1
|
Giraud-Billoud M, Moreira DC, Minari M, Andreyeva A, Campos ÉG, Carvajalino-Fernández JM, Istomina A, Michaelidis B, Niu C, Niu Y, Ondei L, Prokić M, Rivera-Ingraham GA, Sahoo D, Staikou A, Storey JM, Storey KB, Vega IA, Hermes-Lima M. REVIEW: Evidence supporting the 'preparation for oxidative stress' (POS) strategy in animals in their natural environment. Comp Biochem Physiol A Mol Integr Physiol 2024; 293:111626. [PMID: 38521444 DOI: 10.1016/j.cbpa.2024.111626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/12/2024] [Accepted: 03/19/2024] [Indexed: 03/25/2024]
Abstract
Hypometabolism is a common strategy employed by resilient species to withstand environmental stressors that would be life-threatening for other organisms. Under conditions such as hypoxia/anoxia, temperature and salinity stress, or seasonal changes (e.g. hibernation, estivation), stress-tolerant species down-regulate pathways to decrease energy expenditures until the return of less challenging conditions. However, it is with the return of these more favorable conditions and the reactivation of basal metabolic rates that a strong increase of reactive oxygen and nitrogen species (RONS) occurs, leading to oxidative stress. Over the last few decades, cases of species capable of enhancing antioxidant defenses during hypometabolic states have been reported across taxa and in response to a variety of stressors. Interpreted as an adaptive mechanism to counteract RONS formation during tissue hypometabolism and reactivation, this strategy was coined "Preparation for Oxidative Stress" (POS). Laboratory experiments have confirmed that over 100 species, spanning 9 animal phyla, apply this strategy to endure harsh environments. However, the challenge remains to confirm its occurrence in the natural environment and its wide applicability as a key survival element, through controlled experimentation in field and in natural conditions. Under such conditions, numerous confounding factors may complicate data interpretation, but this remains the only approach to provide an integrative look at the evolutionary aspects of ecophysiological adaptations. In this review, we provide an overview of representative cases where the POS strategy has been demonstrated among diverse species in natural environmental conditions, discussing the strengths and weaknesses of these results and conclusions.
Collapse
Affiliation(s)
- Maximiliano Giraud-Billoud
- Instituto de Histología y Embriología de Mendoza (IHEM), Universidad Nacional de Cuyo-CONICET, Mendoza 5500, Argentina; Instituto de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza 5500, Argentina; Departamento de Ciencias Básicas, Escuela de Ciencias de la Salud-Medicina, Universidad Nacional de Villa Mercedes, San Luis 5730, Argentina.
| | - Daniel C Moreira
- Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil; Research Center in Morphology and Applied Immunology, Faculty of Medicine, University of Brasilia, Brasilia, Brazil
| | - Marina Minari
- Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - Aleksandra Andreyeva
- A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Moscow 119991, Russia; Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St-Petersburg 194223, Russia
| | - Élida G Campos
- Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - Juan M Carvajalino-Fernández
- Laboratory of Adaptations to Extreme Environments and Global Change Biology, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Aleksandra Istomina
- V.I. Il'ichev Pacific Oceanological Institute, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia
| | - Basile Michaelidis
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, University of Thessaloniki, GR-54006 Thessaloniki, Greece
| | - Cuijuan Niu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Yonggang Niu
- Department of Life Sciences, Dezhou University, Dezhou, China
| | - Luciana Ondei
- Universidade Estadual de Goiás, Câmpus Central, 75132-903 Anápolis, GO, Brazil
| | - Marko Prokić
- Department of Physiology, Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Georgina A Rivera-Ingraham
- Australian Rivers Institute, Griffith University, Southport 4215, Gold Coast, Queensland. Australia; UMR9190-MARBEC, Centre National de la Recherche Scientifique (CNRS), Montpellier, 34090, France
| | - Debadas Sahoo
- Post Graduate Department of Zoology, S.C.S. Autonomous College, Puri, Odis ha-752001, India
| | - Alexandra Staikou
- Laboratory of Marine and Terrestrial Animal Diversity, Department of Zoology, School of Biology, University of Thessaloniki, GR-54006 Thessaloniki, Greece
| | - Janet M Storey
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, ON, Canada
| | - Kenneth B Storey
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, ON, Canada
| | - Israel A Vega
- Instituto de Histología y Embriología de Mendoza (IHEM), Universidad Nacional de Cuyo-CONICET, Mendoza 5500, Argentina; Instituto de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza 5500, Argentina; Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza 5500, Argentina
| | - Marcelo Hermes-Lima
- Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil.
| |
Collapse
|
5
|
Ahmad F, Yang GY, Liang SY, Zhou QH, Gaal HA, Mo JC. Multipartite symbioses in fungus-growing termites (Blattodea: Termitidae, Macrotermitinae) for the degradation of lignocellulose. INSECT SCIENCE 2021; 28:1512-1529. [PMID: 33236502 DOI: 10.1111/1744-7917.12890] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 10/06/2020] [Accepted: 10/19/2020] [Indexed: 06/11/2023]
Abstract
Fungus-growing termites are among the most successful herbivorous animals and improve crop productivity and soil fertility. A range of symbiotic organisms can be found inside their nests. However, interactions of termites with these symbionts are poorly understood. This review provides detailed information on the role of multipartite symbioses (between termitophiles, termites, fungi, and bacteria) in fungus-growing termites for lignocellulose degradation. The specific functions of each component in the symbiotic system are also discussed. Based on previous studies, we argue that the enzymatic contribution from the host, fungus, and bacteria greatly facilitates the decomposition of complex polysaccharide plant materials. The host-termitophile interaction protects the termite nest from natural enemies and maintains the stability of the microenvironment inside the colony.
Collapse
Affiliation(s)
- Farhan Ahmad
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou, China
- Entomology Section, Central Cotton Research Institute, Sakrand, Shaheed Benazirabad, Sindh, Pakistan
| | - Gui-Ying Yang
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou, China
| | - Shi-You Liang
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou, China
| | - Qi-Huan Zhou
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou, China
| | - Hassan Ahmed Gaal
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou, China
- Department of Entomology, Faculty of Veterinary and Animal Husbandry, Somali National University, Mogadishu, Somalia
| | - Jian-Chu Mo
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
Pires-Silva CM, Eloi I, Zilberman B, Bezerra-Gusmão MA. Nest Volume and Distance between Nests Do Not Affect Population Size or Species Richness of the Termitophilous Corotocini Fauna. ANN ZOOL FENN 2021. [DOI: 10.5735/086.059.0107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Carlos M. Pires-Silva
- Programa de Pós-graduação em Sistemática, Taxonomia Animal e Biodiversidade, Universidade de São Paulo, Museu de Zoologia da Universidade de São Paulo, 04263-000 São Paulo, Brasil
| | - Igor Eloi
- Programa de Pós-Graduação em Ecologia e Conservação, Universidade Estadual da Paraíba, Laboratório de Ecologia de Térmitas, 58429-500 Campina Grande, Paraíba, Brasil
| | - Bruno Zilberman
- Programa de Pós-graduação em Sistemática, Taxonomia Animal e Biodiversidade, Universidade de São Paulo, Museu de Zoologia da Universidade de São Paulo, 04263-000 São Paulo, Brasil
| | - Maria A. Bezerra-Gusmão
- Programa de Pós-Graduação em Ecologia e Conservação, Universidade Estadual da Paraíba, Laboratório de Ecologia de Térmitas, 58429-500 Campina Grande, Paraíba, Brasil
| |
Collapse
|
7
|
Metal bioaccumulation alleviates the negative effects of herbivory on plant growth. Sci Rep 2021; 11:19062. [PMID: 34561510 PMCID: PMC8463685 DOI: 10.1038/s41598-021-98483-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 09/08/2021] [Indexed: 02/08/2023] Open
Abstract
Metalliferous soils can selectively shape plant species' physiology towards tolerance of high metal concentrations that are usually toxic to organisms. Some adapted plant species tolerate and accumulate metal in their tissues. These metals can serve as an elemental defence but can also decrease growth. Our investigation explored the capacity of natural metal accumulation in a tropical tree species, Eremanthus erythropappus (Asteraceae) and the effects of such bioaccumulation on plant responses to herbivory. Seedlings of E. erythropappus were grown in a glasshouse on soils that represented a metal concentration gradient (Al, Cu, Fe, Mn and Zn), and then the exposed plants were fed to the herbivores in a natural habitat. The effect of herbivory on plant growth was significantly mediated by foliar metal ion concentrations. The results suggest that herbivory effects on these plants change from negative to positive depending on soil metal concentration. Hence, these results provide quantitative evidence for a previously unsuspected interaction between herbivory and metal bioaccumulation on plant growth.
Collapse
|
8
|
Hugo H, Cristaldo PF, DeSouza O. Nonaggressive behavior: A strategy employed by an obligate nest invader to avoid conflict with its host species. Ecol Evol 2020; 10:8741-8754. [PMID: 32884654 PMCID: PMC7452783 DOI: 10.1002/ece3.6572] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 06/10/2020] [Accepted: 06/16/2020] [Indexed: 11/11/2022] Open
Abstract
In addition to its builders, termite nests are known to house a variety of secondary opportunistic termite species so-called inquilines, but little is known about the mechanisms governing the maintenance of these symbioses. In a single nest, host and inquiline colonies are likely to engage in conflict due to nestmate discrimination, and an intriguing question is how both species cope with each other in the long term. Evasive behaviour has been suggested as one of the mechanisms reducing the frequency of host-inquiline encounters, yet, the confinement imposed by the nests' physical boundaries suggests that cohabiting species would eventually come across each other. Under these circumstances, it is plausible that inquilines would be required to behave accordingly to secure their housing. Here, we show that once inevitably exposed to hosts individuals, inquilines exhibit nonthreatening behaviours, displaying hence a less threatening profile and preventing conflict escalation with their hosts. By exploring the behavioural dynamics of the encounter between both cohabitants, we find empirical evidence for a lack of aggressiveness by inquilines towards their hosts. Such a nonaggressive behaviour, somewhat uncommon among termites, is characterised by evasive manoeuvres that include reversing direction, bypassing and a defensive mechanism using defecation to repel the host. The behavioural adaptations we describe may play an important role in the stability of cohabitations between host and inquiline termite species: by preventing conflict escalation, inquilines may improve considerably their chances of establishing a stable cohabitation with their hosts.
Collapse
Affiliation(s)
- Helder Hugo
- Centre for the Advanced Study of Collective BehaviourUniversity of KonstanzKonstanzGermany
- Department of Collective BehaviourMax Planck Institute of Animal BehaviorRadolfzellGermany
- Department of BiologyUniversity of KonstanzKonstanzGermany
- Lab of TermitologyFederal University of ViçosaViçosaBrazil
| | - Paulo F. Cristaldo
- Department of AgronomyFederal Rural University of PernambucoRecifeBrazil
| | - Og DeSouza
- Lab of TermitologyFederal University of ViçosaViçosaBrazil
| |
Collapse
|
10
|
Monteiro I, Viana-Junior AB, de Castro Solar RR, de Siqueira Neves F, DeSouza O. Disturbance-modulated symbioses in termitophily. Ecol Evol 2017; 7:10829-10838. [PMID: 29299261 PMCID: PMC5743531 DOI: 10.1002/ece3.3601] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 09/13/2017] [Accepted: 10/02/2017] [Indexed: 11/07/2022] Open
Abstract
Symbiosis, the living-together of unlike organisms, underlies every major transition in evolution and pervades most ecological dynamics. Among examples of symbioses, the simultaneous occupation of a termite nest by its builder termites and intruding invertebrate species (so-called termitophily) provides suitable macroscopic scenarios for the study of species coexistence in confined environments. Current evidence on termitophily abounds for dynamics occurring at the interindividual level within the termitarium, but is insufficient for broader scales such as the community and the landscape. Here, we inspect the effects of abiotic disturbance on termitophile presence and function in termitaria at these broader scales. To do so, we censused the termitophile communities inhabiting 30 termitaria of distinct volumes which had been exposed to increasing degrees of fire-induced disturbance in a savanna-like ecosystem in southeastern Brazil. We provide evidence that such an abiotic disturbance can ease the living-together of termitophiles and termites. Putative processes facilitating these symbioses, however, varied according to the invader. For nonsocial invaders, disturbance seemed to boost coexistence with termites via the habitat amelioration that termitaria provided under wildfire, as suggested by the positive correlation between disturbance degree and termitophile abundance and richness. As for social invaders (ants), disturbance seemed to enhance associational defenses with termites, as suggested by the negative correlation between the presence of ant colonies and the richness and abundance of other termitarium-cohabiting termitophiles. It is then apparent that disturbance-modulated distinct symbioses in these termite nests.
Collapse
Affiliation(s)
- Ivan Monteiro
- Departamento de EcologiaInstituto de Ciências Biológicas Universidade Federal de Minas Gerais Belo Horizonte MG Brazil.,Pós-graduação em Ecologia Departamento de Biologia Geral Universidade Federal de Viçosa Viçosa MG Brazil
| | - Arleu Barbosa Viana-Junior
- Departamento de EcologiaInstituto de Ciências Biológicas Universidade Federal de Minas Gerais Belo Horizonte MG Brazil.,Pós-graduação em Ecologia Departamento de Biologia Geral Universidade Federal de Viçosa Viçosa MG Brazil
| | - Ricardo Ribeiro de Castro Solar
- Departamento de EcologiaInstituto de Ciências Biológicas Universidade Federal de Minas Gerais Belo Horizonte MG Brazil.,Pós-graduação em Ecologia Departamento de Biologia Geral Universidade Federal de Viçosa Viçosa MG Brazil
| | - Frederico de Siqueira Neves
- Departamento de EcologiaInstituto de Ciências Biológicas Universidade Federal de Minas Gerais Belo Horizonte MG Brazil.,Pós-graduação em Ecologia Departamento de Biologia Geral Universidade Federal de Viçosa Viçosa MG Brazil
| | - Og DeSouza
- Departamento de Entomologia Universidade Federal de Viçosa Viçosa MG Brazil
| |
Collapse
|