1
|
Zhang S, Chen Y, Zhou X, Zhu B. Spatial patterns and drivers of ecosystem multifunctionality in China: Arid vs. humid regions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:170868. [PMID: 38367730 DOI: 10.1016/j.scitotenv.2024.170868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/19/2024]
Abstract
Ecosystem multifunctionality (EMF) refers to an ecosystem's capacity to simultaneously uphold multiple ecological functions or services. In terrestrial ecosystems, the potential patterns and processes of EMF remain largely unexplored, limiting our comprehension of how ecosystems react to various driving factors. We collected environmental, soil and plant nutrient data, investigate the spatial distribution characteristics of EMF in China's terrestrial ecosystems, differentiating between arid and humid regions and examining the underlying drivers. Our findings reveal substantial spatial heterogeneity in the distribution of EMF across China's terrestrial ecosystems, with pronounced variations between arid and humid regions. In arid regions, the EMF index predominantly falls within the range of -1 to 1, including approximately 66.8 % of the total area, while in humid regions, the EMF index primarily falls within the range of 0 to 2, covering around 55.2 % of the total area. Climate, soil, and vegetation factors account for 61.4 % and 51.9 % of the total EMF variation in arid and humid regions, respectively. Notably, climate emerges as the dominant factor governing EMF variation in arid regions, whereas soil physicochemical properties take precedence in humid regions. Specifically, mean annual temperature (MAT) emerges as the primary factor influencing EMF variation in arid regions, while the normalized difference vegetation index (NDVI) and soil biodiversity index (SBI) play pivotal roles in regulating EMF variation in humid regions. Indeed, climate can exert both direct and indirect influences on EMF. In summary, our study not only compared the disparities in the spatial distribution of EMF in arid and humid regions but also unveiled the distinct controlling factors that govern EMF changes in these different regions. Our research has contributed novel insights for evaluating the drivers responsible for mediating EMF in diverse ecosystems, shedding light on the adaptability and response mechanisms of ecosystems under varying environmental conditions.
Collapse
Affiliation(s)
- Shihang Zhang
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, 610041 Chengdu, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yusen Chen
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Xiaobing Zhou
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Bo Zhu
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, 610041 Chengdu, China.
| |
Collapse
|
2
|
Chen X, Chen HYH, Chen C, Ma Z, Searle EB, Yu Z, Huang Z. Effects of plant diversity on soil carbon in diverse ecosystems: a global meta-analysis. Biol Rev Camb Philos Soc 2020; 95:167-183. [PMID: 31625247 DOI: 10.1111/brv.12554] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 09/01/2019] [Accepted: 09/03/2019] [Indexed: 01/24/2023]
Abstract
Soil organic carbon (SOC) is a valuable resource for mediating global climate change and securing food production. Despite an alarming rate of global plant diversity loss, uncertainties concerning the effects of plant diversity on SOC remain, because plant diversity not only stimulates litter inputs via increased productivity, thus enhancing SOC, but also stimulates microbial respiration, thus reducing SOC. By analysing 1001 paired observations of plant mixtures and corresponding monocultures from 121 publications, we show that both SOC content and stock are on average 5 and 8% higher in species mixtures than in monocultures. These positive mixture effects increase over time and are more pronounced in deeper soils. Microbial biomass carbon, an indicator of SOC release and formation, also increases, but the proportion of microbial biomass carbon in SOC is lower in mixtures. Moreover, these species-mixture effects are consistent across forest, grassland, and cropland systems and are independent of background climates. Our results indicate that converting 50% of global forests from mixtures to monocultures would release an average of 2.70 Pg C from soil annually over a period of 20 years: about 30% of global annual fossil-fuel emissions. Our study highlights the importance of plant diversity preservation for the maintenance of soil carbon sequestration in discussions of global climate change policy.
Collapse
Affiliation(s)
- Xinli Chen
- Faculty of Natural Resources Management, Lakehead University, 955 Oliver Road, Thunder Bay, ON, P7B 5E1, Canada
| | - Han Y H Chen
- Faculty of Natural Resources Management, Lakehead University, 955 Oliver Road, Thunder Bay, ON, P7B 5E1, Canada.,Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, 32 Shangshan Rd, Fuzhou, 350007, China
| | - Chen Chen
- Faculty of Natural Resources Management, Lakehead University, 955 Oliver Road, Thunder Bay, ON, P7B 5E1, Canada
| | - Zilong Ma
- Faculty of Natural Resources Management, Lakehead University, 955 Oliver Road, Thunder Bay, ON, P7B 5E1, Canada
| | - Eric B Searle
- Faculty of Natural Resources Management, Lakehead University, 955 Oliver Road, Thunder Bay, ON, P7B 5E1, Canada
| | - Zaipeng Yu
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, 32 Shangshan Rd, Fuzhou, 350007, China.,Institute of Geography, Fujian Normal University, 32 Shangshan Rd, Fuzhou, 350007, China
| | - Zhiqun Huang
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, 32 Shangshan Rd, Fuzhou, 350007, China.,Institute of Geography, Fujian Normal University, 32 Shangshan Rd, Fuzhou, 350007, China
| |
Collapse
|
3
|
Chen X, Tang M, Zhang X, Hamel C, Li W, Sheng M. Why does oriental arborvitae grow better when mixed with black locust: Insight on nutrient cycling? Ecol Evol 2018; 8:744-754. [PMID: 29321910 PMCID: PMC5756842 DOI: 10.1002/ece3.3578] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 09/16/2017] [Accepted: 10/08/2017] [Indexed: 11/10/2022] Open
Abstract
To identify why tree growth differs by afforestation type is a matter of prime concern in forestry. A study was conducted to determine why oriental arborvitae (Platycladus orientalis) grows better in the presence of black locust (Robinia pseudoacacia) than in monoculture. Different types of stands (i.e., monocultures and mixture of black locust and oriental arborvitae, and native grassland as a control) were selected in the Loess Plateau, China. The height and diameter at breast height of each tree species were measured, and soil, shoot, and root samples were sampled. The arbuscular mycorrhizal (AM) attributes, shoot and root nutrient status, height and diameter of black locust were not influenced by the presence of oriental arborvitae. For oriental arborvitae, however, growing in mixture increased height and diameter and reduced shoot Mn, Ca, and Mg contents, AM fungal spore density, and colonization rate. Major changes in soil properties also occurred, primarily in soil water, NO 3-N, and available K levels and in soil enzyme activity. The increase in soil water, N, and K availability in the presence of black locust stimulated oriental arborvitae growth, and black locust in the mixed stand seems to suppress the development of AM symbiosis in oriental arborvitae roots, especially the production of AM fungal spores and vesicles, through improving soil water and N levels, thus freeing up carbon to fuel plant growth. Overall, the presence of black locust favored oriental arborvitae growth directly by improving soil water and fertility and indirectly by repressing AM symbiosis in oriental arborvitae roots.
Collapse
Affiliation(s)
- Xuedong Chen
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess PlateauNorthwest A&F UniversityYanglingShaanxiChina
- College of Life ScienceNorthwest A&F UniversityYanglingShaanxiChina
| | - Ming Tang
- College of ForestryNorthwest A&F UniversityYanglingShaanxiChina
| | - Xinlu Zhang
- College of ForestryNorthwest A&F UniversityYanglingShaanxiChina
| | - Chantal Hamel
- Quebec Research and Development CentreAgriculture and Agri‐Food CanadaQuebecQCCanada
| | - Wei Li
- College of ForestryNorthwest A&F UniversityYanglingShaanxiChina
| | - Min Sheng
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess PlateauNorthwest A&F UniversityYanglingShaanxiChina
- College of ForestryNorthwest A&F UniversityYanglingShaanxiChina
| |
Collapse
|