of Mesaspis each (one clade on the Atlantic versant of the main mountain ranges of eastern Mexico and another one on the Sierra Madre del Sur exclusive of its Atlantic versant) and a third clade with species of the subgenera Abronia and Scopaeabronia. We discuss the taxonomic implications of our results for the classification of the examined taxa and list the morphological characters that diagnose the recovered clades. This study highlights the utility of ddRADseq data to reconstruct the evolutionary history of supraspecific vertebrate taxa.
Collapse
Affiliation(s)
- Jorge Gutiérrez-Rodríguez
- Laboratorio de Herpetología, Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, C.P. 04510 Ciudad de México, Mexico; Departamento de Ecología Integrativa, Estación Biológica de Doñana (EBD-CSIC), Sevilla, Spain
| | - Alejandro Zaldívar-Riverón
- Colección Nacional de Insectos, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad Universitaria, C.P. 04510 Ciudad de México, Mexico
| | - Israel Solano-Zavaleta
- Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, C.P. 04510 Ciudad de México, Mexico
| | - Jonathan A Campbell
- Department of Biology, The University of Texas at Arlington, Arlington, TX, USA
| | - Rubi N Meza-Lázaro
- Colección Nacional de Insectos, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad Universitaria, C.P. 04510 Ciudad de México, Mexico
| | - Oscar Flores-Villela
- Laboratorio de Herpetología, Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, C.P. 04510 Ciudad de México, Mexico
| | - Adrián Nieto-Montes de Oca
- Laboratorio de Herpetología, Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, C.P. 04510 Ciudad de México, Mexico.
| |
Collapse
|
35
|
Nielsen ES, Henriques R, Beger M, Toonen RJ, von der Heyden S. Multi-model seascape genomics identifies distinct environmental drivers of selection among sympatric marine species. BMC Evol Biol 2020; 20:121. [PMID: 32938400 PMCID: PMC7493327 DOI: 10.1186/s12862-020-01679-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND As global change and anthropogenic pressures continue to increase, conservation and management increasingly needs to consider species' potential to adapt to novel environmental conditions. Therefore, it is imperative to characterise the main selective forces acting on ecosystems, and how these may influence the evolutionary potential of populations and species. Using a multi-model seascape genomics approach, we compare putative environmental drivers of selection in three sympatric southern African marine invertebrates with contrasting ecology and life histories: Cape urchin (Parechinus angulosus), Common shore crab (Cyclograpsus punctatus), and Granular limpet (Scutellastra granularis). RESULTS Using pooled (Pool-seq), restriction-site associated DNA sequencing (RAD-seq), and seven outlier detection methods, we characterise genomic variation between populations along a strong biogeographical gradient. Of the three species, only S. granularis showed significant isolation-by-distance, and isolation-by-environment driven by sea surface temperatures (SST). In contrast, sea surface salinity (SSS) and range in air temperature correlated more strongly with genomic variation in C. punctatus and P. angulosus. Differences were also found in genomic structuring between the three species, with outlier loci contributing to two clusters in the East and West Coasts for S. granularis and P. angulosus, but not for C. punctatus. CONCLUSION The findings illustrate distinct evolutionary potential across species, suggesting that species-specific habitat requirements and responses to environmental stresses may be better predictors of evolutionary patterns than the strong environmental gradients within the region. We also found large discrepancies between outlier detection methodologies, and thus offer a novel multi-model approach to identifying the principal environmental selection forces acting on species. Overall, this work highlights how adding a comparative approach to seascape genomics (both with multiple models and species) can elucidate the intricate evolutionary responses of ecosystems to global change.
Collapse
Affiliation(s)
- Erica S Nielsen
- Evolutionary Genomics Group, Department of Botany and Zoology, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa
| | - Romina Henriques
- Evolutionary Genomics Group, Department of Botany and Zoology, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa.,Technical University of Denmark, National Institute of Aquatic Resources, Section for Marine Living Resources, Velsøvej 39, 8600, Silkeborg, Denmark
| | - Maria Beger
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Robert J Toonen
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI, 96744, USA
| | - Sophie von der Heyden
- Evolutionary Genomics Group, Department of Botany and Zoology, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa.
| |
Collapse
|
36
|
Muñoz-Ramírez CP, Barnes DKA, Cárdenas L, Meredith MP, Morley SA, Roman-Gonzalez A, Sands CJ, Scourse J, Brante A. Gene flow in the Antarctic bivalve Aequiyoldia eightsii (Jay, 1839) suggests a role for the Antarctic Peninsula Coastal Current in larval dispersal. ROYAL SOCIETY OPEN SCIENCE 2020; 7:200603. [PMID: 33047024 PMCID: PMC7540763 DOI: 10.1098/rsos.200603] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 08/21/2020] [Indexed: 05/12/2023]
Abstract
The Antarctic Circumpolar Current (ACC) dominates the open-ocean circulation of the Southern Ocean, and both isolates and connects the Southern Ocean biodiversity. However, the impact on biological processes of other Southern Ocean currents is less clear. Adjacent to the West Antarctic Peninsula (WAP), the ACC flows offshore in a northeastward direction, whereas the Antarctic Peninsula Coastal Current (APCC) follows a complex circulation pattern along the coast, with topographically influenced deflections depending on the area. Using genomic data, we estimated genetic structure and migration rates between populations of the benthic bivalve Aequiyoldia eightsii from the shallows of southern South America and the WAP to test the role of the ACC and the APCC in its dispersal. We found strong genetic structure across the ACC (between southern South America and Antarctica) and moderate structure between populations of the WAP. Migration rates along the WAP were consistent with the APCC being important for species dispersal. Along with supporting current knowledge about ocean circulation models at the WAP, migration from the tip of the Antarctic Peninsula to the Bellingshausen Sea highlights the complexities of Southern Ocean circulation. This study provides novel biological evidence of a role of the APCC as a driver of species dispersal and highlights the power of genomic data for aiding in the understanding of the influence of complex oceanographic processes in shaping the population structure of marine species.
Collapse
Affiliation(s)
- Carlos P. Muñoz-Ramírez
- Instituto de Entomología, Facultad de Ciencias Básicas, Universidad Metropolitana de Ciencias de la Educación, Santiago, Chile
- Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Concepción, Chile
- Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS), Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - David K. A. Barnes
- British Antarctic Survey, Natural Environment Research Council, Cambridge, UK
| | - Leyla Cárdenas
- Centro FONDAP de Investigación Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, UniversidadAustral de Chile, Valdivia, Chile
| | - Michael P. Meredith
- British Antarctic Survey, Natural Environment Research Council, Cambridge, UK
| | - Simon A. Morley
- British Antarctic Survey, Natural Environment Research Council, Cambridge, UK
| | | | - Chester J. Sands
- British Antarctic Survey, Natural Environment Research Council, Cambridge, UK
| | - James Scourse
- College of Life and Environmental Sciences, University of Exeter, Penryn, Cornwall TR10 9EZ, UK
| | - Antonio Brante
- Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Concepción, Chile
- Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS), Universidad Católica de la Santísima Concepción, Concepción, Chile
| |
Collapse
|
37
|
The potential of genome-wide RAD sequences for resolving rapid radiations: a case study in Cactaceae. Mol Phylogenet Evol 2020; 151:106896. [PMID: 32562821 DOI: 10.1016/j.ympev.2020.106896] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 03/22/2020] [Accepted: 06/10/2020] [Indexed: 11/23/2022]
Abstract
The reconstruction of relationships within recently radiated groups is challenging even when massive amounts of sequencing data are available. The use of restriction site-associated DNA sequencing (RAD-Seq) to this end is promising. Here, we assessed the performance of RAD-Seq to infer the species-level phylogeny of the rapidly radiating genus Cereus (Cactaceae). To examine how the amount of genomic data affects resolution in this group, we used datasets and implemented different analyses. We sampled 52 individuals of Cereus, representing 18 of the 25 species currently recognized, plus members of the closely allied genera Cipocereus and Praecereus, and other 11 Cactaceae genera as outgroups. Three scenarios of permissiveness to missing data were carried out in iPyRAD, assembling datasets with 30% (333 loci), 45% (1440 loci), and 70% (6141 loci) of missing data. For each dataset, Maximum Likelihood (ML) trees were generated using two supermatrices, i.e., only SNPs and SNPs plus invariant sites. Accuracy and resolution were improved when the dataset with the highest number of loci was used (6141 loci), despite the high percentage of missing data included (70%). Coalescent trees estimated using SVDQuartets and ASTRAL are similar to those obtained by the ML reconstructions. Overall, we reconstruct a well-supported phylogeny of Cereus, which is resolved as monophyletic and composed of four main clades with high support in their internal relationships. Our findings also provide insights into the impact of missing data for phylogeny reconstruction using RAD loci.
Collapse
|
38
|
Phylogenomic Study of Monechma Reveals Two Divergent Plant Lineages of Ecological Importance in the African Savanna and Succulent Biomes. DIVERSITY 2020. [DOI: 10.3390/d12060237] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Monechma Hochst. s.l. (Acanthaceae) is a diverse and ecologically important plant group in sub-Saharan Africa, well represented in the fire-prone savanna biome and with a striking radiation into the non-fire-prone succulent biome in the Namib Desert. We used RADseq to reconstruct evolutionary relationships within Monechma s.l. and found it to be non-monophyletic and composed of two distinct clades: Group I comprises eight species resolved within the Harnieria clade, whilst Group II comprises 35 species related to the Diclipterinae clade. Our analyses suggest the common ancestors of both clades of Monechma occupied savannas, but both of these radiations (~13 mya crown ages) pre-date the currently accepted origin of the savanna biome in Africa, 5–10 mya. Diversification in the succulent biome of the Namib Desert is dated as beginning only ~1.9 mya. Inflorescence and seed morphology are found to distinguish Groups I and II and related taxa in the Justicioid lineage. Monechma Group II is morphologically diverse, with variation in some traits related to ecological diversification including plant habit. The present work enables future research on these important lineages and provides evidence towards understanding the biogeographical history of continental Africa.
Collapse
|
39
|
Cordeiro EMG, Pantoja-Gomez LM, de Paiva JB, Nascimento ARB, Omoto C, Michel AP, Correa AS. Hybridization and introgression between Helicoverpa armigera and H. zea: an adaptational bridge. BMC Evol Biol 2020; 20:61. [PMID: 32450817 PMCID: PMC7249340 DOI: 10.1186/s12862-020-01621-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 04/29/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Invasion of organisms into new ecosystems is increasingly common, due to the global trade in commodities. One of the most complex post-invasion scenarios occurs when an invasive species is related to a native pest, and even more so when they can hybridize and produce fertile progeny. The global pest Helicoverpa armigera was first detected in Brazil in 2013 and generated a wave of speculations about the possibility of hybridization with the native sister taxon Helicoverpa zea. In the present study, we used genome-wide single nucleotide polymorphisms from field-collected individuals to estimate hybridization between H. armigera and H. zea in different Brazilian agricultural landscapes. RESULTS The frequency of hybridization varied from 15 to 30% depending on the statistical analyses. These methods showed more congruence in estimating that hybrids contained approximately 10% mixed ancestry (i.e. introgression) from either species. Hybridization also varied considerably depending on the geographic locations where the sample was collected, forming a 'mosaic' hybrid zone where introgression may be facilitated by environmental and landscape variables. Both landscape composition and bioclimatic variables indicated that maize and soybean cropland are the main factors responsible for high levels of introgression in agricultural landscapes. The impact of multiple H. armigera incursions is reflected in the structured and inbred pattern of genetic diversity. CONCLUSIONS Our data showed that the landscape composition and bioclimatic variables influence the introgression rate between H. armigera and H. zea in agricultural areas. Continuous monitoring of the hybridization process in the field is necessary, since agricultural expansion, climatic fluctuations, changing composition of crop species and varieties, and dynamic planting seasons are some factors in South America that could cause a sudden alteration in the introgression rate between Helicoverpa species. Introgression between invasive and native pests can dramatically impact the evolution of host ranges and resistance management.
Collapse
Affiliation(s)
- Erick M G Cordeiro
- Department of Entomology and Acarology, University of São Paulo, Luiz de Queiroz College of Agriculture, Piracicaba, São Paulo, 13418900, Brazil
| | - Laura M Pantoja-Gomez
- Department of Entomology and Acarology, University of São Paulo, Luiz de Queiroz College of Agriculture, Piracicaba, São Paulo, 13418900, Brazil
| | - Julia B de Paiva
- Department of Entomology and Acarology, University of São Paulo, Luiz de Queiroz College of Agriculture, Piracicaba, São Paulo, 13418900, Brazil
| | - Antônio R B Nascimento
- Department of Entomology and Acarology, University of São Paulo, Luiz de Queiroz College of Agriculture, Piracicaba, São Paulo, 13418900, Brazil
- Department of Entomology & The Center for Applied Plant Sciences, Ohio Agricultural Research and Development Center, Thorne Hall, The Ohio State University, 1680 Madison Ave, Wooster, OH, 44691, USA
| | - Celso Omoto
- Department of Entomology and Acarology, University of São Paulo, Luiz de Queiroz College of Agriculture, Piracicaba, São Paulo, 13418900, Brazil
| | - Andrew P Michel
- Department of Entomology & The Center for Applied Plant Sciences, Ohio Agricultural Research and Development Center, Thorne Hall, The Ohio State University, 1680 Madison Ave, Wooster, OH, 44691, USA
| | - Alberto S Correa
- Department of Entomology and Acarology, University of São Paulo, Luiz de Queiroz College of Agriculture, Piracicaba, São Paulo, 13418900, Brazil.
| |
Collapse
|
40
|
Graham CF, Boreham DR, Manzon RG, Stott W, Wilson JY, Somers CM. How "simple" methodological decisions affect interpretation of population structure based on reduced representation library DNA sequencing: A case study using the lake whitefish. PLoS One 2020; 15:e0226608. [PMID: 31978053 PMCID: PMC6980518 DOI: 10.1371/journal.pone.0226608] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 12/01/2019] [Indexed: 12/30/2022] Open
Abstract
Reduced representation (RRL) sequencing approaches (e.g., RADSeq, genotyping by sequencing) require decisions about how much to invest in genome coverage and sequencing depth, as well as choices of values for adjustable bioinformatics parameters. To empirically explore the importance of these “simple” methodological decisions, we generated two independent sequencing libraries for the same 142 individual lake whitefish (Coregonus clupeaformis) using a nextRAD RRL approach: (1) a larger number of loci at low sequencing depth based on a 9mer (library A); and (2) fewer loci at higher sequencing depth based on a 10mer (library B). The fish were selected from populations with different levels of expected genetic subdivision. Each library was analyzed using the STACKS pipeline followed by three types of population structure assessment (FST, DAPC and ADMIXTURE) with iterative increases in the stringency of sequencing depth and missing data requirements, as well as more specific a priori population maps. Library B was always able to resolve strong population differentiation in all three types of assessment regardless of the selected parameters, largely due to retention of more loci in analyses. In contrast, library A produced more variable results; increasing the minimum sequencing depth threshold (-m) resulted in a reduced number of retained loci, and therefore lost resolution at high -m values for FST and ADMIXTURE, but not DAPC. When detecting fine population differentiation, the population map influenced the number of loci and missing data, which generated artefacts in all downstream analyses tested. Similarly, when examining fine scale population subdivision, library B was robust to changing parameters but library A lost resolution depending on the parameter set. We used library B to examine actual subdivision in our study populations. All three types of analysis found complete subdivision among populations in Lake Huron, ON and Dore Lake, SK, Canada using 10,640 SNP loci. Weak population subdivision was detected in Lake Huron with fish from sites in the north-west, Search Bay, North Point and Hammond Bay, showing slight differentiation. Overall, we show that apparently simple decisions about library construction and bioinformatics parameters can have important impacts on the interpretation of population subdivision. Although potentially more costly on a per-locus basis, early investment in striking a balance between the number of loci and sequencing effort is well worth the reduced genomic coverage for population genetics studies. More conservative stringency settings on STACKS parameters lead to a final dataset that was more consistent and robust when examining both weak and strong population differentiation. Overall, we recommend that researchers approach “simple” methodological decisions with caution, especially when working on non-model species for the first time.
Collapse
Affiliation(s)
- Carly F. Graham
- Department of Biology, University of Regina, Regina, Saskatchewan, Canada
| | - Douglas R. Boreham
- Medical Sciences, Northern Ontario School of Medicine, Greater Sudbury, Ontario, Canada
| | - Richard G. Manzon
- Department of Biology, University of Regina, Regina, Saskatchewan, Canada
| | - Wendylee Stott
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan, USA
| | - Joanna Y. Wilson
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | | |
Collapse
|
41
|
Martín-Hernanz S, Aparicio A, Fernández-Mazuecos M, Rubio E, Reyes-Betancort JA, Santos-Guerra A, Olangua-Corral M, Albaladejo RG. Maximize Resolution or Minimize Error? Using Genotyping-By-Sequencing to Investigate the Recent Diversification of Helianthemum (Cistaceae). FRONTIERS IN PLANT SCIENCE 2019; 10:1416. [PMID: 31781140 PMCID: PMC6859804 DOI: 10.3389/fpls.2019.01416] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 10/11/2019] [Indexed: 05/27/2023]
Abstract
A robust phylogenetic framework, in terms of extensive geographical and taxonomic sampling, well-resolved species relationships and high certainty of tree topologies and branch length estimations, is critical in the study of macroevolutionary patterns. Whereas Sanger sequencing-based methods usually recover insufficient phylogenetic signal, especially in recently diversified lineages, reduced-representation sequencing methods tend to provide well-supported phylogenetic relationships, but usually entail remarkable bioinformatic challenges due to the inherent trade-off between the number of SNPs and the magnitude of associated error rates. The genus Helianthemum (Cistaceae) is a species-rich and taxonomically complex Palearctic group of plants that diversified mainly since the Upper Miocene. It is a challenging case study since previous attempts using Sanger sequencing were unable to resolve the intrageneric phylogenetic relationships. Aiming to obtain a robust phylogenetic reconstruction based on genotyping-by-sequencing (GBS), we established a rigorous methodological workflow in which we i) explored how variable settings during dataset assembly have an impact on error rates and on the degree of resolution under concatenation and coalescent approaches, ii) assessed the effect of two extreme parameter configurations (minimizing error rates vs. maximizing phylogenetic resolution) on tree topology and branch lengths, and iii) evaluated the effects of these two configurations on estimates of divergence times and diversification rates. Our analyses produced highly supported topologically congruent phylogenetic trees for both configurations. However, minimizing error rates did produce more reliable branch lengths, critically affecting the accuracy of downstream analyses (i.e. divergence times and diversification rates). In addition to recommending a revision of intrageneric systematics, our results enabled us to identify three highly diversified lineages in Helianthemum in contrasting geographical areas and ecological conditions, which started radiating in the Upper Miocene.
Collapse
Affiliation(s)
- Sara Martín-Hernanz
- Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Sevilla, Spain
| | - Abelardo Aparicio
- Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Sevilla, Spain
| | | | - Encarnación Rubio
- Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Sevilla, Spain
| | - J. Alfredo Reyes-Betancort
- Jardín de Aclimatación de la Orotava, Instituto Canario de Investigaciones Agrarias (ICIA), Santa Cruz de Tenerife, Spain
| | - Arnoldo Santos-Guerra
- Jardín de Aclimatación de la Orotava, Instituto Canario de Investigaciones Agrarias (ICIA), Santa Cruz de Tenerife, Spain
| | - María Olangua-Corral
- Departamento de Biología Reproductiva y Micro-morfología, Jardín Botánico Canario ‘Viera y Clavijo’—Unidad Asociada CSIC (Cabildo de Gran Canaria), Las Palmas de Gran Canaria, Spain
| | - Rafael G. Albaladejo
- Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
42
|
De Jesús-Bonilla VS, Meza-Lázaro RN, Zaldívar-Riverón A. 3RAD-based systematics of the transitional Nearctic-Neotropical lubber grasshopper genus Taeniopoda (Orthoptera: Romaleidae). Mol Phylogenet Evol 2019; 137:64-75. [DOI: 10.1016/j.ympev.2019.04.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 04/01/2019] [Accepted: 04/19/2019] [Indexed: 02/07/2023]
|
43
|
Romeiras MM, Pena AR, Menezes T, Vasconcelos R, Monteiro F, Paulo OS, Moura M. Shortcomings of Phylogenetic Studies on Recent Radiated Insular Groups: A Meta-Analysis Using Cabo Verde Biodiversity. Int J Mol Sci 2019; 20:E2782. [PMID: 31174340 PMCID: PMC6600550 DOI: 10.3390/ijms20112782] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/16/2019] [Accepted: 06/04/2019] [Indexed: 12/22/2022] Open
Abstract
Over the previous decades, numerous studies focused on how oceanic islands have contributed to determine the phylogenetic relationships and times of origin and diversification of different endemic lineages. The Macaronesian Islands (i.e., Azores, Madeira, Selvagens, Canaries, and Cabo Verde), harbour biotas with exceptionally high levels of endemism. Within the region, the vascular plants and reptiles constitute two of the most important radiations. In this study we compare relevant published phylogenetic data and diversification rates retrieved within Cabo Verde endemic lineages and discuss the importance of choosing appropriate phylogeny-based methods to investigate diversification dynamics on islands. From this selective literature-based review, we summarize the software packages used in Macaronesian studies and discuss their adequacy considering the published data to obtain well-supported phylogenies in the target groups. We further debate the importance of Next Generation Sequencing (NGS), to investigate the evolutionary processes of diversification in the Macaronesian Islands. Analysis of genomic data provides phylogenetic resolution for rapidly evolving species radiations, suggesting a great potential to improve the phylogenetic signal and divergence time estimates in insular lineages. The most important Macaronesian reptile radiations provide good case-studies to compare classical phylogenetic methods with new tools, such as phylogenomics, revealing a high value for research on this hotspot area.
Collapse
Affiliation(s)
- Maria M Romeiras
- LEAF, Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisbon, Portugal.
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal.
| | - Ana Rita Pena
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal.
| | - Tiago Menezes
- CIBIO, Research Centre in Biodiversity and Genetic Resources, Azores Group, InBIO Associate Laboratory, Universidade dos Açores, 9501-855 Ponta Delgada, Azores, Portugal.
| | - Raquel Vasconcelos
- CIBIO, Research Centre in Biodiversity and Genetic Resources, InBIO Associate Laboratory, Universidade do Porto, 4485-661 Vairão, Portugal.
| | - Filipa Monteiro
- LEAF, Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisbon, Portugal.
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal.
| | - Octávio S Paulo
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal.
| | - Mónica Moura
- CIBIO, Research Centre in Biodiversity and Genetic Resources, Azores Group, InBIO Associate Laboratory, Universidade dos Açores, 9501-855 Ponta Delgada, Azores, Portugal.
| |
Collapse
|
44
|
Crotti M, Barratt CD, Loader SP, Gower DJ, Streicher JW. Causes and analytical impacts of missing data in RADseq phylogenetics: Insights from an African frog (Afrixalus
). ZOOL SCR 2019. [DOI: 10.1111/zsc.12335] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Marco Crotti
- Department of Life Sciences; The Natural History Museum; London UK
- Department of Life Sciences; Imperial College London; London UK
- Institute of Biodiversity, Animal Health and Comparative Medicine; University of Glasgow; Glasgow UK
| | - Christopher D. Barratt
- Department of Environmental Sciences; University of Basel; Basel Switzerland
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig; Leipzig Germany
| | - Simon P. Loader
- Department of Life Sciences; The Natural History Museum; London UK
- Department of Environmental Sciences; University of Basel; Basel Switzerland
| | - David J. Gower
- Department of Life Sciences; The Natural History Museum; London UK
| | | |
Collapse
|
45
|
Gao C, Deng Y, Wang J. The Complete Chloroplast Genomes of Echinacanthus Species (Acanthaceae): Phylogenetic Relationships, Adaptive Evolution, and Screening of Molecular Markers. FRONTIERS IN PLANT SCIENCE 2019; 9:1989. [PMID: 30687376 PMCID: PMC6335349 DOI: 10.3389/fpls.2018.01989] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 12/20/2018] [Indexed: 05/28/2023]
Abstract
Among the four species of Echinacanthus (Acanthaceae), one distributed in the West Himalayan region and three restricted to the Sino-Vietnamese karst region. Because of its ecological significance, molecular markers are necessary for proper assessment of its genetic diversity and phylogenetic relationships. Herein, the complete chloroplast genomes of four Echinacanthus species were determined for the first time. The results indicated that all the chloroplast genomes were mapped as a circular structure and each genomes included 113 unique genes, of which 80 were protein-coding, 29 were tRNAs, and 4 were rRNAs. However, the four cp genomes ranged from 151,333 to 152,672 bp in length. Comparison of the four cp genomes showed that the divergence level was greater between geographic groups. We also analyzed IR expansion or contraction in the four cp genomes and the fifth type of the large single copy/inverted repeat region in Lamiales was suggested. Furthermore, based on the analyses of comparison and nucleotide variability, six most divergent sequences (rrn16, ycf1, ndhA, rps16-trnQ-UUG, trnS-GCU-trnG-UCC, and psaA-ycf3) were identified. A total of 37-45 simple sequence repeats were discovered in the four species and 22 SSRs were identified as candidate effective molecular markers for detecting interspecies polymorphisms. These SSRs and hotspot regions could be used as potential molecular markers for future study. Phylogenetic analysis based on Bayesian and parsimony methods did not support the monophyly of Echinacanthus. The phylogenetic relationships among the four species were clearly resolved and the results supported the recognition of the Sino-Vietnamese Echinacanthus species as a new genus. Based on the protein sequence evolution analysis, 12 genes (rpl14, rpl16, rps4, rps15, rps18, rps19, psbK, psbN, ndhC, ndhJ, rpoB, and infA) were detected under positive selection in branch of Sino-Vietnamese Echinacanthus species. These genes will lead to understanding the adaptation of Echinacanthus species to karst environment. The study will help to resolve the phylogenetic relationship and understand the adaptive evolution of Echinacanthus. It will also provide genomic resources and potential markers suitable for future species identification and speciation studies of the genus.
Collapse
Affiliation(s)
- Chunming Gao
- College of Biological and Environmental Engineering, Binzhou University, Binzhou, China
- Shandong Provincial Key Laboratory of Eco-Environmental Science for the Yellow River Delta, Binzhou University, Binzhou, China
- Shandong Provincial Engineering and Technology Research Center for Wild Plant Resources Development and Application of Yellow River Delta, College of Biological and Environmental Engineering, Binzhou University, Binzhou, China
| | - Yunfei Deng
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Myanmar
| | - Jun Wang
- College of Biological and Environmental Engineering, Binzhou University, Binzhou, China
- Shandong Provincial Key Laboratory of Eco-Environmental Science for the Yellow River Delta, Binzhou University, Binzhou, China
- Shandong Provincial Engineering and Technology Research Center for Wild Plant Resources Development and Application of Yellow River Delta, College of Biological and Environmental Engineering, Binzhou University, Binzhou, China
| |
Collapse
|
46
|
Abdelkrim J, Aznar-Cormano L, Buge B, Fedosov A, Kantor Y, Zaharias P, Puillandre N. Delimiting species of marine gastropods (Turridae, Conoidea) using RAD sequencing in an integrative taxonomy framework. Mol Ecol 2018; 27:4591-4611. [DOI: 10.1111/mec.14882] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 08/27/2018] [Accepted: 09/04/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Jawad Abdelkrim
- Institut de Systématique Evolution Biodiversité (ISYEB); Muséum National d'Histoire Naturelle; CNRS; Sorbonne Université; EPHE; Paris France
- Service de Systématique Moléculaire SSM- UMS2700 - Muséum National d'Histoire Naturelle; Paris France
| | - Laetitia Aznar-Cormano
- Institut de Systématique Evolution Biodiversité (ISYEB); Muséum National d'Histoire Naturelle; CNRS; Sorbonne Université; EPHE; Paris France
| | - Barbara Buge
- Muséum National d'Histoire Naturelle; Paris France
| | - Alexander Fedosov
- A.N. Severtsov Institute of Ecology and Evolution; Russian Academy of Sciences; Moscow Russia
| | - Yuri Kantor
- A.N. Severtsov Institute of Ecology and Evolution; Russian Academy of Sciences; Moscow Russia
| | - Paul Zaharias
- Institut de Systématique Evolution Biodiversité (ISYEB); Muséum National d'Histoire Naturelle; CNRS; Sorbonne Université; EPHE; Paris France
| | - Nicolas Puillandre
- Institut de Systématique Evolution Biodiversité (ISYEB); Muséum National d'Histoire Naturelle; CNRS; Sorbonne Université; EPHE; Paris France
| |
Collapse
|
47
|
Tripp EA, Zhuang Y, Schreiber M, Stone H, Berardi AE. Evolutionary and ecological drivers of plant flavonoids across a large latitudinal gradient. Mol Phylogenet Evol 2018; 128:147-161. [DOI: 10.1016/j.ympev.2018.07.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 07/03/2018] [Accepted: 07/05/2018] [Indexed: 12/27/2022]
|
48
|
O'Connell KA, Smith EN. The effect of missing data on coalescent species delimitation and a taxonomic revision of whipsnakes (Colubridae: Masticophis). Mol Phylogenet Evol 2018; 127:356-366. [DOI: 10.1016/j.ympev.2018.03.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 01/10/2018] [Accepted: 03/14/2018] [Indexed: 11/30/2022]
|
49
|
Herrando-Moraira S. Exploring data processing strategies in NGS target enrichment to disentangle radiations in the tribe Cardueae (Compositae). Mol Phylogenet Evol 2018; 128:69-87. [PMID: 30036700 DOI: 10.1016/j.ympev.2018.07.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 07/13/2018] [Accepted: 07/14/2018] [Indexed: 12/17/2022]
Abstract
Target enrichment is a cost-effective sequencing technique that holds promise for elucidating evolutionary relationships in fast-evolving lineages. However, potential biases and impact of bioinformatic sequence treatments in phylogenetic inference have not been thoroughly explored yet. Here, we investigate this issue with an ultimate goal to shed light into a highly diversified group of Compositae (Asteraceae) constituted by four main genera: Arctium, Cousinia, Saussurea, and Jurinea. Specifically, we compared sequence data extraction methods implemented in two easy-to-use workflows, PHYLUCE and HybPiper, and assessed the impact of two filtering practices intended to reduce phylogenetic noise. In addition, we compared two phylogenetic inference methods: (1) the concatenation approach, in which all loci were concatenated in a supermatrix; and (2) the coalescence approach, in which gene trees were produced independently and then used to construct a species tree under coalescence assumptions. Here we confirm the usefulness of the set of 1061 COS targets (a nuclear conserved orthology loci set developed for the Compositae) across a variety of taxonomic levels. Intergeneric relationships were completely resolved: there are two sister groups, Arctium-Cousinia and Saussurea-Jurinea, which are in agreement with a morphological hypothesis. Intrageneric relationships among species of Arctium, Cousinia, and Saussurea are also well defined. Conversely, conflicting species relationships remain for Jurinea. Methodological choices significantly affected phylogenies in terms of topology, branch length, and support. Across all analyses, the phylogeny obtained using HybPiper and the strictest scheme of removing fast-evolving sites was estimated as the optimal. Regarding methodological choices, we conclude that: (1) trees obtained under the coalescence approach are topologically more congruent between them than those inferred using the concatenation approach; (2) refining treatments only improved support values under the concatenation approach; and (3) branch support values are maximized when fast-evolving sites are removed in the concatenation approach, and when a higher number of loci is analyzed in the coalescence approach.
Collapse
Affiliation(s)
- Sonia Herrando-Moraira
- Botanic Institute of Barcelona (IBB, CSIC-ICUB), Pg. del Migdia, s.n., 08038 Barcelona, Spain.
| | | |
Collapse
|
50
|
de Medeiros BAS, Farrell BD. Whole-genome amplification in double-digest RADseq results in adequate libraries but fewer sequenced loci. PeerJ 2018; 6:e5089. [PMID: 30038852 PMCID: PMC6054070 DOI: 10.7717/peerj.5089] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/05/2018] [Indexed: 12/18/2022] Open
Abstract
Whole-genome amplification by multiple displacement amplification (MDA) is a promising technique to enable the use of samples with only limited amount of DNA for the construction of RAD-seq libraries. Previous work has shown that, when the amount of DNA used in the MDA reaction is large, double-digest RAD-seq (ddRAD) libraries prepared with amplified genomic DNA result in data that are indistinguishable from libraries prepared directly from genomic DNA. Based on this observation, here we evaluate the quality of ddRAD libraries prepared from MDA-amplified genomic DNA when the amount of input genomic DNA and the coverage obtained for samples is variable. By simultaneously preparing libraries for five species of weevils (Coleoptera, Curculionidae), we also evaluate the likelihood that potential contaminants will be encountered in the assembled dataset. Overall, our results indicate that MDA may not be able to rescue all samples with small amounts of DNA, but it does produce ddRAD libraries adequate for studies of phylogeography and population genetics even when conditions are not optimal. We find that MDA makes it harder to predict the number of loci that will be obtained for a given sequencing effort, with some samples behaving like traditional libraries and others yielding fewer loci than expected. This seems to be caused both by stochastic and deterministic effects during amplification. Further, the reduction in loci is stronger in libraries with lower amounts of template DNA for the MDA reaction. Even though a few samples exhibit substantial levels of contamination in raw reads, the effect is very small in the final dataset, suggesting that filters imposed during dataset assembly are important in removing contamination. Importantly, samples with strong signs of contamination and biases in heterozygosity were also those with fewer loci shared in the final dataset, suggesting that stringent filtering of samples with significant amounts of missing data is important when assembling data derived from MDA-amplified genomic DNA. Overall, we find that the combination of MDA and ddRAD results in high-quality datasets for population genetics as long as the sequence data is properly filtered during assembly.
Collapse
Affiliation(s)
- Bruno A S de Medeiros
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| | - Brian D Farrell
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| |
Collapse
|